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Abstract. In this paper we discuss the power of a pivoting transformation introduced by
Castillo, Cobo, Jubete, and Pruneda [Orthogonal Sets and Polar Methods in Linear Algebra: Ap-
plications to Matrix Calculations, Systems of Equations and Inequalities, and Linear Programming,
John Wiley, New York, 1999] and its multiple applications. The meaning of each sequential tableau
appearing during the pivoting process is interpreted. It is shown that each tableau of the process
corresponds to the inverse of a row modified matrix and contains the generators of the linear sub-
space orthogonal to a set of vectors and its complement. This transformation, which is based on the
orthogonality concept, allows us to solve many problems of linear algebra, such as calculating the
inverse and the determinant of a matrix, updating the inverse or the determinant of a matrix after
changing a row (column), determining the rank of a matrix, determining whether or not a set of
vectors is linearly independent, obtaining the intersection of two linear subspaces, solving systems of
linear equations, etc. When the process is applied to inverting a matrix and calculating its determi-
nant, not only is the inverse of the final matrix obtained, but also the inverses and the determinants
of all its block main diagonal matrices, all without extra computations.
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1. Introduction. Castillo, Cobo, Fernández-Canteli, Jubete, and Pruneda [2]
and Castillo, Cobo, Jubete, and Pruneda [3] have recently introduced a pivoting
transformation of a matrix that has important properties and has been shown to
be very useful to solve a long list of problems in linear algebra. The aim of this
paper is to show the power of this transformation, clarify the meaning of the partial
results obtained during the computationl process, and illustrate the wide range of
applications of this transformation to solve common problems in linear algebra, such
as calculating inverses of matrices, determinants or ranks, solving systems of linear
equations, etc.

The reader interested in a classical treatment of these problems can, for example,
consult the works of Burden and Faires [1], Golub and Van Loan [5], Gill et al. [6],
and Press et al. [8].

The new methods arising from this transformation have complexity identical to
that associated with the Gauss elimination method (see Castillo, Cobo, Jubete, and
Pruneda [3]). However, they are specially suitable for updating solutions when changes
in rows, columns, or variables are done. In fact, when changing a row, column, or
variable, a single step of the process allows one to obtain (update) the new solution
without the need to start again from scratch. For example, updating the inverse of
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 667

an n × n matrix when a row is changed requires one instead of n steps, a drastic
reduction in computational power.

In this paper we introduce the pivoting transformation and its applications only
from the algebraic point of view. Discussing the numerical properties and performance
of this method with respect to stability, ill conditioning, etc., which must be done
carefully and taking into account its applications (see Demmel [4] and Higham [7]),
will be the aim of another paper.

The paper is structured as follows. In section 2 the pivoting transformation is
introduced. In section 3 its main properties are discussed. In section 4 an orthogonal-
ization algorithm is derived. In section 5 some applications are given and illustrated
with examples. Finally, some conclusions are given in section 6.

2. Pivoting transformation. The main tool to be used in this paper consists
of the so-called pivoting transformation, which transforms a set of vectors Vj =
{vj

1, . . . ,v
j
n} into another set of vectors Vj+1 = {vj+1

1 , . . . ,vj+1
n } by

vj+1
k =




vj
k/t

j
j if k = j,

vj
k − t

j
k

tjj
vj
j if k �= j,(2.1)

where tjj �= 0 and tjk, k �= j, are arbitrary real numbers. In what follows we consider
that the vectors above are the columns of a matrix Vj .

This transformation can be formulated in matrix form as follows. Given a matrix
Vj = [vj

1, . . . ,v
j
n], where v

j
i , i = 1, . . . , n, are column vectors, a new matrix V

j+1 is
defined via

Vj+1 = VjM−1
j ,(2.2)

where M−1
j is the inverse of the matrix

Mj = (e1, . . . , ej−1, tj , ej+1, . . . , en)
T
,(2.3)

where ei is the ith column of the identity matrix, the transpose of tj being defined
by

tTj = uT
j V

j(2.4)

for some predestined vector uj .

Since tjj �= 0, the matrix Mj is invertible. It can be proved that M
−1
j is the

identity matrix with its jth row replaced by

t∗j =
1

tjj

(
−tj1, . . . ,−tjj−1, 1,−tjj+1, . . . ,−tjn

)
.

This transformation is used in well-known methods, such as the Gaussian elimina-
tion method. However, different selections of the t-values lead to completely different
results. In this paper we base this selection on the concept of orthogonality, and as-
sume a sequence of m transformations associated with a set of vectors {u1, . . . ,um}.
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668 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

3. Main properties of the pivoting transformation. As we shall see, the
pivoting transformation has very important and useful properties that are illustrated
in the following theorems.

The first theorem proves that given a matrix V, the pivoting transformation
transforms its columns without changing the linear subspace they generate.

Theorem 3.1. Let L(Vj) = L{vj
1, . . . ,v

j
n} be the linear subspace generated or

spanned by the set of vectors {vj
1, . . . ,v

j
n}. Consider the pivoting transformation (2.1)

or (2.2) and let L(Vj+1) = L{vj+1
1 , . . . ,vj+1

n }; then L(Vj) = L(Vj+1).
Proof. The relationship (2.2) implies immediately that L(Vj+1) ⊂ L(Vj). Con-

versely, the relationship

Vj+1Mj = Vj

implies the other way. In fact, this theorem is true by merely looking at (2.2).
The following theorem shows that the pivoting process (2.2) with the pivoting

strategy (2.4) leads to the orthogonal decomposition of the linear subspace generated
by the columns of Vj with respect to vector u.

Theorem 3.2 (orthogonal decomposition with respect to a given vector). As-
sume now a vector uj �= 0 and let tjk = uT

j v
j
k, k = 1, . . . , n. If tjj �= 0, then

uT
j V

j+1 = eTj .(3.1)

In addition, the linear subspace orthogonal to uj in L(Vj) is

{v ∈ L(Vj)|uT
j v = 0} = L

(
vj+1

1 , . . . ,vj+1
j−1,v

j+1
j+1, . . . ,v

j+1
n

)
,

and its complement is L(vj+1
j ).

In other words, the transformation (2.2) gives the generators of the linear subspace
orthogonal to uj and the generators of its complement.

Proof. This theorem follows quickly from (2.4) and (2.2) because

uTVj+1 = uTVjM−1
j = tTj M

−1
j = eTj .

Finally, Theorem 3.1 guarantees that L(vj+1
j ) is the complement.

Remark 1. Note that Theorem 3.2 allows us to obtain the linear subspace orthog-
onal to a given vector uj in any case. If t

j
j = 0, we can reorder the v vectors until we

satisfy the condition tjj �= 0 or we find that tjj = 0 ∀j = 1, . . . , n, in which case the
orthogonal set to uj in L(Vj) is all L(Vj).

The following two theorems show that the pivoting transformation (2.2) allows
obtaining the linear space orthogonal to a given linear space, in another linear space.

Theorem 3.3. If we sequentially apply the transformation in Theorem 3.1 based
on a set of linearly independent vectors {u1, . . . ,uj}, the orthogonalization and nor-
malization properties in (3.1) are kept. In other words, we have

uT
r v

j+1
k = δrk ∀r ≤ j ∀j,(3.2)

where δrk are the Kronecker deltas.
Proof. We prove this by induction over j.
Step 1. The theorem is true for j = 1, because from (3.1) we have uT

1 v
2
k = δ1k.
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 669

Step j. We assume that the theorem is true for j, that is,

uT
r v

j+1
k = δrk ∀r ≤ j ∀j.

Step j + 1. We prove that it is true for j + 1. In fact, we have

uTVj+2 = uT
r V

j+1M−1
j+1 =

{
eTr if r = j + 1,
eTr M

−1
j+1 = eTr if r ≤ j.

Theorem 3.4 (orthogonal decomposition with respect to a given linear sub-
space). Assume the linear subspace L{u1, . . . ,un}. We can sequentially use Theorem
3.2 to obtain the orthogonal set to L{u1, . . . ,un} in a given subspace L(V1). Let
tji be the dot product of uj and vj

i . Then assuming, without loss of generality, that
tq−1
q �= 0, we obtain

L(Vq−1) = L
(
vq−1

1 − t
q−1
1

tq−1
q

vq−1
q , . . . ,vq−1

q , . . . ,vq−1
n − t

q−1
n

tq−1
q

vq−1
q

)

= L (vq
1, . . . ,v

q
n) = L(Vq)

and

{v ∈ L(V1)|uT
1 v = 0, . . . ,u

T
q v = 0} = L (vq

q+1, . . . ,v
q
n

)
.

In addition, we have

uT
1 v

q
1 = 1, uT

1 v
q
i = 0 ∀i �= 1, . . . ,uT

q v
q
q = 1,u

T
q v

q
i = 0 ∀i �= q.

The proof can easily be obtained using Theorem 3.3.
The following remarks point out the practical significance of the above four the-

orems.
Remark 2. The linear subspace orthogonal to the linear subspace generated by

vector uj is the linear space generated by the columns of V
k for any k ≥ j + 1 with

the exception of its pivot column, and its complement is the linear space generated
by this pivot column of Vk for any k ≥ j + 1.

Remark 3. The linear subspace, in the linear subspace generated by the columns
of V1, orthogonal to the linear subspace generated by any subset W = {uk|k ∈ K}
is the linear subspace generated by the columns of V	, � ≥ maxk∈K k + 1, with the
exception of all pivot columns associated with the vectors in W , and its complement
is the linear subspace generated by the columns of V	, � ≥ maxk∈K k + 1, which are
their pivot columns.

4. The orthogonalization algorithm. In this section we describe an algorithm
for obtaining orthogonal decompositions, which is based on Theorem 3.4.

Algorithm 1.
• Input: Two linear subspaces L(V1) = L (v1, . . . ,vs) ⊆ R

n and L(U) =
L (u1, . . . ,um) ⊆ R

n.
• Output: The orthogonal linear subspace L(W2) to L(U) in L(V1) and its
complement L(W1).

Step 1: SetW = V1 (the matrix with vj , j = 1, . . . , s, as columns).
Step 2: Let i = 1 and � = 0.
Step 3: Calculate the dot products t	j = uT

i wj , j = 1, . . . , s.
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670 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 4.1
Iterations for obtaining the orthogonal decomposition of L(V1) with respect to L(U). Pivot

columns are boldfaced.

Iteration 1 Iteration 2

1 1 0 0 0 0 3 1 1 –1 0 0
–1 0 1 0 0 0 –3 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 –1 1 0 0 3 0 –3 1 0

Modified second table Iteration 3

3 1 –1 1 0 0 0 0 1/3 1 –1/3 0
–3 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 –1 1 –1/3 0 1/3 0
1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 1

3 –3 0 1 0 –1 1/3 0 –1/3 1

Output

1 0 1 1 –1
0 0 0 1 0
0 0 –1 0 1

–3 1 –3 0 3
0 0 0 0 1

Step 4: For j = �+1 to s locate the pivot column r	 as the first column not orthogonal
to ui, that is, t

	
r�

�= 0. If there is no such a column go to Step 7. Otherwise,
continue with Step 5.

Step 5: Increase � in one unit, divide the r	 column by t
	
r�
, and if r	 �= �, switch

columns � and r	 and associated dot products t
	
r�
and t		.

Step 6: For j = 1 to s and j �= r	 do the following: If t	j �= 0, do wkj = wkj − t	jwki

for k = 1, . . . , n.
Step 7: If i = m, go to Step 8. Otherwise, increase i in one unit and go to Step 3.
Step 8: Return L(W2) = L (w	, . . . ,ws) as the orthogonal subspace of L(U) in

L(V1) and L(W1) = L (w1, . . . ,w	−1) as its complement.

Remark 4. If the pivoting process were used taking into account numerical consid-
erations, Step 4 should be adequately modified by the corresponding pivot selecting
strategy (maximum pivot strategy, for example). In this case, the corresponding per-
mutation in Step 8 is required. Note that in this paper only algebraic considerations
are used.

The process described in Algorithm 1 can be organized in a tabular form. A
detailed description is given in the following example.

Example 1 (orthogonal decomposition). Consider the linear subspace of L(V1) =
R

5:

L(U) = L{(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T , (0, 0,−1, 0, 1)T} .
We organize the procedure in a tabular form (see Table 4.1).

First, to obtain the orthogonal decomposition of L(V1) with respect to L(U), we
construct the initial tableau (see Iteration 1 in Table 4.1), starting with the identity
matrix V1. The first column of this table is the first generator of L(U) and the
generators of the subspace to be decomposed are in the other columns. The last row
contains the inner products of the vector in the first column by the corresponding
column vectors.

Next, the first nonnull element in the last row is identified and the corresponding
column is selected as the pivot column, which is boldfaced in Iteration 1.

D
ow

nl
oa

de
d 

04
/2

3/
13

 to
 1

93
.1

44
.1

85
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ORTHOGONALLY BASED PIVOTING TRANSFORMATION 671

Finally, it is necessary to perform the pivoting process and to update the first
column and the last row of the table with the next generator of L(U) and the new
inner products. Then, we get the second table (see Iteration 2 in Table 4.1). In order
to select the pivot column, we have to look for the first nonnull element in the last
row starting with its second element because we are in the second iteration. Then,
the selected column is the third one, and before performing the pivoting process,
interchange of second and third columns must be done.

We repeat the pivoting process, incorporate the last generators of L(U), and
obtain the new dot products. We select the pivot column, starting at column three,
and look for a nonnull dot product, obtaining the fourth column as the pivot. Next,
we repeat the normalization and pivoting processes and, finally, we get the Output
tableau in Table 4.1, where the first three vectors are the generators of the complement
subspace and the last two are the generators of the orthogonal subspace. Italicized
columns are used in all iterations to refer to the complementary subspace.

Thus, the orthogonal decomposition becomes

R
5 = L{(1, 0, 0,−3, 0)T , (0, 0, 0, 1, 0)T , (1, 0,−1,−3, 0)T}

⊕ L{(1, 1, 0, 0, 0)T , (−1, 0, 1, 3, 1)T} .
Note that, from the Output tableau, we can obtain the linear subspace orthogonal

to the linear subspace generated by any subset of the initial set of vectors. For
example, the orthogonal complement of the linear subspace generated by the set
{(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T } is (see Output in Table 4.1)

L({(1,−1, 1, 0, 0)T,(3,−3, 0, 1, 0)T })⊥=L{(1, 0,−1,−3, 0)T,(1, 1, 0, 0, 0)T,(−1, 0, 1, 3, 1)T },

which can also be written as (see Iteration 3 in Table 4.1)

L({(1,−1, 1, 0, 0)T , (3,−3, 0, 1, 0)T })⊥=L{(1, 1, 0, 0, 0), (−1/3, 0, 1/3, 1, 0), (0, 0, 0, 0, 1)}.

Similarly,

L({(0, 0,−1, 0, 1)T })⊥=L{(1, 0, 0,−3, 0)T ,(0, 0, 0, 1, 0)T ,(1, 1, 0, 0, 0)T ,(−1, 0, 1, 3, 1)T }.

5. Applications. In addition to obtaining the linear subspace orthogonal to
a linear space generated by one or several vectors in a given linear subspace, the
proposed orthogonal pivoting transformation allows solving the following problems:

1. calculating the inverse of a matrix,
2. updating the inverse of a matrix after changing a row,
3. determining the rank of a matrix,
4. calculating the determinant of a matrix,
5. updating the determinant of a matrix after changing a row,
6. determining whether or not a set of vectors is linearly independent,
7. obtaining the intersection of two linear subspaces,
8. solving a homogeneous system of linear equations,
9. solving a complete system of linear equations,
10. deciding whether or not a linear system of equations is compatible.

5.1. Calculating the inverse of a matrix. The following theorem shows that
Algorithm 1 can be used for obtaining the inverse of a matrix.

Theorem 5.1. Assume that Algorithm 1 is applied to the rows of matrix A =
(a1, . . . ,an)

T using a nonsingular initial matrix V1. Then the matrix whose columns
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672 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

are in the last tableau Vn+1 is the inverse of matrix A. In addition, if we start with
V1 being the identity matrix, in the process we obtain the inverses of all block main
diagonal matrices.

Proof. Matrices Vj for j = 2, . . . , n+ 1 are obtained, using the transformations

Vj+1 = VjM−1
j , j = 1, . . . , n,(5.1)

where Mj is defined in (2.3) with t
T
j = aTj V

j . Then it satisfies

aTj V
n = aTj V

jM−1
j · · ·M−1

n = tTj M
−1
j · · ·M−1

n = eTj M
−1
j+1 · · ·M−1

n = eTj .(5.2)

This proves that A−1 = Vn; that is, the inverse of A is the matrix whose columns
are in the final tableau obtained using Algorithm 1.

The second part of the theorem is obvious because the lower triangular part of
the identity matrix is null and does not affect the dot products and the pivoting
transformations involved in the process.

Example 2 (matrix inverses). Consider the following matrix A, where the block
main diagonal matrices are shown, and its inverse A−1:

A =




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
0 1 0 −1 1


 ; A−1 =



2/7 −5/7 −5/7 1/7 3/7
3/7 3/7 3/7 −2/7 1/7
1/7 1/7 8/7 −3/7 −2/7
2/7 2/7 2/7 1/7 −4/7
−1/7 −1/7 −1/7 3/7 2/7


 .

(5.3)
Table 5.1 shows the iterations for inverting A using Algorithm 1. The inverse

matrix A−1 is obtained in the last iteration (see Table 5.1). In addition, Table 5.1
also contains the inverses of the block main diagonal matrices indicated below (see
the marked matrices in Iterations 2 to 5 in Table 5.1). The important result is that
this is obtained with no extra computation.

Finally, we mention that the 5×5 matrices we obtain in Iterations 2 to 5 in Table
5.1 are the inverses of the matrices that result from replacing in the unit matrix its
rows by the rows of matrix A. For example, the matrix in Iteration 4 is such that

H=




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1


 ; H−1=



1/2 −1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 −1/2 −1/2
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1


 .(5.4)

Example 3 (inversion of a matrix starting from a regular matrix). The proposed
pivoting process can be done starting with an arbitrary nonsingular matrix. For
example, if we start with the matrix

B =



1 0 1 1 0
2 1 0 0 0
−1 −1 1 0 −1
0 1 1 2 2
0 2 1 0 1


 ,(5.5)

we get the results in Table 5.2, i.e., the same inverse.
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 673

Table 5.1
Iterations for inverting the matrix in Example 2. Pivot columns are boldfaced. The inverses of

all block main diagonal matrices are indicated in Iterations 2 to 5.

Iteration 1 Iteration 2

1 1 0 0 0 0 –1 1 –1 0 –1 0
1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 –1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 1 0 1 0 –1 2 –1 1 0

Iteration 3 Iteration 4

0 1/2 –1/2 –1/2 –1/2 0 0 1/2 –1/2 –1/2 –1/2 1/2
0 1/2 1/2 1/2 –1/2 0 0 1/2 1/2 1/2 –1/2 –1/2
1 0 0 1 0 0 0 0 0 1 0 –1
0 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 2 0 0 0 0 1

0 0 1 0 1 0 0 0 1 2

Iteration 5 Output

0 1/2 –1/2 –1/2 –1/2 3/2 2/7 –5/7 –5/7 1/7 3/7
1 1/2 1/2 1/2 –1/2 1/2 3/7 3/7 3/7 –2/7 1/7
0 0 0 1 0 –1 1/7 1/7 8/7 –3/7 –2/7
–1 0 0 0 1 –2 2/7 2/7 2/7 1/7 –4/7
1 0 0 0 0 1 –1/7 –1/7 –1/7 3/7 2/7

1/2 1/2 1/2 –3/2 7/2

5.2. Updating the inverse of a matrix after changing a row. In this
section we start by giving an interpretation to each tableau obtained in the inversion
process of a matrix.

Since, according to Theorem 3.3, the pivoting transformation does not alter the
orthogonal properties of previous vectors, we can update the inverse of a matrix after
changing a row by an additional pivoting transformation in which the new row vector
is used.

To illustrate this, we use the results in Table 5.2. Note that the matrices in
Iterations 2 to 5 correspond to the matrices obtained from B−1 after sequentially
replacing the row which number coincides with the number of the pivot column by
their associated u-vectors. In other words, matrices in Table 5.2, Iterations 2 to 5,
are the inverses of the following matrices:

A1 =




1 1 0 1 0
−8 7 6 4 −2
6 −5 −4 −3 2

−9 8 7 5 −3
10 −9 −8 −5 3


 ; A2 =




1 1 0 1 0
−1 1 −1 0 0
6 −5 −4 −3 2

−9 8 7 5 −3
10 −9 −8 −5 3


 ;

A3 =




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1

−9 8 7 5 −3
10 −9 −8 −5 3


 ; A4 =




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
10 −9 −8 −5 3


 .

5.3. Determining the rank of a matrix. In this section we see that Algorithm
1 also allows one to determine the rank of a matrix.
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674 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.2
Iterations for inverting the matrix in Example 2 when we start with matrix A in (5.5). Pivot

columns are boldfaced.

Iteration 1 Iteration 2

1 1 0 1 1 0 –1 1/3 –2/3 1/3 0 –2/3
1 2 1 0 0 0 1 2/3 –1/3 –4/3 –2 –4/3
0 –1 –1 1 0 –1 –1 –1/3 –1/3 5/3 1 –1/3
1 0 1 1 2 2 0 0 1 1 2 2
0 0 2 1 0 1 0 0 2 1 0 1

3 2 2 3 2 2/3 2/3 –10/3 –3 –1/3

Iteration 3 Iteration 4

0 1 –1 –3 –3 –1 0 5/11 –7/22 –3/11 –15/22 –13/22
0 1 –1/2 –3 –7/2 –3/2 0 5/11 2/11 –3/11 –13/11 –12/11
1 0 –1/2 0 –1/2 –1/2 0 0 –1/2 0 –1/2 –1/2
0 –1 3/2 6 13/2 5/2 1 1/11 3/22 6/11 41/22 37/22
1 –2 3 11 9 2 2 0 1/2 1 1/2 1/2

–2 5/2 11 17/2 3/2 1/11 25/22 28/11 63/22 59/22

Iteration 5 Output

0 10/21 –1/21 1/3 –5/21 1/21 2/7 –5/7 -5/7 1/7 3/7
1 31/63 41/63 7/9 –26/63 1/63 3/7 3/7 3/7 -2/7 1/7
0 1/63 –19/63 4/9 –11/63 –2/63 1/7 1/7 8/7 –3/7 –2/7
–1 2/63 –38/63 –10/9 41/63 –4/63 2/7 2/7 2/7 1/7 –4/7
1 –1/63 19/63 5/9 11/63 2/63 –1/7 –1/7 –1/7 3/7 2/7

4/9 14/9 22/9 –8/9 1/9

In an n-dimensional linear space, the rank of a matrix U coincides with n minus
the dimension of its orthogonal complement. Thus, if during the orthogonalization
process we start with a nonsingular matrix as columns and we can find a pivot in all
iterations, then the corresponding matrix is full rank. Otherwise, the rank is equal to
the number of pivot columns we can find.

Example 4 (rank of a matrix). Assume that we are interested in calculating the
rank of the matrix

A =



1 0 1 1 1
0 1 1 0 1
1 1 2 1 2
1 1 0 0 0
1 −1 0 1 0


 .

In Table 5.3 we show the iterations for obtaining its rank. We can see that the rank
of A is 3, since the third and fifth iterations have no pivots.

5.4. Calculating the determinant of a matrix. The following theorem shows
that the determinant of a matrix can be calculated by means of Algorithm 1.

Theorem 5.2 (determinant of a matrix). The determinant of a matrix A can
be calculated by Algorithm 1 by multiplying the normalizing constants t	r� , l = 1, . . . , n,
used in Step 5 and (−1)p, where p is the number of interchanges of columns that have
occurred when executing the algorithm. If we start the algorithm with the identity
matrix, the determinants of the block main diagonal matrices referred to in section
5.1 are the partial products.

Proof. Assume that we start in Step 1 with an identity matrix, W = In, which
has a determinant of one. In the inverting process, we transform this matrix using
two different transformations: the pivoting step, which does not alter the determinant
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 675

Table 5.3
Iterations for calculating the rank of the matrix in Example 4. Pivot columns are boldfaced.

Iteration 1 Iteration 2 Iteration 3

1 1 0 0 0 0 0 1 0 –1 –1 –1 1 1 0 –1 –1 –1
0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 –1 0 –1
1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1 2 0 0 0 0 1

1 0 1 1 1 0 1 1 0 1 1 1 0 0 0

Iteration 4 Iteration 5

1 1 0 –1 –1 –1 1 1/2 –1/2 1/2 –1/2 0
1 0 1 –1 0 –1 –1 –1/2 1/2 1/2 1/2 0
0 0 0 1 0 0 0 1/2 1/2 –1/2 –1/2 –1
0 0 0 0 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

1 1 –2 –1 –2 1 –1 0 0 0

value of the matrix, and the normalization step, which divides its determinant by t	r�
(see (2.1)). In addition, we multiply it by −1 each time we switch columns. Since
|A−1| = |A|−1, we have

|A| =
n∏

i=1

(−1)ptiri .(5.6)

If we start with an identity matrix, the lower triangular part of the identity matrix
is null and does not affect the dot products and the pivoting transformations involved
in the process. Thus, the result holds.

Example 5 (determinant of a matrix). The determinant of the matrix in Example
2 is obtained by multiplying the normalizing constants, that is, the last values in the
boldfaced columns in Table 5.1. Thus, we have

1× 2× 1× 1× 7/2 = 7.
The determinants of the block main diagonal matrices in (5.3) are 1, 2, 2, 2, and 7,
respectively.

Remark 5. If instead of starting with the identity matrix In, we start with a
nonsingular matrix B with determinant |B|, expression (5.6) becomes

|A| = |B|−1
n∏

i=1

(−1)ptiri .(5.7)

5.5. Updating the determinant of a matrix after changing a row. Ac-
cording to (5.6) or (5.7), the determinant is updated by multiplying the previous
determinant by the dot product of the new row by the associated pivot column.

Example 6 (updating the determinant after changing a row). Consider the matrix
A and its inverse A−1,

A =




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
0 0 0 1 2
0 1 0 −1 1


 , A−1 =



2/7 −5/7 −5/7 1/7 3/7
3/7 3/7 3/7 −2/7 1/7
1/7 1/7 8/7 −3/7 −2/7
2/7 2/7 2/7 1/7 −4/7
−1/7 −1/7 −1/7 3/7 2/7


 ,(5.8)D
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676 CASTILLO, COBO, JUBETE, PRUNEDA, AND CASTILLO

Table 5.4
Pivoting process to determine whether or not a set of vectors is linearly dependent.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 1 0 0 0 2 1 0 –1 –1 1 1 0 –1 –1 –1 1/4 1/4 1/4 0
0 0 1 0 0 –1 0 1 0 0 1 2 –1 –3 –2 1 –1/4 –1/4 3/4 1
1 0 0 1 0 –1 0 0 1 0 0 0 0 1 0 2 3/4 –1/4 –1/4 –1
1 0 0 0 1 0 0 0 0 1 –1 0 0 0 1 1 0 0 0 1

t1 1 0 1 1 t2 2 –1 –3 –2 t3 3 –1 –4 –4 t4 1 –1 0 0

and assume that we want to calculate the determinant of the matrix

B =




1 1 0 1 0
−1 1 −1 0 0
0 0 1 0 1
a b c d e
0 1 0 −1 1


 .

Since |A| = 7, we have

|B| = 7× (a, b, c, d, e)(1/7,−2/7,−3/7, 1/7, 3/7)T = a− 2b− 3c+ d+ 3e.

5.6. Determining whether or not a set of vectors is linearly dependent.
To know whether or not a set of vectors is linearly independent, we use the property

{u1, . . . ,un} are linearly dependent ⇔ un ∈ L{u1, . . . ,un−1}

which can be written as

{u1, . . . ,un} are linearly dependent ⇔ un ⊥ L{u1, . . . ,un−1}⊥.

Thus, the problem reduces to obtaining a set of generators of the orthogonal
complement of L{u1, . . . ,un−1} and checking that the dot products of each of its
generators by un are null.

Note that this problem is the same as determining whether or not a vector belongs
to a linear subspace.

Example 7 (linear dependence of a set of vectors). Consider the set of vectors

{(1, 0, 1, 1), (2,−1,−1, 0), (1, 1, 0,−1), (−1, 1, 2, 1)}.

If we use the pivoting process (see Table 5.4), we have no problem finding a pivot
column for the first three vectors, but there is no pivot column for the fourth vector.
This means that the fourth vector is a linear combination of the first three.

5.7. Obtaining the intersection of two linear subspaces. Theorem 3.4
allows us to obtain the intersection of two linear subspaces S1 and S2 by noting that

S1 ∩ S2 = S1 ∩ (S⊥
2 )

⊥ = S2 ∩ (S⊥
1 )

⊥.(5.9)

In fact, we can obtain first S⊥
2 , the orthogonal to S2, by letting L(V1) = R

n in The-
orem 3.4 and then find the orthogonal to S⊥

2 in S1, using S1 as L(V1). Alternatively,
we can obtain first S⊥

1 , the orthogonal to S1, by letting L(V1) = Rn in Theorem 3.4
and then find the orthogonal to S⊥

1 in S2, using S2 as L(V1).
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 677

Example 8 (intersection of moving subspaces). Consider the linear subspaces
S1 = L{v1,v2,v3,v4} and S⊥

2 = L{v1,v4}, where
v1 = ( 1, sin 2t, −1, cos t )T ,
v2 = ( cos t, 1, sin 2t, −1 )T ,
v3 = ( −1, cos t, 1, sin 2t )T ,
v4 = ( sin 2t, −1, cos t, 1 )T ,

and assume that we wish to
1. determine the intersection Q1 = S1 ∩ S2 for all values of the time parameter
0 ≤ t ≤ 2π;

2. find the t-values for which we have Q1 = Q2, where Q2 = S1 ∩ S3 and
S⊥

3 = L{v1,v2}.
Then we have the following:
1. By definition we can write

Q1 = {v ∈ S1|v ∈ S2} ;v ∈ S2 ⇔ vTv1 = 0 and v
Tv4 = 0.

Using the procedure in Theorem 3.4 and starting with v1, we get

p = vT
1 v1 = sin

2 2t+ cos2 t+ 2,
q = vT

1 v3 = 2 sin 2t cos t− 2,
vT

1 v2 = vT
1 v4 = 0.

(5.10)

Since p �= 0 ∀t, using the orthogonalization procedure in Theorem 3.4, we
obtain {

v ∈ S1|vTv1 = 0
}
= L{u1 = pv3 − qv1,v2,v4)},

and proceeding with v4 and taking into account that

vT
4 v2 = q;v

T
4 v4 = p;v

T
4 u1 = 0,

we have

Q1 = L{pv3 − qv1, pv2 − qv4} = L{u1,u2} .
2. By a similar process we get

Q2 = L{pv3 − qv1, pv4 − qv2} = L{u1,u3} .
Since Q2 is orthogonal to v2 and Q1 = Q2, then Q1 is orthogonal to v2 and,
in particular, u2 is orthogonal to v2. Similarly, since Q1 is orthogonal to v4

and Q1 = Q2, then Q2 is orthogonal to v4 and, in particular, u3 is orthogonal
to v4; that is,

Q1 = Q2 ⇒ uT
2 v2 = 0,u

T
3 v4 = 0⇒ p2 − q2 = 0

⇒ p = −q ⇒ cos t(2 sin t+ 1) = 0⇒ t ∈ A =
{
π

2
,
3π

2
,
7π

6
,
11π

6

}

and, conversely,

p = −q ⇒ u2 = u3 ⇒ Q1 = Q2.

Thus, we get

Q1 = Q2 ⇔ t ∈ A =
{
π

2
,
3π

2
,
7π

6
,
11π

6

}
.

D
ow

nl
oa

de
d 

04
/2

3/
13

 to
 1

93
.1

44
.1

85
.2

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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Table 5.5
Pivoting transformations corresponding to Example 9.

Iteration 1

a1 v11 v12 v13 v14 v15

1 1 0 0 0 0
1 0 1 0 0 0
–1 0 0 1 0 0
1 0 0 0 1 0
–2 0 0 0 0 1

t1 1 1 –1 1 –2

Iteration 2

a2 v21 v22 v23 v24

0 –1 1 –1 2
1 1 0 0 0
0 0 1 0 0
1 0 0 1 0
–2 0 0 0 1

t2 1 0 1 –2

Iteration 3

a3 v31 v32 v33

0 1 0 0
0 0 –1 2
1 1 0 0
–1 0 1 0
0 0 0 1

t3 1 –1 0

Final

v1 v2

1 0
–1 2
1 0
1 0
0 1

5.8. Solving a homogeneous system of linear equations. Consider the
homogeneous system of equations

a11x1 +a12x2 + · · · +a1nxn = 0,
a21x1 +a22x2 + · · · +a2nxn = 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn = 0

(5.11)

which can be written as

(a11, . . . , a1n)(x1, . . . , xn)
T = 0,

(a21, . . . , a2n)(x1, . . . , xn)
T = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(am1, . . . , amn)(x1, . . . , xn)

T = 0.

(5.12)

Expression (5.12) shows that (x1, . . . , xn) is orthogonal to the set of vectors

{(a11, . . . , a1n), (a21, . . . , a2n), . . . , (am1, . . . , amn)}.
Then, obtaining the solution to system (5.11) reduces to determining the orthog-

onal complement of the linear subspace generated by the rows of matrix A.
Example 9 (a homogeneous system of linear equations). Consider the system of

equations

x1 +x2 −x3 +x4 −2x5 = 0,
x2 +x4 −2x5 = 0,

x3 −x4 = 0.
(5.13)

To solve this system, we obtain the orthogonal complement of the linear subspace
generated by the rows of the system matrix, as shown in Table 5.5. Thus, the solution
is

(x1, x2, x3, x4, x5) = ρ1 (1,−1, 1, 1, 0) + ρ2 (0, 2, 0, 0, 1) ,(5.14)

where ρ1 and ρ2 are arbitrary real numbers.

5.9. Solving a complete system of linear equations. Now consider the
complete system of linear equations:

a11x1 +a12x2 + · · · +a1nxn = b1,
a21x1 +a22x2 + · · · +a2nxn = b2,
· · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn = bm.

(5.15)D
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ORTHOGONALLY BASED PIVOTING TRANSFORMATION 679

Adding the artificial variable xn+1, it can be written as

a11x1 +a12x2 + · · · +a1nxn −b1xn+1 = 0,
a21x1 +a22x2 + · · · +a2nxn −b2xn+1 = 0,
· · · · · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,
am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,

(5.16)

xn+1 = 1.(5.17)

System (5.16) can be written as

(a11, . . . , a1n,−b1)(x1, . . . , xn, xn+1)
T = 0,

(a21, . . . , a2n,−b2)(x1, . . . , xn, xn+1)
T = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(am1, . . . , amn,−bm)(x1, . . . , xn, xn+1)

T = 0.

(5.18)

Expression (5.18) shows that (x1, . . . , xn, xn+1) is orthogonal to the set of vectors

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}.
Then, it is clear that the solution of (5.16) is the orthogonal complement of the

linear subspace generated by the rows of matrix A:

L{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}⊥.
Thus, the solution of (5.15) is the projection on X1 × · · · ×Xn of the intersection

of the orthogonal complement of the linear subspace generated by

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}
and the set {x|xn+1 = 1}.

Example 10 (a complete system of linear equations). Consider the system of
equations

x1 +x2 −x3 +x4 = 2,
x2 +x4 = 2,

x3 −x4 = 0
(5.19)

which, using the auxiliary variable x5, can be written as (5.13). Since the solution
of the homogeneous system (5.13) was already obtained, now we only need to force
x5 = 1 and return to the initial set of variables. Thus, the solution is

(x1, x2, x3, x4) = (0, 2, 0, 0) + ρ1 (1,−1, 1, 1) ,(5.20)

where ρ1 is an arbitrary real number.
Assume that now we add to system (5.19) the equation

x2 −x4 = 0.(5.21)

The new solution

(x1, x2, x3, x4) = (1, 1, 1, 1)(5.22)

is obtained by an extra pivoting step using the new vector (0, 1, 0,−1, 0) (see Table
5.6).

Finally if in the system (5.19) we eliminate variable x4, the new solution

(x1, x2, x3) = (0, 2, 0)(5.23)

can be obtained by introducing the new equation x4 = 0, which is equivalent to this
elimination. Using a new pivoting step with the vector (0, 0, 0, 1, 0), we get the results
in Table 5.6, and the solution in (5.23).
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Table 5.6
New pivoting transformation after adding (5.21) and after removing variable x4 in system (5.19).

Iteration 4 Final

a4 v41 v42 v1

0 1 0 1
1 –1 2 1
0 1 0 1
–1 1 0 1
0 0 1 1

t4 –2 2

Iteration 4 Final

a4 v41 v42 v1

0 1 0 0
0 –1 2 2
0 1 0 0
1 1 0 0
0 0 1 1

t4 1 0

5.10. Deciding whether or not a linear system of equations is compat-
ible. In this section we show how to apply the orthogonal methods to analyze the
compatibility of a given system of equations.

System (5.15) can be written as

x1



a11
a21
...
am1


+ x2



a12
a22
...
am2


+ · · ·+ xn



a1n
a2n
...
amn


 =



b1
b2
...
bm


 .(5.24)

Expression (5.24) shows that the vector (b1, . . . , bm)
T is a linear combination of

the set of column vectors

{(a11, . . . , am1)
T , (a12, . . . , am2)

T , . . . , (a1n, . . . , amn)
T }

of the system matrix A. Thus, the compatibility problem reduces to that of sec-
tion 5.6.

Thus, analyzing the compatibility of the system of equations (5.15) reduces to
finding the orthogonal complement L{w1, . . . ,wp} of L{a1, . . . ,an} and checking
whether or not bWT = 0.

The computational process arising from this procedure has a complexity which
coincides exactly with that for the Gauss elimination procedure. However, it has one
important advantage: W is independent of b and so we can analyze the compatibility
of any symbolic vector un+1 without extra computations.

Example 11 (compatibility of a linear system of equations). Suppose that we are
interested in determining the conditions under which the system of equations

2x1 − x2 + x3 = a,
x1 − x3 = 3a,

x2 − 3x3 = b
(5.25)

is compatible. Then, using Algorithm 1, we get (see Table 5.7)

W = L{(1,−2, 1)T} ,(5.26)

which implies the following compatibility condition:

w1(a, 3a, b)
T = (1,−2, 1)(a, 3a, b)T = 0⇒ b− 5a = 0.(5.27)
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Table 5.7
Pivoting process to determine the orthogonal complement of the linear subspace generated by

the columns of A.

Iteration 1 Iteration 2 Iteration 3

2 1 0 0 –1 1/2 –1/2 0 1 0 –1 1
1 0 1 0 0 0 1 0 –1 1 2 –2
0 0 0 1 1 0 0 1 –3 0 0 1

t1 2 1 0 t2 –1/2 1/2 1 t3 –1 –3 0

6. Conclusions. A pivoting transformation, based on the orthogonality con-
cept, has been discussed and some of its applications to solve common linear algebra
problems have been given. The main advantage of the suggested method with respect
to the Gauss elimination method is that the intermediate results arising in the solution
process are easily interpretable. This leads to immediate methods to update solutions
of several problems, such as calculating the inverse or the determinant of a matrix,
solving system of linear equations, etc., when small changes are done (changes in rows,
columns, and/or variables). When the method is applied to inverting a matrix and
calculating its determinant, not only is the inverse of the final matrix obtained, but
also the inverses and determinants of all its block main diagonal matrices, without
extra computations.
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