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Abstract. It is well known that the solution of the equality constrained least squares (LSE)
problem minBx=d ‖b−Ax‖2 is the limit of the solution of the unconstrained weighted least squares
problem

min
x

∥∥∥[µdb ]− [µBA ]x∥∥∥2

as the weight µ tends to infinity, assuming that [BT AT ]T has full rank. We derive a method for
the LSE problem by applying Householder QR factorization with column pivoting to this weighted
problem and taking the limit analytically, with an appropriate rescaling of rows. The method ob-
tained is a type of direct elimination method. We adapt existing error analysis for the unconstrained
problem to obtain a row-wise backward error bound for the method. The bound shows that, provided
row pivoting or row sorting is used, the method is well-suited to problems in which the rows of A
and B vary widely in norm. As a by-product of our analysis, we derive a row-wise backward error
bound of precisely the same form for the standard elimination method for solving the LSE problem.
We illustrate our results with numerical tests.

Key words. constrained least squares problem, weighted least squares problem, Householder
QR factorization, Gaussian elimination, elimination method, rounding error analysis, backward sta-
bility, row pivoting, row sorting, column pivoting

AMS subject classifications. 65F20, 65G05

PII. S0895479898335957

1. Introduction. Consider the equality constrained least squares (LSE) prob-
lem

min
Bx=d

‖b−Ax‖2, A ∈ Rm×n, B ∈ Rp×n, m+ p ≥ n ≥ p.(1.1)

We assume throughout this work that rank(B) = p, which ensures that the constraint

system is consistent, and also that rank
[
B
A

]
= n, which ensures that the LSE problem

has a unique solution. Two commonly used methods for solving the LSE problem
are based on QR factorization. The null space method (of which there are several
variations [6]) begins by factorizing BT = QR to obtain a basis for the null space of
B. The elimination method, on the other hand, uses QR factorization with column
pivoting to factorize

BΠ = Q [R1 R2 ] , R1 ∈ Rp×p upper triangular, nonsingular.(1.2)

Partitioning ΠTx = [x̃T1 , x̃
T
2 ]T , x̃1 ∈ Rp and substituting the factorization (1.2) into

the constraints yields

R1x̃1 = QT d−R2x̃2.
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By solving for x̃1 and partitioning AΠ = [Ã1, Ã2], Ã1 ∈ Rm×p we reduce the LSE
problem to the unconstrained problem

min
x̃2

∥∥∥(Ã2 − Ã1R
−1
1 R2)x̃2 − (b− Ã1R

−1
1 QT d)

∥∥∥
2
.

Solving this unconstrained problem by QR factorization completes the elimination
method as originally presented by Björck and Golub [5] (see also [13, Chapter 21]).
It is instructive to think of the method in terms of transformations on the matrix
“B-over-A”:

[
B
A

]
=

[ p n−p
p B1 B2

m A1 A2

]
→
[
R1 R2

Ã1 Ã2

]
→
[
R1 R2

0 Ã2 − Ã1R
−1
1 R2

]
→
R1 R2

0 R3

0 0

 ,
where R3 ∈ R(n−p)×(n−p) is upper triangular. Note that the penultimate transforma-
tion is simply the annihilation of Ã1 by Gaussian elimination. We will refer to this
method as the EG method.

The B-over-A matrix also arises in the method of weighting for solving the LSE
problem, which is based on the observation that the LSE solution is the limit of the
solution of the unconstrained problem

min
x

∥∥∥∥[µdb
]
−
[
µB
A

]
x

∥∥∥∥
2

(1.3)

as the weight µ tends to infinity. Van Loan [18] describes an algorithm that solves
(1.3) for a single weight and uses a refinement procedure to approximate the required
limit. The algorithm is analyzed further by Barlow and Vemulapati [1], [3].

In this work we derive a method for the LSE problem by taking the limit µ →
∞ analytically rather than numerically. To be precise, we apply Householder QR
factorization with column pivoting to (1.3), rescale the first p rows, and then take the
limit µ → ∞ to obtain a matrix that we view as an update of B-over-A. The new
method is an elimination method very similar, but not identical, to the EG method.
We show that it satisfies a pleasing row-wise backward error bound when row pivoting
or row sorting is used—a result that makes the method attractive when the rows of A
and B vary widely in norm. We also show that a row-wise backward error bound of
exactly the same form holds for the EG method. We give some numerical experiments
to confirm the stability properties of the methods.

After this paper was submitted for publication, we learned that Reid [15] has ob-
tained the method derived here by a different argument involving infinite weights. He
shows that the algorithm of Powell and Reid [14], including its error analysis, may be
applied to the weighted problem with implicit scaling, that is, with the weights stored
separately. By holding inverse weights, the constrained case can be accommodated.
He obtains a backward error bound similar to our Theorem 4.3 and also shows that
iterative refinement may be applied. Reid points out that the method is equivalent
to a method of Gulliksson and Wedin [9], [10], which is expressed in the language of
“M -invariant reflections.”

2. A single stage of the method. Define

C =

[
B
A

]
, f =

[
d
b

]
, Cµ =

[
µB
A

]
, fµ =

[
µd
b

]
,(2.1)
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where µ > 0. We consider the first stage of Householder QR factorization applied to
Cµ, examining what happens as µ→∞. In outline, we write the transformed matrix
as

C ′µ =

[
µB′µ
A′µ

]
,

divide the first p rows of C ′µ by µ and take the limit as µ→∞, obtaining a matrix

C ′ =

[
B′

A′

]
that is independent of µ. Then we view C ′ as the result of an update of C. We
will show that all the elements of C ′ remain finite as µ → ∞. In this way, we set
up a one-to-one correspondence between performing the first step of Householder QR
factorization on Cµ, [

µB
A

]
→
[
µB′µ
A′µ

]
,(2.2)

and carrying out the update [
B
A

]
→
[
B′

A′

]
(2.3)

on the unscaled matrix C. Our aim is to determine the nature of this update.
We mention that Stewart [17] compares the equations for Householder QR fac-

torization on Cµ with those for the EG method. While his analysis is related to ours,
his aim (to understand the method of weighting) is different and he does not take
limits.

We will denote by aj , bj , and cj the jth columns of A, B, and Cµ, respectively (we
will have no need to refer to the columns of C, so this slightly inconsistent notation
should not cause any confusion); similarly, we write Cµ = (cij). The first stage of
Householder QR factorization applied to Cµ is

C ′µ = Cµ − 2vµ
vTµCµ
vTµ vµ

,

where

vµ = c1 + τ‖c1‖2e1, τ = sign(c11),(2.4)

which we can rewrite as

c
′
ij = cij − 2vµ(i)

vTµ cj
vTµ vµ

, i = 1: p+m, j = 1:n.(2.5)

We assume the use of column pivoting, so that columns are interchanged, if necessary,
to ensure that

‖c1‖2 = max
j
‖cj‖2.
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For notational simplicity, we assume that no interchanges are required by column
pivoting. Our first concern is with the behavior of the multipliers

2
vTµ cj
vTµ vµ

, j = 1:n,

which we will refer to as Householder multipliers, as µ → ∞. As a preliminary, we
define ζ by

‖c1‖2 =
√
µ2‖b1‖22 + ‖a1‖22 = µ

√
‖b1‖22 +

1

µ2
‖a1‖22 = µζ,

and note that

lim
µ→∞ ζ = ‖b1‖2.

We have

vTµ cj = cT1 cj + τ‖c1‖2c1j = µ2bT1 bj + aT1 aj + µ2τζb1j

and

vTµ vµ = 2‖c1‖2(‖c1‖2 + |c11|) = 2µ2ζ(ζ + |b11|).
Hence

2
vTµ cj

vTµ vµ
=
bT1 bj + aT1 aj/µ

2 + τζb1j
ζ(ζ + |b11|) ,

which yields

lim
µ→∞ 2

vTµ cj

vTµ vµ
=

bT1 bj + τ‖b1‖2b1j
‖b1‖2(‖b1‖2 + |b11|) = 2

vTBbj
vTBvB

,(2.6)

where

vB = b1 + τ‖b1‖2e1.

We see that, in the limit, A’s contribution to the Householder multiplier 2vTµ cj/v
T
µ vµ

is lost.
Using (2.5) and (2.4) we have, for i = 1: p,

b′ij := lim
µ→∞ bij(µ)′ = lim

µ→∞
c′ij
µ

= lim
µ→∞

(
bij − 2vµ(i)

µ

vTµ cj
vTµ vµ

)

= bij − 2vB(i)
vTBbj
vTBvB

.

This is just the first stage of Householder QR factorization applied to B, which cor-
responds to the application of the Householder update

C ′ = C − 2vC
vTCC

vTCvC
, vC =

[
vB
0

]
(2.7)
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to the unscaled matrix C. Moreover, ‖ci‖2/‖cj‖2 → ‖bi‖2/‖bj‖2 so, in the limit,
column pivoting based on the columns of C is equivalent to column pivoting based
on the columns of B.

Now we turn to the rows of A. In the limit as µ→∞, we have, from (2.4)–(2.6),

a′ij = aij − 2ai1
vTBbj
vTBvB

,

which corresponds to the update

C ′ = C − 2vA
vTCC

vTCvC
, vA =

[
0
a1

]
.(2.8)

Combining (2.7) and (2.8) we see that, in the limit as µ→∞, carrying out one step
of Householder QR factorization on Cµ is equivalent to carrying out the outer product
update

C ′ = PC = C − 2v
vTCC

vTCvC
, where v =

[
vB
a1

]
,(2.9)

on the unscaled matrix C. Note that the transformation matrix P is not a Householder
matrix, because v 6= vC .

It is natural to ask whether the equations we have derived are equivalent to those
for the EG method described in section 1. Recall that the EG method QR factorizes B
as in (1.2) and then eliminates the first p columns of Ã = AΠ by Gaussian elimination.
It is easily shown that the first row of [R1 R2 ] is proportional to

[ bT1 b1 bT1 b2 . . . bT1 bn ] .(2.10)

The first column of Ã is therefore zeroed by performing one step of Gaussian elimi-
nation with this row as the pivot row. Using the fact that vTBvB = 2vTBb1, it is easy
to show that for the new method we are effectively performing Gaussian elimination
with the “virtual pivot row”

[ vTBb1 vTBb2 . . . vTBbn ] ,(2.11)

which is not actually present in the matrix C. The vectors (2.10) and (2.11) are
proportional only if B is upper trapezoidal, which shows that the new method and
the EG method are mathematically different in general.

3. The complete method. By carrying out p eliminations of the type described
in the previous section, we reduce C to the form[

R1 R2

0 A′2

]
,

where R1 ∈ Rp×p is upper triangular and nonsingular. We mention that in place of
column pivoting some other pivoting strategy that keeps R−1

1 R2 small could be used
instead; cf. [2].

The remaining min(n−p,m−1) steps of the method consist of applying standard
Householder QR factorization with column pivoting to the matrix A′2, after which
the whole of C has been reduced to upper trapezoidal form. By applying the same
sequence of updates to f and solving the resulting triangular system, we obtain the
solution to the LSE problem (1.1). We summarize our method as follows.

Algorithm EH This algorithm solves the LSE problem (1.1).
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1. Let

C(1) =

[
B
A

]
, f (1) =

[
d
b

]
, q = p+m.

2. Stage I
for k = 1: p

Interchange the columns of C(k) so that ‖c(k)
k (k: p)‖2 = maxj≥k ‖c(k)

j (k: p)‖
2
.

Update

C(k+1)(k: q, k:n) = C(k)(k: q, k:n)− 2vk(k: q)
vk(k: p)TC(k)(k: p, k:n)

vk(k: p)T vk(k: p)
,

f (k+1)(k: q) = f (k)(k: q)− 2vk(k: q)
vk(k: p)T f (k)(k: p)

vk(k: p)T vk(k: p)
,

where

vk(i) =


0, i = 1: k − 1,

c
(k)
kk + sign

(
c
(k)
kk

)∥∥c(k)
k (k: p)

∥∥
2
, i = k,

c
(k)
ik , i = k + 1: q.

end
3. Stage II (standard Householder QR factorization with column pivoting)

for k = p+ 1: min(n,m+ p− 1)

Interchange the columns of C(k) so that
∥∥c(k)
k (k: q)

∥∥
2

= maxj≥k
∥∥c(k)
j (k: q)

∥∥
2
.

Update

C(k+1)(k: q, k:n) = C(k)(k: q, k:n)− 2vk(k: q)
vk(k: q)TC(k)(k: q, k:n)

vk(k: q)T vk(k: q)
,

f (k+1)(k: q) = f (k)(k: q)− 2vk(k: q)
vk(k: q)T f (k)(k: q)

vk(k: q)T vk(k: q)
,

where

vk(i) =


0, i = 1: k − 1,

c
(k)
kk + sign

(
c
(k)
kk

)∥∥∥c(k)
k (k: q)

∥∥∥
2
, i = k,

c
(k)
ik , i = k + 1: q.

end
4. Solve the triangular system C(k+1)(1:n, 1:n)y = f (k+1)(1:n).
5. Obtain x by permuting y to take account of the column interchanges.

Algorithm EH implicitly computes a matrix factorization: ignoring column inter-
changes, we have [

I 0
0 Q̃3

]
︸ ︷︷ ︸
Stage II

[
Q̃1 0
Q̃2 I

]
︸ ︷︷ ︸
Stage I

[
B1 B2

A1 A2

]
=

R1 R2

0 R3

0 0

 ,
where Q̃1 and Q̃3 are orthogonal and R1 ∈ Rp×p and R3 ∈ R(n−p)×(n−p) are upper
triangular. Rewriting, we have[

Q̃1 0
Q̃3Q̃2 Q̃3

] [
B1 B2

A1 A2

]
=

[
R
0

]
,
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or, with Q1 = Q̃T1 , Q2 = −Q̃2Q̃
T
1 and Q3 = Q̃T3 ,

[ p n−p
p B1 B2

m A1 A2

]
=

[ p m

p Q1 0
m Q2 Q3

] [ n
R
0

]
n

m−n+p
.(3.1)

The EG method produces exactly the same factorization; the difference in the methods
lies in the intermediate quantities computed. Note that another way to derive both
the EG method and Algorithm EH is to substitute the factorization into the associated
augmented system; this is done in [4] and [5] for the EG method.

4. Numerical stability. Now we consider the stability of Algorithm EH. First,
we recall what is known about the stability of Householder QR factorization for solving
the LS problem minx ‖b−Ax‖2. The method is normwise backward stable. Moreover,
when column pivoting is used the following row-wise backward error result holds,
which is of interest in situations in which the rows of A vary widely in norm. We
employ the standard model of floating point arithmetic with unit roundoff u [12,
Section 2.2], and define the constant

γ̃k =
cku

1− cku,

where k is a positive integer and c is a small integer constant whose exact value is
unimportant. We assume that the signs in the Householder vectors are chosen as in
(2.4), which is the standard choice. For the other choice of sign, the following theorem
is invalid (see [8] for more details).

Theorem 4.1. Let the LS problem minx ‖b − Ax‖2, where A ∈ Rm×n is of full
rank n, be solved using Householder QR factorization with column pivoting. Then the
computed solution x̂ is the exact solution to

min
x
‖(b+∆b)− (A+∆A)x‖2,

where the perturbations satisfy

|∆aij | ≤ j2γ̃mαi max
s
|ais|, |∆bi| ≤ n2γ̃mβi max(φmax

j
|aij |, |bi|),

where

αi =
maxj,k |â(k)

ij |
maxj |aij | , βi =

max
(
φmaxj,k |â(k)

ij |, |̂b(k)
i |
)

max(φmaxj |aij |, |bi|) , φ = max
k

‖b̂(k)(k:m)‖2
‖â(k)
k (k:m)‖2

.

Proof. A similar result was originally proved under some additional assumptions
by Powell and Reid [14]. The analysis was reworked by Cox and Higham [8]. The
result as stated is a slightly improved version of the result in [8], with a minor error
in the ∆b bound corrected.

Theorem 4.1 shows that, when column pivoting is used, the backward errors ∆A
and ∆b are bounded row-wise in terms of the element growth within each row, as
measured by the αi and βi. Ideally, we would like the overall row-wise growth factor

ρm,n = max
i
{αi, βi }
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to be of order 1. In general, ρm,n is unbounded. However, two techniques lead to a
bounded ρm,n. Prior to carrying out the factorization, we can sort the rows so that

‖A(i, :)‖∞ = max
j≥i
‖A(j, :)‖∞, i = 1:m.

Alternatively, we can use row pivoting: at the kth stage of the factorization, after the
column interchange has taken place, we interchange rows to ensure that

|a(k)
kk | = max

i≥k
|a(k)
ik |.

The following result was obtained by Powell and Reid [14] for row pivoting and by Cox
and Higham [8] for row sorting. As usual for growth factor bounds, this one assumes
exact arithmetic; however, the growth of exact and computed quantities differs by
only O(u).

Theorem 4.2. With row pivoting or row sorting in Householder QR factorization
with column pivoting applied to A ∈ Rm×n,

ρm,n ≤
√
m(1 +

√
2)n−1.

The bound of the theorem can be nearly attained, but ρm,n is almost always small
in practice.

The scalar φ in Theorem 4.1 is easily seen to be independent of the row ordering
and so is beyond our control.

The limit technique used in the derivation of Algorithm EH can be used to obtain a
row-wise backward error result. We apply Theorem 4.1 to minx ‖fµ−Cµx‖2 (see (2.1))
and then use a straightforward limit argument to deduce the following theorem. As
a check on the plausibility of the theorem, we note that a key result used in the proof
of Theorem 4.1 is that the Householder multipliers are all bounded by

√
2 (without

column pivoting these multipliers are unbounded). For Stage I of Algorithm EH, the
Householder multipliers

ηk,j = 2
vk(k: p)T c

(k)
j (k: p)

vTk (k: p)vk(k: p)

are precisely those determined by QR factorization with column pivoting applied to
B, as we have already noted. Therefore |ηk,j | ≤

√
2. Stage II of Algorithm EH is

standard QR factorization with column pivoting, so again the multipliers are bounded
by
√

2.
Theorem 4.3. Let the LSE problem (1.1) be solved by Algorithm EH. Then the

computed solution x̂ is the exact solution to

min
(B+∆B)x=d+∆d

‖(b+∆b)− (A+∆A)x‖2,

where, defining

∆C =

[
∆B
∆A

]
, ∆f =

[
∆d
∆b

]
,

we have

|∆cij | ≤ j2γ̃p+mαi max
s
|cis|, |∆fi| ≤ n2γ̃p+mβi max(φmax

j
|cij |, |fi|),
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with

αi =
maxj,k |ĉ(k)

ij |
maxj |cij | , βi =

max
(
φmaxj,k |ĉ(k)

ij |, |f̂ (k)
i |
)

max(φmaxj |cij |, |fi|) ,

φ = max

{
max

1≤k≤p
‖f̂ (k)(k: p)‖2
‖ĉ(k)
k (k: p)‖2

, max
p+1≤k≤p+m

‖f̂ (k)(k: p+m)‖2
‖ĉ(k)
k (k: p+m)‖2

}
.

Theorem 4.3 shows that Algorithm EH is row-wise backward stable provided that
the row-wise growth factor ρm,n = maxi{αi, βi } and the scalar φ are both of order
1. As for the LS problem, we can use row sorting or row pivoting in order to bound
ρm,n, and we obtain a bound analogous to that in Theorem 4.2. For row sorting we
sort the rows of A and B separately (that is, we do not sort the rows of C, which
would change the LSE problem). For row pivoting, we interchange the rows of B in
Stage I and the rows of A in Stage II.

The two stages of Algorithm EH can be implemented as a single loop with the
help of a parameter that specifies the extent of the Householder vector, yielding the
succinct pseudocode shown in Figure 4.1. The EG method and a variant of it based
on modified Gram-Schmidt orthogonalization can be expressed in similarly concise
fashions, as shown in [4], [5].

How does the stability of Algorithm EH compare with that of the EG method?
The only published result for the EG method is one of Barlow and Handy [2], which

bounds ‖C − Q̂R̂‖2 for the factorization (3.1) in terms of ‖C‖2; this result does not
reveal the stability of the overall solution process or provide any information about
row-wise stability.

From the remarks at the end of section 2 we know that if B is upper triangular,
then Algorithm EH is identical to the EG method. We can therefore interpret the EG
method as the two-stage process: (1) QR factorize B, using column pivoting, (2) apply
Algorithm EH to the LSE problem with a triangular constraint matrix. Theorem 4.3
applies to stage (2), and an analogue of Theorem 4.1 for the QR factorization itself

applies to Stage 1 [8] (essentially, we obtain (B+∆B)Π = Q̂R̂, with ∆B bounded in
the same way as ∆A in Theorem 4.1). These two results can be combined, using the
same techniques as in the proof of Theorem 4.1, to obtain a new result for the EG
method.

Theorem 4.4. Theorem 4.3 holds also for the EG method.

5. Numerical experiments. Backward errors of an approximate solution y
to the LSE problem (1.1) can be defined by minimizing suitable measures of the
quadruple (∆A,∆b,∆B,∆d) over all perturbations ∆A, ∆b, ∆B, and ∆d for which
y solves min(B+∆B)y=d+∆d ‖b + ∆b − (A + ∆A)y‖2. Ideally, we would verify the
row-wise backward stability results in Theorems 4.3 and 4.4 by comparing the actual
row-wise backward errors with the bounds for a range of problems. Unfortunately,
no computable expression is known for any backward error (even just the normwise
backward error) of an arbitrary approximate LSE solution. We therefore compute
upper bounds for the backward errors using a technique developed in [7].

Given an approximate LSE solution y, suppose we have determined perturbations
∆B and ∆d such that (B + ∆B)y = d + ∆d. Let ∆A∗ and ∆b∗ be solutions of the
problem

min{ ‖ [∆A θ∆b ] ‖F : y solves min(B+∆B)x=d+∆d ‖b+∆b− (A+∆A)x‖2 },(5.1)
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This algorithm solves the LSE problem minBx=d ‖b − Ax‖2, where A ∈ Rm×n, B ∈
Rp×n and m+ p ≥ n ≥ p. A flag rp determines whether row pivoting is carried out.

C(1) =

[
B

A

]
, f (1) =

[
d

b

]
, top = p, q = p+m.

for k = 1: min(n,m+ p− 1)

Permute columns so that ‖C(k)(k: top, k)‖2 = max
j≥k
‖C(k)(k: top, j)‖2.

If rp

Permute rows so that |c(k)
kk | = max

i=k:top
|c(k)
ik |.

Apply same row interchanges to f (k).
end

% Implicitly construct Householder-like matrix I − βvv′T .
v = C(k)(k: q, k)
s = sign(v1)‖C(k)(k: top, k)‖2
v1 = v1 + s
β = 1/(s v1)

C(k+1)(k: q, k:n) = C(k)(k: q, k:n)
− β v(v(1: top− k + 1)TC(k)(k: top, k:n))

f (k+1)(k: q) = f (k)(k: q)− β v(v(1: top− k + 1)T f (k)(k: top))

% Once k > p we do standard Householder QR factorization.
If k = p, top = q, end

end

Solve C(k+1)(1:n, 1:n)x = f (k+1)(1:n) by substitution.
Permute x to undo the effect of column pivoting.

Fig. 4.1. Concise pseudocode for Algorithm EH.

where θ is a parameter. How to compute ∆A∗ and ∆b∗ is explained in [7]. Here we
are minimizing over ∆A and ∆b for fixed ∆B and ∆d instead of minimizing over all
∆A, ∆b, ∆B and ∆d. Therefore by taking an appropriate measure of the quadruple
(∆A∗, ∆b∗, ∆B,∆d) we obtain an upper bound for the corresponding backward error.
We choose the perturbations

∆B∗ =
‖B‖2‖y‖2

(‖B‖2‖y‖2 + ‖d‖2)

ryT

yT y
, ∆d∗ =

−‖d‖2
‖B‖2‖y‖2 + ‖d‖2 r,

where r = d − By. These are the perturbations corresponding to the relative 2-
norm backward error for the constraint system [16]; in other words, they minimize
max(‖∆B‖2/‖B‖2, ‖∆d‖2/‖d‖2). We define two backward error bounds in terms of
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the perturbations ∆A∗, ∆b∗, ∆B∗ and ∆d∗: the normwise backward error bound

ηN = max

{‖∆A∗‖2
‖A‖2 ,

‖∆b∗‖2
‖b‖2 ,

‖∆B∗‖2
‖B‖2 ,

‖∆d∗‖2
‖d‖2

}
and the row-wise backward error bound

ηR = max
i

‖∆G(i, :)‖2
‖G(i, :)‖2 ,

where

G =

[
B d
A b

]
, ∆G =

[
∆B∗ ∆d∗
∆A∗ ∆b∗

]
.

In our experiments we took θ = 1 in (5.1) since our chosen A, B, d, and f all have
norms of order 1.

The experiments were performed in Matlab, using simulated single precision
arithmetic (u = 2−24 ≈ 5.96× 10−8). The backward error bounds were computed in
double precision arithmetic.

We give results for four problems withm = 16, n = 10, p = 6. We denote by randn
a matrix or vector from the normal(0,1) distribution and by randsvd(κ) a random
matrix with 2-norm condition number κ and geometrically distributed singular values,
generated by the routine randsvd in the Test Matrix Toolbox [11].

Problem 1 A = randn, b = randn, B = randn, d = randn.
Problem 2 A = randsvd(10), b = randn, B = randsvd(104), d = randn.
Problem 3 A = randsvd(106), b = randn, B = randsvd(10), d = randn.
Problem 4 A = randsvd(104), b = randn, B = randsvd(104), d = randn.

For each problem, a parameter tol ∈ (0, 1] determines a row scaling applied to the
original data:

[A b ]← Dm,tol [A b ] , [B d ]← Dp,tol [B d ] ,

where

Dk,tol = diag(θk, θk−1, . . . , θ, 1), θk = tol.

The backward error results are given in Tables 5.1–5.3. We give results for Algo-
rithm EH with no row interchanges and with row sorting; the results for row pivoting
were very similar and so are omitted. We do not report results for the EG method
because they were very similar to those for Algorithm EH. For comparison, we also
give results for the null space method (implemented using generalized QR factoriza-
tion, as in LAPACK). Results for tol = 1 are given only for Problem 1; for Problems
2 and 3 with tol = 1 the backward error bounds were again all of order u.

The main observations from the results are as follows.
1. The importance of row pivoting or row sorting in Algorithm EH for badly

row scaled problems is shown by Tables 5.1–5.3, in which when tol is small
ηR is much smaller when row sorting is used than when it is not. Row sorting
produces a growth factor ρm,n of order 1 in each case.

2. Tables 5.2 and 5.3 show that a large value of φ does not necessarily lead to a
large row-wise backward error. Although φ is theoretically independent of the
row ordering, it varies between Algorithm EH with and without row sorting
in some of the tests as a result of roundoff: in these cases φ is determined by
ratios of quantities that are of order u and have large relative error.
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Table 5.1
Results for Problem 1 (random normal A and B).

tol = 1

ηN ηR ρm,n φ
Alg. EH (no row interchanges) 6.3e-8 6.4e-8 4.5e0 1.5e0

Alg. EH (row sorting) 4.8e-8 4.5e-8 2.6e0 1.5e0
Null space method 3.5e-8 3.9e-8

tol = 10−7

ηN ηR ρm,n φ
Alg. EH (no row interchanges) 9.6e-4 2.1e-1 2.5e7 3.8e0

Alg. EH (row sorting) 3.3e-8 4.3e-7 3.0e0 1.7e1
Null space method 5.1e-8 2.7e-7

Table 5.2
Results for Problem 2 (κ2(A) = 10, κ2(B) = 104), tol = 10−7.

ηN ηR ρm,n φ
Alg. EH (no row interchanges) 4.3e-4 1.1e-2 6.6e6 4.6e3

Alg. EH (row sorting) 2.4e-8 1.6e-7 2.7e0 1.4e4
Null space method 7.2e-8 2.2e-7

3. The normwise backward error bound ηN is small in every case except for
Algorithm EH without row interchanges in two instances. However, using
numerical optimization by direct search we found alternative choices of ∆B∗
and ∆d∗ for which ηN ≈ u in these two examples, confirming normwise back-
ward stability. In the cases where Algorithm EH without row interchanges
produced a large value of ηR, we were unable to reduce this value significantly
using direct search.

4. The null space method gives very similar values of ηN and ηR to Algorithm EH
with row sorting. It is surprising that ηR is small for the null space method
when tol = 10−7 because our implementation does not incorporate any form
of row interchanges. The reason for this excellent performance is not clear (it
is not explained by the normwise backward error results in [6], for example).

Finally, although our concern in this work is with backward errors rather than
forward errors, we carried out an experiment to show the effect of row interchanges on
the forward error, ‖x− x̂‖2/‖x‖2. For Problems 1 and 4 we computed forward errors
by taking as the exact solution the one computed in double precision by Algorithm EH
with row sorting. Table 5.4 shows that row sorting can greatly decrease the forward
error when A and B have badly scaled rows.

6. Concluding remarks. We have used a limit argument to derive a method,
Algorithm EH, for solving the LSE problem and have derived a row-wise backward
error bound for the method by exploiting existing error analysis. The row-wise back-
ward error is guaranteed to be small when the growth factor ρm,n is small (which is
usually the case with row pivoting or sorting) and when the scalar φ is small (φ can
be arbitrarily large, and is independent of the row interchanges).

The method is closely related to the EG method, which dates back to the 1960s,
and this relation enabled us to obtain a row-wise backward error bound for that
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Table 5.3
Results for Problem 3 (κ2(A) = 106, κ2(B) = 10), tol = 10−7.

ηN ηR ρm,n φ
Alg. EH (no row interchanges) 1.3e-8 2.8e-2 4.3e6 1.1e3

Alg. EH (row sorting) 2.8e-8 1.3e-7 2.2e0 1.2e3
Null space method 2.8e-8 7.3e-7

Table 5.4
Forward errors ‖x− x̂‖2/‖x‖2.

Problem 1 Problem 1 Problem 4 Problem 4
tol = 1 tol = 10−7 tol = 1 tol = 10−7

Alg. EH (no row interchanges) 2.5e-7 6.6e-1 2.4e-5 1.3e0
Alg. EH (row sorting) 1.7e-7 1.2e-6 3.1e-6 2.1e-5

Null space method 1.2e-7 2.8e-6 4.9e-5 5.8e-6

method, too. Which method should be preferred? There is no difference between the
two methods in terms of the backward error results or the numerical backward error
bounds that we have evaluated. The methods also have similar operation counts. Al-
gorithm EH can be coded slightly more concisely, since it carries out transformations
on B-over-A as a whole while the EG method applies Householder transformations
to B and separate elimination operations to A, and this difference should make Algo-
rithm EH more efficient on high-performance computers.
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[5] Å. Björck and G. H. Golub, Iterative refinement of linear least squares solutions by House-

holder transformation, BIT, 7 (1967), pp. 322–337.
[6] A. J. Cox and N. J. Higham, Accuracy and Stability of the Null Space Method for Solving the

Equality Constrained Least Squares Problem, BIT, 39 (1999), pp. 34–50.
[7] A. J. Cox and N. J. Higham, Backward Error Bounds for Constrained Least Squares Problems,

BIT, 39 (1999), pp. 210–227.
[8] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial Con-
ference, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., Pitman Res. Notes Math.
Ser., 380, Addison Wesley Longman, Harlow, UK, 1998, pp. 57–73.

[9] M. Gulliksson, Backward error analysis for the constrained and weighted linear least squares
problem when using the weighted QR factorization, SIAM J. Matrix Anal. Appl., 16 (1995),
pp. 675–687.

[10] M. Gulliksson and P. Wedin, Modifying the QR-decomposition to constrained and weighted
linear least squares, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1298–1313.

[11] N. J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report
No. 276, Manchester Centre for Computational Mathematics, Manchester, England, 1995.

[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1996.

[13] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA,
1995; revised republication of work first published by Prentice–Hall, 1974.



326 A. J. COX AND N. J. HIGHAM

[14] M. J. D. Powell and J. K. Reid, On applying Householder transformations to linear least
squares problems, in Proceedings of the IFIP Congress 1968, North-Holland, Amsterdam,
The Netherlands, 1969, pp. 122–126.

[15] J. K. Reid, Implicit scaling of linear least squares problems, Report RAL-TR-98-027, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, 1998. 12 pp.

[16] J. L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear
system, J. Assoc. Comput. Mach., 14(3) (1967), pp. 543–548.

[17] G. W. Stewart, On the weighting method for least squares problems with linear equality
constraints, BIT, 37 (1997), pp. 961–967.

[18] C. F. Van Loan, On the method of weighting for equality-constrained least-squares problems,
SIAM J. Numer. Anal., 22 (1985), pp. 851–864.


