
FOURTH-ORDER TIME STEPPING FOR STIFF PDES∗

ALY-KHAN KASSAM† AND LLOYD N. TREFETHEN‡

Abstract. A modification of the ETDRK4 (Exponential Time Differencing fourth-order Runge-
Kutta) method for solving stiff nonlinear PDEs is presented that solves the problem of numerical
instability in the scheme as proposed by Cox and Matthews and generalizes the method to non-
diagonal operators. A comparison is made of the performance of this modified ETD scheme against
the competing methods of implicit–explicit differencing, integrating factors, time-splitting, and Forn-
berg and Driscoll’s “sliders” for the KdV, Kuramoto-Sivashinsky, Burgers, and Allen-Cahn equations
in one space dimension. Implementation of the method is illustrated by short Matlab programs for
two of the equations. It is found that for these applications with fixed time steps, the modified ETD
scheme is the best.

Key words. ETD, exponential time-differencing, KdV, Kuramoto-Sivashinsky, Burgers, Allen-
Cahn, implicit–explicit, split step, integrating factor

AMS subject classifications.

1. Introduction. Many time-dependent partial differential equations (PDEs)
combine low-order nonlinear terms with higher-order linear terms. Examples include
the Allen-Cahn, Burgers, Cahn-Hilliard, Fisher-KPP, Fitzhugh-Naguno, Gray-Scott,
Hodgkin-Huxley, Kuramoto-Sivashinsky, Navier-Stokes, nonlinear Schrödinger, and
Swift-Hohenberg equations. To obtain accurate numerical solutions of such prob-
lems, it is desirable to use high-order approximations in space and time. Yet because
of the difficulties introduced by the combination of nonlinearity and stiffness, most
computations heretofore have been limited to second order in time.

Our subject in this paper is fourth order time-differencing. We shall write the
PDE in the form

ut = Lu + N (u, t),(1.1)

where L and N are linear and nonlinear operators, respectively. Once we discretise
the spatial part of the PDE we get a system of ODEs,

ut = Lu + N(u, t).(1.2)

There seem to be five principal competing methods for solving problems of this kind,
which we will abbreviate by IMEX, SS, IF, SL, and ETD. Of course these are not
the only schemes that are being used. Noteworthy schemes that we ignore are the
exponential Runge–Kutta schemes [26] and deferred correction [37] or semi–implicit
deferred correction [6, 45].

IMEX = Implicit–explicit. These are a well studied family of schemes that have
an established history in the solution of stiff PDE. Early work looking at some
stability issues dates to the beginning of the 1980’s [61]. Schemes have been proposed
for specific examples, e.g. the KdV equation [13] and the Navier-Stokes equations
[11, 32, 34], as well as certain classes of problems, for example reaction-diffusion

∗This work was supported by the Engineering and Physical Sciences Research Council (UK) and
by MathWorks, Inc.

†Oxford University Computing Laboratory, Wolfson Bldg., Parks Road, Oxford OX1 3QD, UK
(akk@comlab.ox.ac.uk)

‡same address (LNT@comlab.ox.ac.uk).

1

2 A.-K. KASSAM AND L. N. TREFETHEN

problems [51] and atmospheric modelling problems [62]. An overview of the stability
properties and derivations of implicit–explicit schemes can be found in [2].

Implicit–explicit schemes consist of using an explicit multi-step formula, for ex-
ample the second order Adams–Bashforth formula, to advance the nonlinear part of
the problem and an implicit scheme, for example the second order Adams–Moulton
formula, to advance the linear part. Other kinds of formulations also exist; for de-
velopments based around Runge-Kutta rather than Adams-Bashforth formulae, for
example, see again work by Ascher et al. [3] as well as very recent work by Calvo et al.
[10] and Kennedy and Carpenter [33]. In this report, we use a scheme known either
as AB4BD4 (in [14]) or SBDF4 (in [2]), which consists of combining a fourth order
Adams–Bashforth and a fourth order backward differentiation scheme. The formula
for this scheme is

un+1 = (25 − 12hL)−1 (48un − 36un−1 + 16un−2 − 3un−3 + 48hNn(1.3)

− 72Nn−1 + 48Nn−2 − 12Nn−3) (AB4BD4).

SS = Split Step. The idea of split step methods seems to have originated with
Bagrinovskii and Godunov in the late 1950’s [4] and to have been independently
developed by Strang for the construction of finite difference schemes [57] (the simplest
of these is often called ‘Strang Splitting’). The idea has been widely used in modelling
Hamiltonian dynamics, with the Hamiltonian of a system split into its potential and
kinetic energy parts. Some early work on this was done by Ruth [50]. Yoshida
[63] developed a technique to produce split-step methods of arbitrary even order.
McLachlan and Atela [41] studied the accuracy of such schemes and McLachlan [42]
made some further comparisons of different symplectic and non-symplectic schemes.
Overviews of these methods can be found in Sanz-Serna and Calvo [53] and Boyd [7],
and a recent discussion of the relative merits of operator splitting in general can be
found in a paper by Schatzman [54].

In essence, with the split step method, we want to write the solution as a com-
position of linear and nonlinear steps

u(t) ≈ exp(c1tL)F (d1tN) exp(c2tL)F (d2tN)· · · exp(cktL)F (dktN)u(0),(1.4)

where ci and di are real numbers and represent fractional time steps (though we
use product notation, the nonlinear substeps are nonlinear). Generating split step
methods becomes a process of generating the appropriate sets of real numbers, {ci}
and {di}, such that this product matches the exact evolution operator to high order.
The time–stepping for such a scheme can be either a multistep or a Runge-Kutta
formula. We use a fourth order Runge-Kutta formula for the time–stepping in this
experiment.

IF = Integrating factor. Techniques that multiply both sides of a differential
equation by some integrating factor and then make a relevant change of variable are
well known in the theory of ODEs (see for example [38]). A similar method has been
developed for the study of PDEs. The idea is to make a change of variable that allows
us to solve for the linear part exactly, and then use a numerical scheme of our choosing
to solve the transformed, nonlinear equation. This technique has been used for PDEs
by Milewski and Tabak [44], Maday et al. [40], Smith and Waleffe [55, 56], Fornberg

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 3

and Driscoll [20], Trefethen [60], Boyd [7] and Cox and Matthews [14]. Starting with
our generic discretised PDE, we define

v = e−Ltu.(1.5)

The term e−Lt is known as the integrating factor . In many applications we can work in
Fourier space and render L diagonal, so that scalars rather than matrices are involved.
Differentiating (1.5) gives

vt = −e−LtLu + e−Ltut.(1.6)

Now, multiplying (1.2) by the integrating factor gives

e−Ltut − e−LtLu︸ ︷︷ ︸
vt

= e−LtN(u),(1.7)

that is,

vt = e−LtN(eLtv).(1.8)

This has the effect of ameliorating the stiff linear part of the PDE, and we can use
a time–stepping method of our choice (for example a fourth order Runge-Kutta for-
mula) to advance the transformed equation. In practice, one doesn’t use the equation
as it is written in (1.8), but rather replaces actual time, t, with the timestep, ∆t,
and incrementally updates the formula from one timestep to the next. This greatly
improves the stability.

In both the split step method and the integrating factor method, we use a fourth
order Runge–Kutta method for the time–stepping. The fourth order Runge–Kutta
algorithm that we used to perform the time integration for this method was:

a = hf(vn, tn),(1.9)

b = hf(vn + a/2, tn + h/2),

c = hf(vn + b/2, tn + h/2),

d = hf(vn + c, tn + h),

vn+1 = vn +
1

6
(a + 2b + 2c + d), (Fourth order RK).

where h is the time step and f is the nonlinear functional on the RHS of (1.8). For
the split step method, we simply replace f in (1.9) with F from (1.4).

SL = Sliders. In a recent paper [20], Fornberg and Driscoll describe a clever
extension of the implicit–explicit concept described above. In addition to splitting
the problem into a linear and a nonlinear part, they also split the linear part (after
transformation to Fourier space) into three regions: low, medium and high wavenum-
bers. The slider method involves using a different numerical scheme in each region.
The advantage of this method is that one can combine high order methods for the
low wave numbers with high-stability methods for the higher wave numbers. We can
summarise one version of this method with the following table:

4 A.-K. KASSAM AND L. N. TREFETHEN

Low |k| Medium |k| High |k|
AB4/AB4 AB4/AM6 AB4/AM2*

Here k is the wavenumber, AB4 denotes the fourth order Adams-Bashforth formula,
AM6 denotes the sixth order Adams-Moulton formula, and AM2* denotes a modified
second order Adams-Moulton formula specified by

un+1 = un +
h

2
(
3

2
Lun+1 +

1

2
Lun−1),(1.10)

where h is the timestep.
Unfortunately, this scheme is stable only for purely dispersive equations. In order

to generalise the concept, Driscoll has developed a very similar idea using Runge-
Kutta time–stepping [17]. Again, the idea is to make use of different schemes for
‘fast’ and ‘slow’ modes. In this case, he uses the fourth-order Runge–Kutta formula
to deal with the slow, nonlinear modes, and an implicit–explicit third order Runge–
Kutta method to advance the ‘fast’ linear modes. This is the method that we explore
in this paper.

ETD = Exponential Time Differencing. This method is the main focus of this
paper, and we will describe it in Section 2.

One might imagine that extensive comparisons would have been carried out of the
behavior of these methods for various PDEs such as those listed in the first paragraph,
but this is not so. One reason is that SL and ETD are quite new; but even the other
three methods have not been compared as systematically as one might expect.

Our aim in beginning this project was to make such a comparison. However,
we soon found that further development of the ETD schemes was first needed. As
partly recognized by their originators Cox and Matthews, these methods as originally
proposed encounter certain problems associated with eigenvalues equal to or close
to zero, especially when the matrix L is not diagonal. If these problems are not
addressed, ETD schemes prove unsuccessful for some PDE applications.

In Section 2 we propose a modification of the ETD schemes that solves these
numerical problems. The key idea is to make use of complex analysis and evaluate
certain coefficient matrices or scalars via contour integrals in the complex plane.
Other modifications would very possibly also achieve the same purpose, but so far as
we know, this is the first fully practical ETD method for general use.

In Section 3 we summarize the results of experimental comparison of the five
fourth-order methods listed above for four PDEs: the Burgers, Korteweg-de Vries,
Allen-Cahn, and Kuramoto-Sivashinsky equations. We find that the ETD scheme
outperforms the others. We believe it is the best method currently in existence for stiff
PDEs, at least in one space dimension. In making such a bold statement, however, we
should add the caveat that we are only considering fixed time steps. Our ETD methods
do not extend cheaply to variable time-stepping; an IMEX scheme, for example, is a
more natural candidate for such problems.

Sections 4 and 5 illustrate the methods in a little more detail for a diagonal
example (Kuramoto-Sivashinsky) and a non-diagonal example (Allen-Cahn). They
also provide brief Matlab codes for use by our readers as templates.

2. A modified ETD scheme. Low order ETD schemes arose originally in the
field of computational electrodynamics [59]. They have been independently derived

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 5

several times [5, 12, 14, 21, 46, 48] – indeed Arieh Iserles has pointed out to us that in
the ODE context, related ideas go back as far as Filon in 1928 [18, 30] – but the most
comprehensive treatment, and in particular the fourth order ETDRK4 formula, is in
the paper by Cox and Matthews [14], and it is from this paper that we take details of
the scheme. Cox and Matthews argue that ETD schemes outperform IMEX schemes
because they treat transient solutions better (where the linear term dominates), and
outperform IF schemes because they treat non-transient solutions better (where the
nonlinear term dominates).

Algebraically, ETD is similar to the IF method. The difference is that we do not
make a complete change of variable. If we proceed as in the IF approach and apply
the same integrating factor and then integrate over a single time step of length h, we
get

un+1 = eLhun + eLh

∫ h

0

e−LτN(u(tn + τ), tn + τ)dτ.(2.1)

This equation is exact, so far, and the various order ETD schemes come from how
one approximates the integral. In their paper Cox and Matthews first present a
sequence of recurrence formulae that provide higher and higher order approximations
of a multistep type. They propose a generating formula

un+1 = eLhun + h

s−1∑

m=0

gm

m∑

k=0

(−1)k

(
m

k

)
Nn−k,(2.2)

where s is the order of the scheme. The coefficients gm are given by the recurrence
relation

Lhg0 = eLh − I,

Lhgm+1 + I = gm +
1

2
gm−1 +

1

3
gm−2 + . . . +

g0

m + 1
, m ≥ 0.(2.3)

Cox and Matthews also derive a set of ETD methods based on Runge-Kutta time
stepping, which they call ETDRK schemes. In this report we consider only the fourth
order scheme of this type, known as ETDRK4. According to Cox and Matthews, the
derivation of this scheme is not at all obvious and required a symbolic manipulation
system. Here are the formulae:

an = eLh/2un + L−1(eLh/2 − I)N(un, tn),

bn = eLh/2un + L−1(eLh/2 − I)N(an, tn + h/2),

cn = eLh/2an + L−1(eLh/2 − I)(2N(bn, tn + h/2) − N(un, tn)),

un+1 = eLhun + h−2L−3{[−4 − Lh + eLh(4 − 3Lh + (Lh)2)]N(un, tn)

+ 2[2 + Lh + eLh(−2 + Lh)](N(an, tn + h/2) + N(bn, tn + h/2))

+ [−4 − 3Lh − (Lh)2 + eLh(4 − Lh)]N(cn, tn + h)}.

Unfortunately, in this form, ETDRK4 (and indeed any of the ETD schemes of
order higher than two) suffers from numerical instability. To understand why this is

6 A.-K. KASSAM AND L. N. TREFETHEN

Table 2.1

Computation of g(z) by two different methods. The formula (2.4) is inaccurate for small z,
and the order-5 partial sum of the Taylor series is inaccurate for larger z. For z = 1e − 2, neither
is fully accurate. All computations are done in IEEE double precision artithmetic.

z formula (2.4) 5-term Taylor exact
1 1.71828182845905 1.71666666666667 1.71828182845905

1e-1 1.05170918075648 1.05170916666667 1.05170918075648
1e-2 1.00501670841679 1.00501670841667 1.00501670841681
1e-3 1.00050016670838 1.00050016670834 1.00050016670834
1e-4 1.00005000166714 1.00005000166671 1.00005000166671
1e-5 1.00000500000696 1.00000500001667 1.00000500001667
1e-6 1.00000049996218 1.00000050000017 1.00000050000017
1e-7 1.00000004943368 1.00000005000000 1.00000005000000
1e-8 0.99999999392253 1.00000000500000 1.00000000500000
1e-9 1.00000008274037 1.00000000050000 1.00000000050000
1e-10 1.00000008274037 1.00000000005000 1.00000000005000
1e-11 1.00000008274037 1.00000000000500 1.00000000000500
1e-12 1.00008890058234 1.00000000000050 1.00000000000050
1e-13 0.99920072216264 1.00000000000005 1.00000000000005

the case, consider the expression

g(z) =
ez − 1

z
.(2.4)

The accurate computation of this function is a well known problem in numerical
analysis, and is discussed, for example, in the monograph by Higham [25], as well as
the paper by Friesner et al. [21]. The reason it is not straightforward is that for small
z, (2.4) suffers from cancellation error. We illustrate this in Table 2.1 by comparing
the true value of g(z) to values computed directly from (2.4) and from five terms of a
Taylor expansion. For small z, the direct formula is no good because of cancellation,
but the Taylor polynomial is excellent. For large z, the direct formula is fine but the
Taylor polynomial is inaccurate. For one value of z in the table, neither method gives
full precision.

The connection between (2.4) and the scheme ETDRK4 becomes apparent when
we consider the coefficients in square brackets in the update formula for ETDRK4:

α = h−2L−3[−4 − Lh + eLh(4 − 3Lh + (Lh)2)],

β = h−2L−3[2 + Lh + eLh(−2 + Lh)],

γ = h−2L−3[−4 − 3Lh − (Lh)2 + eLh(4 − Lh)].(2.5)

These three coefficients are higher-order analogues of (2.4). The cancellation errors
are even more pronounced in these higher-order variants, and all three suffer disas-
trous cancellation errors when L has eigenvalues close to zero. This vulnerability to
cancellation errors in the higher-order ETD and ETDRK schemes can render them
effectively useless for problems which have small eigenvalues in the discretised linear
operator.

Cox and Matthews were aware of this problem, and in their paper they use a
cutoff point for small eigenvalues. In particular, as they work mainly with linear

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 7

operators that are diagonal, they use a Taylor series representation of the coefficients
for diagonal elements below the cutoff, much as in Table 2.1. This approach, however,
entails some problems. One is that as the table illustrates, one must be careful to
ensure that there is no overlap region where neither formula is accurate. Another
more serious problem is, how does the method generalize to nondiagonal problems,
i.e., matrices rather than scalars? To handle such cases gracefully one would like a
single formula that is simultaneously accurate for all values of z.

We have found that this can be achieved by making use of ideas of complex
analysis. First let us describe the accuracy problem in general terms. We have
a function f(z) to evaluate that is analytic except for a removable singularity at
z = 0. For values of z close to that singularity, though the formula given for f(z) is
mathematically exact, it is numerically inaccurate because of cancellation errors. We
seek a uniform procedure to evaluate f(z) accurately for values of z that may or may
not lie in this difficult region.

The solution we have found is to evaluate f(z) via an integral over a contour Γ
in the complex plane that encloses z and is well separated from 0:

f(z) =
1

2πi

∫

Γ

f(t)

t − z
dt.(2.6)

When z becomes a matrix L instead of a scalar, the same approach works, with the
term 1/(t− z) becoming the resolvent matrix (tI − L)−1:

f(L) =
1

2πi

∫

Γ

f(t)(tI − L)−1 dt.(2.7)

Here Γ can be any contour that encloses the eigenvalues of l.
Contour integrals of analytic functions (scalar or matrix) in the complex plane

are easy to evaluate by means of the trapezoid rule, which converges exponentially
[15, 16, 24, 60]. In practice we take Γ to be a circle and usually find that 32 or 64
equally spaced points are sufficient. When L is real, we can exploit the symmetry and
evaluate only in equally spaced points on the upper half of a circle centered on the
real axis, then take the real part of the result.

The scalars or eigenvalues of L that arise in a discretized PDE typically lie in
or near the left half of the complex plane and may cover a wide range, which grows
with the spatial discretization parameter N . For diffusive problems they are close to
the negative real axis (e.g., the Kuramoto-Sivashinsky equation), and for dispersive
problems they are close to the imaginary axis (KdV). Suitable contours Γ may ac-
cordingly vary from problem to problem. Our experience shows that many different
choices work well, so long as one is careful to ensure that the eigenvalues are indeed en-
closed by Γ. For some diffusive problems, it might be advantageous to use a parabolic
contour extending to Rez = −∞, taking advantage of exponential decay deep in the
left half-plane, but we have not used this approach for the problems treated in this
paper.

For diagonal problems, we have the additional flexibility of being able to choose
a contour Γ that depends on z, such as a circle centred at z. In this special case, the
contour integral reduces simply to a mean of f(t) over Γ, which we approximate to
full accuracy by a mean over equally spaced points along Γ (or again just the upper
half of Γ, followed by taking the real part).

For the details of exactly how this contour integral approach can be implemented,
see the Matlab codes listed in Sections 4 and 5. There is considerable flexibility about

8 A.-K. KASSAM AND L. N. TREFETHEN

this procedure, and we do not claim that our particular implementations are optimal,
merely that they work and are easy to program. For non-diagonal problems, quite a
bit of computation is involved—say, 32 matrix inverses—but as this is done just once
before the time-stepping begins (assuming that the time steps are of a fixed size), the
impact on the total computing time is small. It would be greater for some problems in
multiple space dimensions, but in some cases one could ameliorate the problem with
a preliminary Schur factorisation to bring the matrix to triangular form.

Contour integrals and Taylor series are not the only solutions that have been
proposed for this problem. Both Beylkin [5] and Friesner et al. [21], for example, use
a method that is based on scaling and squaring. That method is also effective, but
the contour integral method appeals to us because of its greater generality for dealing
with arbitrary functions.

To demonstrate the effectiveness of our stabilization method, Table 2.2 considers
the computation of the coefficient γ(z) of (2.5) (here z = L and h = 1) by use of the
formula (2.5) and by a contour integral method. Here we follow the simplest approach
in which the contour is a circle of radius 2 sampled at equally spaced points at angles
π/64, 3π/64, . . . , 127π/64. The integral becomes just a mean over these points, and
because of the ±i symmetry, it is enough to compute the mean over the 32 points
in the upper half-plane and then take the real part of the result. The table shows
accuracy in all digits printed. (In fact for this example, the same is achieved with as
few as 12 sample points in the upper half-plane.)

Table 2.2

Computation of γ = γ(z) from the formula (2.5) (unstable) and from a mean over 32 points on
a semicircle in the upper half-plane. The contour integral gives full accuracy for all these values of
z. Again, all computations are done in double precision.

z formula (2.5) contour integral exact
10 −132.292794768840 −132.292794768840 −132.292794768840
1 0.15484548537714 0.15484548537714 0.15484548537714

1e-1 0.16658049502638 0.16658049502574 0.16658049502574
1e-2 0.16666583046998 0.16666583054959 0.16666583054959
1e-3 0.16666668045673 0.16666665833055 0.16666665833055
1e-4 0.16608936448392 0.16666666658333 0.16666666658333
1e-5 0 0.16666666666583 0.16666666666583
1e-6 −888.178419700125 0.16666666666666 0.16666666666666
1e-7 0 0.16666666666667 0.16666666666667
1e-8 0 0.16666666666667 0.16666666666667
1e-9 0 0.16666666666667 0.16666666666667

Another way to demonstrate the effectiveness of our method is to see it in action.
Figures 3.1–3.4 of the next section demonstrate fast fourth-order convergence achieved
in application to four PDEs. An additional figure in that section, Figure 3.5, shows
what happens to the ETDRK4 method if instead of using contour integrals it is
implemented directly from the formulas as written.

3. Comparison of five numerical methods. We now present the results of
our numerical experiments, adapted, in part, from p27.m and p34.m of [60]. We
estimate the true solution by using a ‘very small’ timestep (half the smallest timestep
shown in the graphs). The error is then calculated as the ∞-norm of the difference
between the solution at larger timesteps and the ‘exact’ solution at the small timestep

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 9

divided by the maximum value of the solution. Thus the error plotted in the graphs
is a relative one. In a similar vein, the timesteps displayed have all been divided by
the overall simulation time scale and are thus scaled from 0 to 1. A relative timestep
of 1e-2, for example, implies that the actual timestep was one hundredth of the total
simulation time, or that the simulation required 100 steps.

We studied the following four problems. In each case we work with a fixed,
spectrally accurate space discretisation and vary the timestep.

Korteweg-de Vries equation with periodic boundary conditions,

ut = −uux − uxxx, x ∈ [−π, π],(3.1)

u(x, t = 0) = 3A2sech(
A(x + 2)

2
)2 + 3B2sech(

B(x + 1)

2
)2,

with A = 25, B = 16. The simulation runs to t = 0.001. Here and for the next two
equations we use a 512-point Fourier spectral discretisation in x.

Burgers equation with periodic boundary conditions,

ut = −(
1

2
u2)x + εuxx, x ∈ [−π, π],(3.2)

u(x, t = 0) = exp(−10 sin2(x/2)),

with ε = 0.03 and the simulation running to t = 1.
Kuramoto-Sivashinsky equation with periodic boundary conditions,

ut = −uux − uxx − uxxxx, x ∈ [0, 32π],(3.3)

u(x, t = 0) = cos(
x

16
)(1 + sin(

x

16
)),

with the simulation running to t = 30.
Allen-Cahn equation with constant Dirichlet boundary conditions,

ut = εuxx + u − u3, x ∈ [−1, 1],(3.4)

u(x, t = 0) = .53x + .47 sin(−1.5πx), u(−1, t) = −1, u(1, t) = 1,

with ε = 0.001 and the simulation running to t = 3. To impose the boundary
conditions we define u = w + x and work with homogeneous boundary conditions in
the w variable; the spatial discretisation is by a 80-point Chebyshev spectral method
(see Section 5).

We emphasize that the first three problems, because of the periodic boundary
conditions, can be reduced to diagonal form by Fourier transformation, whereas the
fourth cannot be reduced this way and thus forces us to work with matrices rather
than scalars.

Our results are summarised in Figures 3.1–3.4. The first plot in each figure
compares accuracy against step size and thus should be reasonably independent of
machine and implementation. Ultimately, of course, it is computer time that matters,
and this is what is displayed in the second plot in each figure, based on our Matlab

implementations on an 800 MHz Pentium 3 machine. Other implementations and
other machines would give somewhat different results.

Before considering the differences among methods revealed in Figures 3.1–3.4,
let us first highlight the most general point: our computations show that it is en-
tirely practical to solve these difficult nonlinear partial differential equations to high

10 A.-K. KASSAM AND L. N. TREFETHEN

accuracy by fourth-order time-stepping. Most simulations in the past have been of
lower order in time, typically second-order, but we believe that for most purposes, a
fourth-order method is superior.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Relative timestep

R
el

at
iv

e
er

ro
r

at
 t

=
 0

.0
01

Integrating factor
ETDRK4
RK Slider

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Computer time (s)

R
el

at
iv

e
er

ro
r

at
 t

=
 0

.0
01

Integrating factor
ETDRK4
RK Slider

Fig. 3.1. Accuracy vs. time step and computer time for three schemes for KdV equation.

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Relative timestep

R
e

la
tiv

e
 E

rr
o

r
a

t
t=

1
.

IMEX
Integrating factor
ETDRK4
RK Slider

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Computer time (s)

R
el

at
iv

e
er

ro
r

at
 t

=
 1

IMEX
Integrating Factor
ETDRK4
RK Slider

Fig. 3.2. Accuracy vs. time step and computer time for four schemes for Burgers’ equation.

Turning now to the differences between methods revealed in Figures 3.1–3.4, the
first thing we note is that the differences are very considerable. The methods differ in
efficiency by factors as great as 10 or higher. We were not able to make every method
work in every case. If a method does not appear on a graph it means that it did
not succeed, seemingly for reasons of nonlinear instability (which perhaps might have
been tackled by dealiasing in our spectral discretisations).

A key feature to look for in the first plot in each figure is the relative positioning
of the different methods. Schemes that are further to the right for a given accuracy
take fewer steps to achieve that accuracy. It is possible that each step is more costly,

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 11

10
−5

10
−4

10
−3

10
−2

10
−1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Relative timestep

R
el

at
iv

e
er

ro
r

at
 t

=
 3

0

IMEX
Integrating factor
ETDRK4
RK Slider

10
−1

10
0

10
1

10
2

10
3

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Computer time (s)

R
el

at
iv

e
er

ro
r

at
 t

=
 3

0

IMEX
Integrating factor
ETDRK4
RK Slider

Fig. 3.3. Results for the Kuramoto-Sivashinsky equation. Our Matlab code is listed in Section 4.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Relative timestep

R
el

at
iv

e
er

ro
r

at
 t

=
 3

IMEX
Split step
ETDRK4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Computer time (s)

R
el

at
iv

e
er

ro
r

at
 t

=
 3

IMEX
Split step
ETDRK4

Fig. 3.4. Results for the Allen-Cahn equation. This problem is non-diagonal and more chal-
lenging than the others. Our Matlab code is listed in Section 5.

however, so just because a scheme achieves a good accuracy in few steps does not
mean that it is the most efficient. The second plot in the figures give insight into
these computation times. We can make a few comments on each of the methods
investigated:

Exponential time differencing is very good in every case. It works equally
well for diagonal and non–diagonal problems, it is fast, accurate and can take large
timesteps.

The implicit–explicit scheme used in this study does not perform well. This is
striking, as these are probably the most widely used of all the schemes. This fares
particularly poorly for the dispersive equations, KdV and Burgers’ equation, and for
KdV, we could not get the IMEX scheme to work at all at the spatial resolution that
we used.

12 A.-K. KASSAM AND L. N. TREFETHEN

10
−3

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Relative timestep

R
e

la
tiv

e
 e

rr
o

r
a

t
t
=

 3

radius = 1
radius = 1e−3
radius = 1e−8
radius = 0

Fig. 3.5. Loss of stability in the ETD scheme applied to Burgers’ equation as the radius of the
contour shrinks to zero. The contour of zero radius corresponds to an ETD calculation directly from
the defining formula.

The split step method also performed poorly. It was unstable for all of the
experiments that we performed with 512 points. The main problem with this scheme,
even if it is stable, is the long computation time caused by the large number of Runge-
Kutta evaluations at each time-step for the nonlinear term. This becomes a particular
problem with schemes of higher than second order. For second-order calculations, split
step schemes are certainly competitive.

The slider method does well in all of the diagonal cases. It is fast, accurate and
very stable. This is remarkable when we compare its performance with that of the
IMEX schemes from which it was derived. The only problem with this scheme is the
difficulty in generalising it to nondiagonal cases.

Finally, the integrating factor scheme performs well for Burgers’ equation. It
doesn’t do well for the KS equation, though, coming off worst of all, and we couldn’t
get it to work for the KdV equation or the Allen-Cahn equation with the spatial
discretisation that we used. This is also a little surprising, considering how widely
used this scheme is.

One important consideration is, how easily do these schemes generalise to several
space dimensions? With the exception of the slider method, they all generalise in a
straightforward manner. Formally, almost nothing changes other than the fact that
we must work with tensor product matrices. There are a few problems that arise from
this fact, though.

The ETD, IF and SS schemes all need to calculate and store a matrix exponential.
Even if the original matrix is sparse, this is not an insignificant amount of work, and
the matrix exponential will not itself be sparse, which can be a significant amount of
storage. It is true that these can be calculated in advance, and for one dimensional-
problems the calculation is not very expensive. As the dimension of the problem
increases, however, the cost goes up. Our difficulty with the IF method for the
non-diagonal problem was that numerical instability meant that we were unable to
calculate the appropriate exponential at all.

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 13

The nature of these matrices depends crucially on whether the problem is peri-
odic. Each periodic dimension corresponds to a diagonalisation; if all dimensions are
periodic, we have only scalars to deal with, and if only one dimension is non-periodic
we have a collection of small blocks.

Another generalisation that one might consider would be how easily these schemes
could be adapted to take advantage of variable time–stepping. The IMEX and Slider
methods should be relatively easy to adapt, while those methods that use a matrix
exponential would present some difficulties.

Overall, then it appears that the ETD scheme requires the fewest steps to achieve
a given accuracy. It is also the fastest method in computation time, has excellent
stability properties and is the most general. It might be noted that the numerical ex-
periments we have presented, since they resolve the the spatial part of the problem to
very high accuracy, are somewhat stiffer than if the spatial errors had been permitted
on the same scale as the temporal errors, raising the question of whether ETD would
also be the best for less fully resolved problems. Experiments with coarser resolutions
indicate that yes, the advantages of ETD are compelling there too.

We conclude this section with an illustration of how crucial our complex contour
integrals, or other stabilisation devices, are to the success of ETD schemes. Figure
3.5 shows what happens if instead of a contour of radius 1 we shrink the radius to
10−3, 10−8, or 0. The accuracy is quickly lost. The case of radius 0 corresponds to an
ETD scheme implemented directly from the formula without any stabilisation device
beyond the use of L’Hôpital’s rule to eliminate the removable singularity at z = 0.

4. A diagonal example: Kuramoto-Sivashinsky. We now give a little more
detail about the Kuramoto-Sivashinsky equation, which dates to the mid–1970’s and
has been used in the study of a variety of reaction-diffusion systems [39]. Our 1D
problem can be written as

ut = −uux − uxx − uxxxx, x ∈ [0, 32π].(4.1)

As it contains both second and fourth order derivatives, the KS equation produces
complex behaviour. The second order term acts as an energy source and has a desta-
bilising effect, and the nonlinear term transfers energy from low to high wavenumbers
where the fourth order term has a stabilising effect. The KS equation is also very
interesting from a dynamical systems point of view, as it is a PDE that can exhibit
chaotic solutions [28, 47].

We use the initial condition

u(x, 0) = cos(x/16)(1 + sin(x/16)).(4.2)

As the equation is periodic, we discretise the spatial part using a Fourier spectral
method. Transforming to Fourier space gives,

ût = −
ik

2
û2 + (k2 − k4)û,(4.3)

or, in the standard form of (1.2),

(Lû)(k) = (k2 − k4)û(k), N(û, t) = N(û) = −
ik

2
(F ((F−1(û))2)),(4.4)

where F denotes the discrete Fourier transform.

14 A.-K. KASSAM AND L. N. TREFETHEN

We solve the problem entirely in Fourier space and use ETDRK4 time stepping
to solve to t = 150. Figure 4.1 shows the result, which took less than 1 second of
computer time on our worksation. Despite the extraordinary sensitivity of the solution
at later times to perturbations in the initial data (such perturbations are amplified by
as much as 108 up to t = 150), we are confident that this image is correct to plotting
accuracy. It would not have been practical to achieve this with a time-stepping scheme
of lower order.

We produced Figure 4.1 with the Matlab code listed in Figure 4.2.

Fig. 4.1. Time evolution for Kuramoto-Sivashinsky equation. Time runs from 0 at the bottom
of the figure to 150 at the top. This is a PDE example of deterministic chaos [1].

5. A non-diagonal example: Allen-Cahn. The Allen-Cahn equation is an-
other well-known equation from the area of reaction-diffusion systems:

ut = εuxx + u − u3, x ∈ [−1, 1],(5.1)

and following p34.m of [60], we used the initial condition

u(x, 0) = .53x + .47 sin(−1.5πx), u(−1, t) = −1, u(1, t) = 1.(5.2)

It has stable equilibria at u = ±1 and an unstable equilibrium at u = 0. One of
the interesting features of this equation is the phonomenon of metastability. Regions

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 15

% kursiv.m - solution of Kuramoto-Sivashinsky equation by ETDRK4 scheme

%

% u_t = -u*u_x - u_xx - u_xxxx, periodic BCs on [0,32*pi]

% computation is based on v = fft(u), so linear term is diagonal

% compare p27.m in Trefethen, "Spectral Methods in MATLAB", SIAM 2000

% AK Kassam and LN Trefethen, July 2002

% Spatial grid and initial condition:

N = 128;

x = 32*pi*(1:N)’/N;

u = cos(x/16).*(1+sin(x/16));

v = fft(u);

% Precompute various ETDRK4 scalar quantities:

h = 1/4; % time step

k = [0:N/2-1 0 -N/2+1:-1]’/16; % wave numbers

L = k.^2 - k.^4; % Fourier multipliers

E = exp(h*L); E2 = exp(h*L/2);

M = 16; % no. of points for complex means

r = exp(1i*pi*((1:M)-.5)/M); % roots of unity

LR = h*L(:,ones(M,1)) + r(ones(N,1),:);

Q = h*real(mean((exp(LR/2)-1)./LR ,2));

f1 = h*real(mean((-4-LR+exp(LR).*(4-3*LR+LR.^2))./LR.^3 ,2));

f2 = h*real(mean((2+LR+exp(LR).*(-2+LR))./LR.^3 ,2));

f3 = h*real(mean((-4-3*LR-LR.^2+exp(LR).*(4-LR))./LR.^3 ,2));

% Main time-stepping loop:

uu = u; tt = 0;

tmax = 150; nmax = round(tmax/h); nplt = floor((tmax/100)/h);

g = -0.5i*k;

for n = 1:nmax

t = n*h;

Nv = g.*fft(real(ifft(v)).^2);

a = E2.*v + Q.*Nv;

Na = g.*fft(real(ifft(a)).^2);

b = E2.*v + Q.*Na;

Nb = g.*fft(real(ifft(b)).^2);

c = E2.*a + Q.*(2*Nb-Nv);

Nc = g.*fft(real(ifft(c)).^2);

v = E.*v + Nv.*f1 + 2*(Na+Nb).*f2 + Nc.*f3;

if mod(n,nplt)==0

u = real(ifft(v));

uu = [uu,u]; tt = [tt,t];

end

end

% Plot results:

surf(tt,x,uu), shading interp, lighting phong, axis tight

view([-90 90]), colormap(autumn); set(gca,’zlim’,[-5 50])

light(’color’,[1 1 0],’position’,[-1,2,2])

material([0.30 0.60 0.60 40.00 1.00]);

Fig. 4.2. Matlab code to solve the Kuramoto-Sivashinsky equation and produce Figure 4.1.
Despite the extraordinary sensitivity of this equation to perturbations, this code computes correct
results in less than 1 second on an 800 MHz Pentium machine.

16 A.-K. KASSAM AND L. N. TREFETHEN

of the solution that are near ±1 will be flat, and the interface between such areas can
remain unchanged over a very long timescale before changing suddenly.

We can write a discretisation of this equation in our standard form (1.2), with

L = εD2, N(u, t) = u − u3,(5.3)

where D is the Chebyshev differentiation matrix [60]. L is now a full matrix. Again
we use ETDRK4 for the time stepping and we solve up to t = 70 with ε = 0.01. Figure
5.1 shows the result produced by the Matlab code listed in Figure 5.2, which also
runs in less than a second on our workstation. This code calls the function cheb.m

from [60], available at http://www.comlab.ox.ac.uk/work/nick.trefethen.

Fig. 5.1. Time evolution for Allen-Cahn equation. The x axis runs from x = −1 to x = 1 and
the t-axis runs from t = 0 to t = 70. The initial hump is metastable and disappears near t = 45.

Acknowledgments. It has been a pleasure to learn about high-order ETD
schemes from one of their inventors, Paul Matthews. We are also grateful for use-
ful discussions with Uri Ascher, Gino Biondini, Elaine Crooks, Arieh Iserles, Álvaro
Meseguer, and Brynwulf Owren.

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 17

% allencahn.m - solution of Allen-Cahn equation by ETDRK4 scheme

%

% u_t = 0.01*u_xx + u - u^3 on [-1,1], u(-1)=-1, u(1)=1

% computation is based on Chebyshev points, so linear term is nondiagonal

% compare p34.m in Trefethen, "Spectral Methods in MATLAB", SIAM 2000

% AK Kassam and LN Trefethen, July 2002

% Spatial grid and initial condition:

N = 20;

[D,x] = cheb(N); x = x(2:N); % spectral differentiation matrix

w = .53*x + .47*sin(-1.5*pi*x) - x; % use w = u-x to make BCs homogeneous

u = [1;w+x;-1];

% Precompute various ETDRK4 matrix quantities:

h = 1/4; % time step

M = 32; % no. of points for resolvent integral

r = 15*exp(1i*pi*((1:M)-.5)/M); % points along complex circle

L = D^2; L = .01*L(2:N,2:N); % 2nd-order differentiation

A = h*L;

E = expm(A); E2 = expm(A/2);

I = eye(N-1); Z = zeros(N-1);

f1 = Z; f2 = Z; f3 = Z; Q = Z;

for j = 1:M

z = r(j);

zIA = inv(z*I-A);

Q = Q + h*zIA*(exp(z/2)-1);

f1 = f1 + h*zIA*(-4-z+exp(z)*(4-3*z+z^2))/z^2;

f2 = f2 + h*zIA*(2+z+exp(z)*(z-2))/z^2;

f3 = f3 + h*zIA*(-4-3*z-z^2+exp(z)*(4-z))/z^2;

end

f1 = real(f1/M); f2 = real(f2/M); f3 = real(f3/M); Q = real(Q/M);

% Main time-stepping loop:

uu = u; tt = 0;

tmax = 70; nmax = round(tmax/h); nplt = floor((tmax/70)/h);

for n = 1:nmax

t = n*h;

Nu = (w+x) - (w+x).^3;

a = E2*w + Q*Nu;

Na = a + x - (a+x).^3;

b = E2*w + Q*Na;

Nb = b + x - (b+x).^3;

c = E2*a + Q*(2*Nb-Nu);

Nc = c + x - (c+x).^3;

w = E*w + f1*Nu + 2*f2*(Na+Nb) + f3*Nc;

if mod(n,nplt)==0

u = [1;w+x;-1];

uu = [uu,u]; tt = [tt,t];

end

end

% Plot results:

surf([1;x;-1],tt,uu’), lighting phong, axis tight

view([-45 60]), colormap(cool), light(’col’,[1 1 0],’pos’,[-10 0 10])

Fig. 5.2. Matlab code to solve the Allen-Cahn equation and produce Figure 5.1. Again, this
code takes less than 1 second to run on an 800 MHz Pentium machine.

18 A.-K. KASSAM AND L. N. TREFETHEN

REFERENCES

[1] A. Aceves, H. Adachihara, C. Jones, J. C. Lerman, D. W. McLaughlin, J. V. Moloney and A.
C. Newell, Chaos and coherent structures in partial differential equations, Physica D 18,
85–112 (1986).

[2] U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent
partial differential equations, SIAM J. Numer. Anal. 32, 797–823 (1995).

[3] U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations, Appl. Numer. Math. 25, 151–167 (1997).

[4] K. A. Bagrinovskii and S. K. Godunov, Difference schemes for multi-dimensional problems, Dokl.
Akad. Nauk. USSR 115, 431–433 (1957).

[5] G. Beylkin, J. M. Keiser and L. Vozovoi, A new class of time discretization schemes for the
solution of nonlinear PDEs, J. Comp. Phys. 147, 362–387 (1998).

[6] A. Bourlioux, A. T. Layton and M. L. Minion, High–order multi–implicit spectral deferred
correction methods for problems of reactive flows, J. Comp. Phys. 189 (2), 651 –675 (2003).

[7] J. P. Boyd, Chebyshev and Fourier Spectral Methods (Dover, 2001). Online edition at:
http://www-personal.engin.umich.edu/∼jpboyd/.

[8] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1,
171–199 (1948).

[9] G. D. Byrne and A. C. Hindmarsh, Stiff ODE solvers: A review of current and coming attractions,
J. Comp. Phys. 70 (2), 1–62 (1987).

[10] M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-
diffusion equations, Appl. Numer. Math. 37, 535–549 (2001).

[11] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics
(Springer-Verlag, Berlin, 1988).

[12] J. Certaine, The solution of ordinary differential equations with large time constants, Mathe-
matical Methods for Digital Computers, eds. A Ralston and H.S. Wilf, (Wiley, New York,
1960), pps. 128–132.

[13] T. F. Chan and T. Kerkhoven, Fourier methods with extended stability intervals for the
Korteweg-de Vries equation, SIAM J. Numer. Anal. 22, 441–454 (1985).

[14] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comp. Phys.
176, 430–455 (2002).

[15] P. J. Davis, On the numerical integration of periodic analytic functions, On Numerical Approx-
imation, (E. R. Langer, ed.), pp. 45–49, (University of Wisconsin Press, Madison, 1959).

[16] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed. (Academic Press,
New York, 1984).

[17] T. A. Driscoll, A composite Runge–Kutta method for the spectral solution of semilinear PDEs,
J. Comp. Phys. 182, 357–367 (2002).

[18] L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh,
49, 38–47.

[19] B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cam-
bridge, UK, 1996).

[20] B. Fornberg and T. A. Driscoll, A fast spectral algorithm for nonlinear wave equations with
linear dispersion, J. Comp. Phys. 155, 456–467 (1999).

[21] R. A. Friesner, L. S. Tuckerman, B. C. Dornblaser and T. V. Russo, A method for exponential
propagation of large stiff nonlinear differential equations, J. Sci. Comp. 4, 327–354 (1989).

[22] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I (Springer-
Verlag, Berlin, 1991).

[23] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II (Springer-Verlag, Berlin,
1996).

[24] P. Henrici, Applied and Computational Complex Analysis, v. 3 , (Wiley, New York, 1986).
[25] N. J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, 1996).
[26] M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differ-

ential equations, SIAM J. Sci. Comp. 19, 1552–1574 (1998).
[27] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cam-

bridge, UK, 1991).
[28] J. M. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation: a bridge between PDE’s

and dynamical systems, Physica D 18, 113–126 (1986).
[29] A. Iserles, A First Course in the Numerical Analysis of Differential Equations (Cambridge

University Press, Cambridge, UK, 2000).
[30] A. Iserles, On the numerical quadrature of highly–oscillating integrals I: Fourier transforms,

forthcoming.

FOURTH-ORDER TIME-STEPPING FOR STIFF PDE 19

[31] J. C. Jiminez, R. Biscay, C. Mora and L. M. Rodriguez, Dynamic properties of the local lin-
earization method for initial–value problems, Appl. Math. Comp. 126, 63–81 (2002).

[32] G. E. Karniadakis, M. Israeli and S. A. Orszag, High order splitting methods for the incom-
pressible Navier-Stokes equations, J. Comp. Phys 97, 414–443 (1991).

[33] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion–
reaction equations, Appl. Numer. Math. 44, 139–181 (2003).

[34] J. Kim and P. Moin, Applications of a fractional step method to incompressible Navier-Stokes
equations, J. Comp. Phys. 59, 308–323 (1985).

[35] O. M. Knio, H. N. Najim and P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow,
J. Comp. Phys. 154, 428–467 (1999).

[36] D. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves, Phil. Mag. (Ser. 5) 39 , 422–433 (1895).

[37] W. Kress and B. Gustafsson, Deferred correction methods for initial value boundary problems,
J. Sci. Comp. 17, (1–4), 241 – 251 (2002).

[38] M. Krusemeyer, Differential Equations (Macmillan College Publishing Company, New York,
1994).

[39] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media
far from thermal equilibrium, Prog. Theor. Phys. 55, 356–369 (1976).

[40] Y. Maday, A. T. Patera and E. M. Rønquist, An operator-integration-factor splitting method
for time-dependent problems: application to incompressible fluid flow, J. Sci. Comp. 5,
263–292 (1990).

[41] R. I. McLachlan and P. Atela, The accuracy of symplectic integrators, Nonlinearity 5, 541–562
(1992).

[42] R. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer. Math. 66, 465–
492 (1994).

[43] W. J. Merryfield and B. Shizgal, Properties of collocation third-derivative operators, J. Comp.
Phys. 105, 182–185 (1993).

[44] P. A. Milewski and E. G. Tabak, A pseudo-spectral procedure for the solution of nonlinear
wave equations with examples from free-surface flows, SIAM J. Sci. Comput. 21, 1102–1114
(1999).

[45] M. L. Minion, Semi–implicit spectral deferred correction methods for ordinary differential equa-
tions, Comm. Math. Sci. – in press.

[46] D. R. Mott, E. S. Oran and B. van Leer, A quasi-steady state solver for the stiff ordinary
differential equations of reaction kinetics, J. Comp. Phys 164, 407–428 (2000).

[47] B. Nicolaenko, B. Scheurer and T. Temam, Some global properties of the Kuramoto-Sivashinsky
equation: nonlinear stability and attractors, Physica D 16, 155–183 (1985).

[48] S. P. Nørsett, An A-stable modification of the Adams–Bashforth methods, Conf. on Numerical
Solution of Differential Equations (Dundee, 1969) 214–219, (Springer, Berlin, 1969).

[49] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
[50] R. D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci. NS 30, 2669–2671

(1983).
[51] S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J.

Math. Biol. 34 (2), 148–176 (1995).
[52] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,

SIAM J. Numer. Anal. 29, 209–228 (1992).
[53] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, London,

1994).
[54] M. Schatzman, Toward non-commutative numerical analysis: high order integration in time, J.

Sci. Comp. 17 (1–4), 99–116 (2002).
[55] L. M. Smith and F. Waleffe, Transfer of energy to two-dimensional large scales in forced, rotating

three-dimensional turbulence, Phys. Fluids 11, 1608–1622 (1999).
[56] L. M. Smith and F. Waleffe, Generation of slow large scales in forced rotating stratified turbu-

lence, J. Fluid Mech. 451, 145–169 (2002).
[57] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.

5 (3), 506–517.
[58] E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM

J. Numer. Anal. 23 (1), 1–10 (1986).
[59] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method

(Artech House, Boston, 1995).
[60] L. N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia 2000).
[61] J. M. Varah, Stability restrictions on second order, three level finite difference schemes for

parabolic equations, SIAM J. Numer. Anal. 17 (2), 300–309 (1980).

20 A.-K. KASSAM AND L. N. TREFETHEN

[62] J. G. Verwer, J. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric
transport-chemistry problems, Appl. Numer. Math 20, 191–209 (1996).

[63] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150, 262–268
(1990).

