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LIMIT BEHAVIOR OF THE “HORIZONTAL-VERTICAL”
RANDOM WALK AND SOME EXTENSIONS OF THE
DONSKER–PROKHOROV INVARIANCE PRINCIPLE∗

A. S. CHERNY† , A. N. SHIRYAEV‡ , AND M. YOR§

Abstract. We consider a two-dimensional random walk that moves in the horizontal direction on
the half-plane {y > x} and in the vertical direction on the half-plane {y � x}. The limit behavior (as
the time interval between two steps and the size of each step tend to zero) of this “horizontal-vertical”
random walk is investigated.

In order to solve this problem, we prove an extension of the Donsker–Prokhorov invariance princi-
ple. The extension states that the discrete-time stochastic integrals with respect to the appropriately
renormalized one-dimensional random walk converge in distribution to the corresponding stochastic
integral with respect to a Brownian motion.

This extension enables us to construct a discrete-time approximation of the local time of a
Brownian motion.

We also provide discrete-time approximations of skew Brownian motions.

Key words. limit theorems for degenerate processes, Donsker–Prokhorov invariance principle,
local time of Brownian motion, skew Brownian motions, Skorokhod embedding problem
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1. Introduction.

1.1. Limit behavior of the “horizontal-vertical” random walk. Let
(ξk)

∞
k=1 be a sequence of independent and identically distributed (i.i.d.) random vari-

ables with Eξk = 0, Eξ2
k = 1. We construct a two-dimensional “horizontal-vertical”

random walk (Zk; k ∈ Z+) = (Xk, Yk; k ∈ Z+) by the following procedure: X0 = 0,
Y0 = 0,

Xk+1 =

{
Xk + ξk+1 if Yk > Xk,

Xk if Yk � Xk,
Yk+1 =

{
Yk if Yk > Xk,

Yk − ξk+1 if Yk � Xk.

In other words, Zk+1 is obtained from Zk by the shift whose modulus equals |ξk+1|.
If Zk belongs to the half-plane {y > x}, then the shift occurs in the horizontal
direction. If Zk belongs to the half-plane {y � x}, then the shift occurs in the vertical
direction (see Figure 1). For each n ∈ N = {1, 2, . . . }, we consider

Zn
k/n =

1√
n
Zk, k ∈ Z+ = {0, 1, 2, . . . },

and construct the process (Zn
t ; t � 0) by the linear interpolation of (Zn

k/n; k ∈ Z+).
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Fig. 1. The “horizontal-vertical” random walk.

The following question arises: What is the limit behavior (as n → ∞) of the
process (Zn

t ; t � 0)?

We prove in section 5 that the sequence of processes (Zn
t ; t � 0) converges in

distribution (as n → ∞) to a process (Zt; t � 0) and we give the explicit form of this
process (Theorem 5.1).

We also present another equivalent construction of the limit process (Zt; t � 0).
This construction shows, in particular, that the paths of Z yield an interesting and
transparent representation of the Brownian excursions.

1.2. Extensions of the Donsker–Prokhorov invariance principle. In or-
der to solve the above problem, we provide in section 2 the following extension of the
Donsker–Prokhorov invariance principle.

Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with Eξk = 0, Eξ2

k = 1. Let
f : R→ Rd be a Borel function. For each n ∈ N, we set ξnk = ξk/

√
n and consider

Xn
k/n =

k∑
i=1

ξni , Y n
k/n =

k∑
i=1

f
(
Xn

(i−1)/n

)
ξni , k ∈ Z+.

Construct the processes (Xn
t ; t � 0), (Y n

t ; t � 0) by linear interpolation of (Xn
k/n;

k ∈ Z+), (Y n
k/n; k ∈ Z+). Then, under some regularity conditions imposed on f

and ξk,

(Xn
t , Y

n
t ; t � 0)

Law−−−−→
n→∞

(
Bt,

∫ t

0

f(Bs) dBs; t � 0

)
,

where B is a Brownian motion started at zero (Theorems 2.1, 2.2). The sign
Law−→

here corresponds to the weak convergence of probability measures on C(R+,Rd+1)
endowed with the topology of uniform convergence on compact intervals. Note that,
with no regularity conditions on f and ξk, this result is not true (see Example 2.1).

The convergence of stochastic integrals in a more general situation (for a semi-
martingale instead of a Brownian motion and for arbitrary integrands instead of f(B))
is studied in [9, Chap. IX, section 5b]. However, these general results cannot be ap-
plied to our situation in the case where f is not continuous.
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The method used to prove Theorems 2.1 and 2.2 is based on the Skorokhod em-
bedding problem. This method is well known in limit theorems. For instance, [3,
Chap. 13, section 5] contains a simple proof of the Donsker–Prokhorov invariance
principle that employs this method. Cadre [5] provided a discrete-time approxima-
tion of the intersection local time of a two-dimensional Brownian motion employing
Skorokhod’s embedding problem.

1.3. Approximation of the Brownian local time. Theorem 2.1 yields the
following corollary (see section 3).

Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with P{ξk = 1} = P{ξk =

−1} = 1
2 . Let us set

Xk =

k∑
i=1

ξi, Lk =

k−1∑
i=0

I(Xi = 0), k ∈ Z+.

For each n ∈ N, we consider

Xn
k/n =

1√
n
Xk, Ln

k/n =
1√
n
Lk, k ∈ Z+,

and construct the processes (Xn
t ; t � 0), (Ln

t ; t � 0) by linear interpolation of (Xn
k/n;

k ∈ Z+), (L
n
k/n; k ∈ Z+). Then

(Xn
t , L

n
t ; t � 0)

Law−−−−→
n→∞ (Bt, Lt; t � 0),

where B is a Brownian motion started at zero and L is its local time at zero.

1.4. Approximations of skew Brownian motions. The method based on
the Skorokhod embedding problem enables us to prove one more extension of the
Donsker–Prokhorov invariance principle (see section 4).

Let (Xk; k ∈ Z+) be an integer-valued Markov chain with X0 = 0 and the
transition probabilities

P{Xk+1 = i+ 1 | Xk = i} =
1

2
, P{Xk+1 = i− 1 | Xk = i} =

1

2
if i 	= 0,

P{Xk+1 = 1 | Xk = 0} = p, P{Xk+1 = −1 | Xk = 0} = 1− p,

where p ∈ [0, 1]. Let f : R→ Rd be a Borel function. For each n ∈ N, we consider

Xn
k/n =

1√
n
Xk, Y n

k/n =

k∑
i=1

f
(
Xn

(i−1)/n

)(
Xn

i/n −Xn
(i−1)/n

)
, k ∈ Z+,

and construct the processes (Xn
t ; t � 0), (Y n

t ; t � 0) by linear interpolation of
(Xn

k/n; k ∈ Z+), (Y
n
k/n; k ∈ Z+). Then, under some regularity conditions imposed

on f ,

(Xn
t , Y

n
t ; t � 0)

Law−−−−→
n→∞

(
Bp

t ,

∫ t

0

f(Bp
s ) dB

p
s ; t � 0

)
,(1.1)

where Bp is a skew Brownian motion with parameter p started at zero.
This result provides discrete-time approximations of skew Brownian motions. It

completes the result of Harrison and Shepp [6] who proved the convergence of the

marginal distributions, which we denote by Xn
t

Law−→
n→∞Bp

t , t � 0. The convergence of

the first components in (1.1) follows from [4]. However, we use another (simpler)
method.
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There also exist other approximations of skew Brownian motions. Rosenkrantz [11]
provided an approximation of a skew Brownian motion by appropriately renormalized
solutions of the stochastic differential equation dXt = b(Xt) dt+ dBt.

2. Extensions of the Donsker–Prokhorov invariance principle.

2.1. The results. Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with

Eξk = 0, Eξ2
k = 1. Let f : R → Rd be a Borel function. For each n ∈ N, we set

ξnk = ξk/
√
n and consider

Xn
k/n =

k∑
i=1

ξni , k ∈ Z+,(2.1)

Y n
k/n =

k∑
i=1

f
(
Xn

(i−1)/n

)
ξni , k ∈ Z+.(2.2)

Construct the processes (Xn
t ; t � 0), (Y n

t ; t � 0) by linear interpolation of (Xn
k/n;

k ∈ Z+), (Y
n
k/n; k ∈ Z+).

Definition 2.1. A function f is piecewise continuous if there exists a collection
of disjoint intervals (Jk)

∞
k=1 (each Jk may be closed, open, or semi-open; it may also

consist of one point) with the following properties:

(i)
⋃∞

k=1Jk = R and, for any compact interval J , there exists m ∈ N such that⋃m
k=1 Jk ⊇ J ;

(ii) the restriction of f to each Jk is continuous on Jk and has finite limits at
those endpoints of Jk that do not belong to Jk.

Remark. Any piecewise continuous function is locally bounded.

Theorem 2.1. If f is piecewise continuous, then

(Xn
t , Y

n
t ; t � 0)

Law−−−−→
n→∞

(
Bt,

∫ t

0

f(Bs) dBs; t � 0

)
,(2.3)

where B is a Brownian motion started at zero.

Theorem 2.2. If f is locally bounded and there exists m ∈ N such that the
distribution of ξ1+ · · ·+ξm has an absolutely continuous (with respect to the Lebesgue
measure) component, then (2.3) holds.

Remark. Theorem 2.1 implies the Donsker–Prokhorov invariance principle (for
the sums of identically distributed random variables).

The following example shows that the regularity conditions imposed on f and ξk
in Theorems 2.1, 2.2 are essential.

Example 2.1. Let (ξk)
∞
k=1 be i.i.d. random variables with

P{ξk = 1} = P{ξk = −1} =
1

2
.

Let A = {m/
√
n; m ∈ Z, n ∈ N} and set f = IR\A. Then all the random vari-

ables Xn
k/n take values in A, and hence, Y n

k/n = 0. On the other hand,∫ t

0

f(Bs) dBs = Bt, t � 0,

and therefore, (2.3) does not hold.
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2.2. The proofs. Theorem 2.1 follows from Lemma 2.2 given below. Theo-
rem 2.2 follows from Lemma 2.3.

Proposition 2.1 (Skorokhod). Let ξ be a random variable with Eξ = 0, Eξ2 < ∞.
Let (Bt; t � 0) be a Brownian motion started at zero. Then there exists an (FB

t )-
stopping time τ such that Eτ = Eξ2 and Law(Bτ ) = Law(ξ).

Many solutions of this problem have been obtained; see, for example, [10, Chap. VI,
Theorem 5.4].

Lemma 2.1. Let (Bt; t � 0) be a Brownian motion started at zero. There exists
a collection (τn

k ; n ∈ N, k ∈ Z+) of (FB
t )-stopping times such that τn

0 = 0, τn
k � τn

k+1,

Law
(
Bτn

k
; k ∈ Z+

)
= Law

(
Xn

k/n; k ∈ Z+

)
, n ∈ N,(2.4)

and

∀m ∈ N, max
k=0,...,mn

∣∣∣∣τn
k − k

n

∣∣∣∣ P−−−−→
n→∞ 0.(2.5)

Proof. Let (Wt; t � 0) be a Brownian motion started at zero. According to
Proposition 2.1, there exists a stopping time τ such that Eτ = 1 and Law(Wτ ) =
Law(ξk). The random variable τ is a functional of the paths of W , which will be
denoted as τ = τ(W ). Let us now construct a sequence of processes (Wn

t ; t � 0) and
a sequence of random variables (τn) by the following procedure:

W 1
t = Wt, τ1 = τ(W 1),

W 2
t = W 1

t+τ1 −W 1
τ1 , τ2 = τ(W 2),

W 3
t = W 2

t+τ2 −W 2
τ2 , τ3 = τ(W 3), . . . .

Note that each τk is a functional of W . This will be denoted as τk = τk(W ).
It follows from the strong Markov property of W that the sequence (τn)

∞
n=1 is a

sequence of i.i.d. random variables with Eτn = 1. By the strong law of large numbers,
for any ε > 0, there exists N1 ∈ N such that

P

{
∀n � N1,

∣∣∣∣∣
n∑

i=1

τi − n

∣∣∣∣∣ < nε

}
> 1− ε.

Take N2 ∈ N such that

P

{
1

N2

N1∑
i=1

τi <
ε

2

}
> 1− ε,

N1

N2
<

ε

2
.

Then, for any n � N2, m ∈ N, we have

P

{
∀ k = 1, . . . ,mn,

∣∣∣∣∣ 1n
k∑

i=1

τi − k

n

∣∣∣∣∣ < mε

}
> 1− 2ε.

For any n ∈ N, the process Bn
t =

√
nBt/n is again a Brownian motion started at

zero. Therefore, the random variables

τn
k =

1

n

k∑
i=1

τi(B
n), k ∈ Z+,
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are correctly defined. One can easily verify that they satisfy the conditions of the
lemma.

Definition 2.2. A sequence of d-dimensional processes (Zn
t ; t � 0) converges to

a process (Zt; t � 0) in probability uniformly on compact intervals if

∀ t � 0, sup
s�t

‖Zn
s − Zs‖ P−−−−→

n→∞ 0.

We will use the notation

(Zn
t ; t � 0)

u.p.−−−−→
n→∞ (Zt; t � 0).

Lemma 2.2. Let f be piecewise continuous. Let (Bt; t � 0) be a Brownian
motion started at zero and (τn

k ; n ∈ N, k ∈ Z+) be the collection of stopping times
given by Lemma 2.1. Set ξnk = Bτn

k
− Bτn

k−1
and define the processes (Xn

t ; t � 0),

(Y n
t ; t � 0) through ξnk using (2.1) and (2.2). Then

(Xn
t , Y

n
t ; t � 0)

u.p.−−−−→
n→∞

(
Bt,

∫ t

0

f(Bs) dBs; t � 0

)
.

Proof. It follows from the continuity of B that

∀ t � 0, sup
{x,y∈[0,t] : |x−y|<ε}

|By −Bx| a.s.−−−−→
ε ↓ 0

0.(2.6)

Furthermore, (2.5) implies that

∀ t � 0, max
{k : τn

k
∈[0,t]}

|τn
k − τn

k−1| P−−−−→
n→∞ 0.

Since the processes Xn and B coincide at the times τn
k and the process Xn is linear

on each [τn
k−1, τ

n
k ], we arrive at

(Xn
t ; t � 0)

u.p.−−−−→
n→∞ (Bt; t � 0).

Thus, it only remains to prove the convergence

(Y n
t ; t � 0)

u.p.−−−−→
n→∞

(∫ t

0

f(Bs) dBs; t � 0

)
.(2.7)

It will suffice to check (2.7) for one-dimensional functions f . We will do this in several
steps.

Step 1. Suppose that f(x) = I(x > 0). Let us consider the processes

Ỹ n
t =

∫ t

0

Hn
s dBs, t � 0,(2.8)

where

Hn
t =

∞∑
i=1

I(τn
i−1 < t � τn

i ) f(Bτn
i−1

), t � 0.(2.9)
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It follows from the equality

Y n
τn
k
=

k∑
i=1

f
(
Bτn

i−1

)(
Bτn

i
−Bτn

i−1

)
, k ∈ Z+,

that Ỹ n
τn
k
= Y n

τn
k
for any n ∈ N, k ∈ Z+.

Fix t � 0. It follows from (2.6) that, for any ε > 0, there exists δ > 0 such that,
for any x, y ∈ [ε, t] with |y − x| < δ, we have P{f(B) is constant on [x, y]} > 1 − ε.
Combining this with (2.5), we deduce that there exists N ∈ N such that, for any
n � N and any k between εn and tn, P{f(B) is constant on [τn

k−1, τ
n
k ]} > 1 − ε.

Consequently,

∀ t � 0, E

∫ t

0

(Hn
s − f(Bs))

2ds −−−−→
n→∞ 0.

Due to the Burkholder–Davis–Gundy inequality (see [10, Chap. IV, Theorem 4.1]) or
rather Doob’s L2-inequality,

∀ t � 0, E sup
s�t

(
Ỹ n
s −

∫ s

0

f(Bu) dBu

)2

−−−−→
n→∞ 0.

In particular,

∀ t � 0, max
{k : τn

k
∈[0,t]}

∣∣∣∣Ỹ n
τn
k
−
∫ τn

k

0

f(Bs) dBs

∣∣∣∣ P−−−−→
n→∞ 0.

Using the equality Ỹ n
τn
k
= Y n

τn
k
and keeping in mind that Y n is linear on each [τn

k−1, τ
n
k ],

we get (2.7).

Step 2. The same arguments as above show that (2.7) holds for f(x) = I(x > a)
and f(x) = I(x < a), where a ∈ R. Since (2.7) holds for f = 1, it also holds for
f(x) = I(x � a) and f(x) = I(x � a), where a ∈ R.

Step 3. By linearity, we extend (2.7) to the functions of the form f(x) =∑m
i=1 λiI(x ∈ Ji), where Ji are intervals (that may be closed, open, or semi-open).

Step 4. Let f be a piecewise continuous function with compact support. Then f
can be uniformly approximated by a sequence of functions (fm)∞m=1 of the form de-

scribed in Step 3. Define Ỹ n, Hn by (2.8), (2.9) and define Ỹ nm, Hnm in the same
way with f replaced by fm. Then

∀ t � 0, |Hnm
t −Hn

t | � sup
x∈R

∣∣fm(x)− f(x)
∣∣ −−−−→

m→∞ 0.

Consequently,

∀ t � 0, sup
s�t

∣∣∣∣∫ s

0

Hnm
u dBu −

∫ s

0

Hn
u dBu

∣∣∣∣ P−−−−→
m→∞ 0,

and the convergence is uniform in n. Thus,

∀ t � 0, max
{k : τn

k
∈[0,t]}

∣∣∣Ỹ nm
τn
k

− Ỹ n
τn
k

∣∣∣ P−−−−→
m→∞ 0,
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and the convergence is uniform in n. Combining this with the properties

∀ t � 0, ∀m ∈ N, max
{k : τn

k
∈[0,t]}

∣∣∣∣Ỹ nm
τn
k

−
∫ τn

k

0

fm(Bs) dBs

∣∣∣∣ P−−−−→
n→∞ 0,

∀ t � 0, max
{k : τn

k
∈[0,t]}

∣∣∣∣∫ τn
k

0

fm(Bs) dBs −
∫ τn

k

0

f(Bs) dBs

∣∣∣∣ P−−−−→
m→∞ 0,

we conclude that

∀ t � 0, max
{k : τn

k
∈[0,t]}

∣∣∣∣Ỹ n
τn
k
−
∫ τn

k

0

f(Bs) dBs

∣∣∣∣ P−−−−→
n→∞ 0.

Using the equality Ỹ n
τn
k
= Y n

τn
k
and keeping in mind that Y n is linear on each [τn

k−1, τ
n
k ],

we get (2.7).
Step 5. Let f be piecewise continuous. Then there exists a sequence (fm)∞m=1 of

piecewise continuous functions with compact support such that fm = f on [−m,m].
Define Y nm in the same way as Y n with f replaced by fm. Fix t � 0. On the set
Am = {∀ s � t, |Bs| � m}, we have Y nm

s = Y n
s , s � t. Furthermore, P(Am) → 1,

as m → ∞. We now proceed similarly to the previous step.
Proposition 2.2 (Prokhorov). Let (ξk)

∞
k=1 be a sequence of i.i.d. random vari-

ables with Eξk = 0, Eξ2
k = 1. Set Sn = ξ1+ · · ·+ξn. Then the distributions of Sn/

√
n

converge in variation to the normal distribution N (0, 1) if and only if there exists
m ∈ N such that the distribution of Sm has an absolutely continuous (with respect to
the Lebesgue measure) component.

For the proof, see [7, Chap. IV, relation (4)].
Lemma 2.3. Let f be locally bounded. Suppose that there exists m ∈ N such

that the distribution of ξ1 + · · ·+ ξm has an absolutely continuous (with respect to the
Lebesgue measure) component. Let (Bt; t � 0) be a Brownian motion started at zero
and let (τn

k ; n ∈ N, k ∈ Z+) be the collection of stopping times given by Lemma 2.1.
Set ξnk = Bτn

k
− Bτn

k−1
and define the processes (Xn

t ; t � 0), (Y n
t ; t � 0) through ξnk

by (2.1), (2.2). Then

(Xn
t , Y

n
t ; t � 0)

u.p.−−−−→
n→∞

(
Bt,

∫ t

0

f(Bs) dBs; t � 0

)
.

Proof. Similarly to Lemma 2.2, it will suffice to prove only (2.7) for one-dimensional
functions f . We will do this in several steps.

Step 1. Let a � 0. Let us prove (2.7) for the functions f of the form f(x) =
I(x ∈ A), where A ∈ B([−a, a]). Consider the set

M =
{
A ∈ B([−a, a]

)
: (2.7) holds for f = IA

}
.

It follows from Lemma 2.2 that M contains all the intervals in [−a, a]. Let us check
that M is a monotone class; i.e.,

(i) [−a, a] ∈ M;
(ii) if A,B ∈ M and A ⊆ B, then B \A ∈ M;
(iii) if (Am)∞m=1 ∈ M and Am ⊆ Am+1, then

⋃∞
m=1Am ∈ M.

The only nontrivial point is (iii). Set

A =

∞⋃
m=1

Am, fm = IAm , f = IA.



HORIZONTAL-VERTICAL RANDOM WALK 385

Define Ỹ n, Hn by (2.8), (2.9) and define Ỹ nm, Hnm in the same way with f replaced
by fm. Let µL denote the Lebesgue measure on R. It follows from Proposition 2.2
that, for any ε > 0, there exist N(ε) ∈ N and δ(ε) > 0 such that P{Sn/

√
n ∈ D} < ε

for any D ∈ B(R) with µL(D) < δ(ε) and any n � N(ε). Then, for any D ∈ B(R)
with µL(D) <

√
ε δ(ε), any n � ε−1N(ε), and any k � εn, we have P{Sk/

√
n ∈

D} < ε. Find M(ε) ∈ N such that µL(A \ AM(ε)) <
√
ε δ(ε). In view of the equality

Law(Sk/
√
n) = Law(Bτn

k
), for any n � ε−1N(ε), k � εn, m � M(ε), we get

P
{
Bτn

k
∈ A \Am

}
< ε.

Fix t � 0. For any n � ε−1N(ε), m � M(ε), we have

E

∫ τn
[tn]

τn
[εn]+1

(
Hnm

s −Hn
s

)2

ds =

[tn]−1∑
k=[εn]+1

E
(
Hnm

τn
k

−Hn
τn
k

)2

(τn
k+1 − τn

k )

=

[tn]−1∑
k=[εn]+1

E
[
E
[(

Hnm
τn
k

−Hn
τn
k

)2

(τn
k+1 − τn

k ) | FB
τn
k

]]

=

[tn]−1∑
k=[εn]+1

1

n
E
(
Hnm

τn
k

−Hn
τn
k

)2

=
1

n

[tn]−1∑
k=[εn]+1

P{Bτn
k−1

∈ A \Am} � tε.

Moreover,

E

∫ τ[εn]+1

0

(Hnm
s −Hn

s )
2 ds � Eτn

[εn]+1 <
εn+ 1

n
.

It follows from the Burkholder–Davis–Gundy inequality (see [10, Chap. IV, Theo-
rem 4.1]) or rather, Doob’s L2-inequality, that

E sup
s�τn

[tn]

(Ỹ nm
s − Ỹ n

s )2 −−−−−→
n,m→∞ 0.

Arguing in the same way as in the proof of Lemma 2.2 (Step 4), we deduce that

(Y n
t ; t � 0)

u.p.−−−−→
n→∞

(∫ t

0

f(Bs) dBs; t � 0

)
,

which means that A ∈ M.
Applying the monotone class lemma (see [10, Theorem 2.1]), we conclude that

M = B([−a, a]).
Step 2. By linearity, we extend (2.7) to the functions of the form

f(x) =

m∑
i=1

λiI(x ∈ Ai), where Ai ∈ B([−a, a]).

Step 3. Let f be a bounded function with compact support. Then f can be
uniformly approximated by the functions of the form described in Step 2. Using the
same arguments as in the proof of Lemma 2.2 (Step 4), we get (2.7) for f .

Step 4. Similar arguments as in the proof of Lemma 2.2 (Step 5) show that (2.7)
is true for any locally bounded f .

Proof of Theorem 2.1. In view of (2.4), the process (Xn
t , Y

n
t ; t � 0) defined in

Lemma 2.2 has the same distribution as the “original” process (Xn
t , Y

n
t ; t � 0) that

appears in (2.3). The desired result now follows from the fact that the convergence
in probability uniformly on compact intervals implies the weak convergence.

Proof of Theorem 2.2. This theorem is proved in the same way as Theorem 2.1
(with Lemma 2.2 replaced by Lemma 2.3).
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3. Approximation of the Brownian local time.

3.1. Definitions and known facts. Let (Zt; t � 0) be a continuous semi-
martingale.

Definition 3.1. The local time of Z at a point a ∈ R is the random process
(La

t (Z); t � 0) that satisfies the equality

|Zt − a| = |Z0 − a|+
∫ t

0

sign (Zs − a) dZs + La
t (Z), t � 0.(3.1)

Relation (3.1) is called the Tanaka formula.
Remark. The value sign 0 is taken to be equal to −1. If Z is a local martingale,

then the value sign 0 is not important since, in this case,∫ t

0

I(Zs = a) dZs = 0, t � 0.

Proposition 3.1 (Itô–Tanaka formula). Let ϕ : R → R be a difference of two
convex functions. Then

ϕ(Zt) = ϕ(Z0) +

∫ t

0

ϕ′
−(Zs) dZs +

1

2

∫
R

Lz
t (Z)ϕ′′(dz), t � 0,

where ϕ′
− denotes the left-hand derivative of ϕ, and ϕ′′ denotes the second derivative

of ϕ (this is a signed measure on R).
For the proof, see [10, Chap. VI, Theorem 1.5].
Proposition 3.2. The process (La

t (Z); t � 0) is an increasing continuous pro-
cess, and the measure dLa

t (Z) is a.s. carried by the set {t � 0: Zt = a}.
For the proof, see [10, Chap. VI].
More information on the local time as well as other equivalent definitions of this

process can be found in [10, Chap. VI] and [8, Chap. 2].

3.2. The results. Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with

P{ξk = 1} = P{ξk = −1} = 1
2 . Let us set

Xk =

k∑
i=1

ξi, Lk =

k−1∑
i=0

I(Xi = 0), k ∈ Z+.

For each n ∈ N, we consider

Xn
k/n =

1√
n
Xk, Ln

k/n =
1√
n
Lk, k ∈ Z+,

and construct the processes (Xn
t ; t � 0), (Ln

t ; t � 0) by linear interpolation of
(Xn

k/n; k ∈ Z+), (L
n
k/n; k ∈ Z+).

Theorem 3.1. We have

(Xn
t , L

n
t ; t � 0)

Law−−−−→
n→∞ (Bt, Lt; t � 0),

where B is a Brownian motion started at zero and L is its local time at zero.
Proof. Set

f(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.
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Fig. 2. Simulated paths of Xn and Ln (n = 2500).

For each n ∈ N, consider

Y n
k/n =

1√
n

k∑
i=1

f
(
Xn

(i−1)/n

)
ξi, k ∈ Z+.

Comparing this expression with the equalities

Xn
k/n =

1√
n

k∑
i=1

ξi, Ln
k/n =

1√
n

k∑
i=1

I
(
Xn

(i−1)/n = 0
)
, k ∈ Z+,

one can easily check that Ln
k/n = |Xn

k/n| − Y n
k/n, k ∈ Z+. Consequently, Ln

t =

|Xn
t | − Y n

t , t � 0. Now, the result follows from Theorem 2.1 and the equality

Lt = |Bt| −
∫ t

0

f(Bs) dBs, t � 0

(see (3.1)).

4. Approximations of skew Brownian motions.

4.1. Definitions and known facts. Let (Bt; t � 0) be a Brownian motion
started at a point B0. Let p ∈ [0, 1]. Set

At =

∫ t

0

(
p2I(Bs � 0) + (1− p)2I(Bs < 0)

)
ds, t � 0,(4.1)

τt = inf{s � 0: As > t}, t � 0,(4.2)

Mt = Bτt , t � 0,(4.3)

Bp
t = ϕ(Mt), t � 0,(4.4)

where

ϕ(x) =

{
px if x � 0,

(1− p)x if x < 0.
(4.5)

Definition 4.1. The process (Bp
t ; t � 0) is called a skew Brownian motion with

parameter p started at Bp
0 .

Remarks. (i) A skew Brownian motion with parameter 1 coincides in distribution
with the modulus of a Brownian motion (see [8, section 2.11]). A skew Brownian
motion with parameter 1

2 is an ordinary Brownian motion. A skew Brownian motion
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with parameter 0 coincides in distribution with the modulus of a Brownian motion
multiplied by −1.

(ii) The construction (4.1)–(4.5) is precisely Feller’s construction of a diffusion
from a Brownian motion through a time change and a space transformation with
ϕ : R→ R and At =

∫ t

0
(ϕ′(Bs))

2 ds.

(iii) There exist other possible ways of defining a skew Brownian motion. This
process may be defined as a Markov process with a given transition function (see [10,
Chap. III, Exercise 1.16]); it may be defined as a diffusion process with a given
generator (see [10, Chap. VII, Exercise 1.23]); it may be defined as the solution of
a stochastic differential equation with a generalized drift (see [6]). One of the most
transparent ways of defining the skew Brownian motion is based on the excursion
theory. Informally, a skew Brownian motion with parameter p is obtained from the
modulus of a Brownian motion by changing the sign of each of its excursions with
probability 1− p.

Lemma 4.1. Let (Bp
t ; t � 0) be a skew Brownian motion with parameter p started

at a point Bp
0 .

(i) The process Bp has the strong Markov property.

(ii) The process Bp is a semimartingale.

(iii) We have Law(|Bp
t |; t � 0) = Law(|Bt|; t � 0), where B is a Brownian motion

started at Bp
0 .

(iv) Let a < Bp
0 < c and set Ta(B

p) = inf{t � 0: Bp
t = a}, Tc(B

p) = inf{t �
0: Bp

t = c}. Then

P
{
Tc(B

p) < Ta(B
p)
}
=

ϕ−1(Bp
0)− ϕ−1(a)

ϕ−1(c)− ϕ−1(a)
.

(If p = 1, we consider only a � 0; if p = 0, we consider only c � 0.)

Proof. (i) If p = 1, then Bp is the modulus of a Brownian motion (see [8,
section 2.11]), and this process has the strong Markov property (see [10, Chap. XI,
section 1]). For p ∈ (0, 1), statement (i) follows from [10, Chap. X, Theorem 2.18].

(ii) If p = 1, then Bp is the modulus of a Brownian motion. It follows from the
Tanaka formula (3.1) that this process is a semimartingale. For p ∈ (0, 1), the process
M given by (4.3) is a local martingale (see [10, Chap. V, Proposition 1.5]). It follows
from the Itô–Tanaka formula (Proposition 3.1) that

ϕ(Mt) = ϕ(M0) +

∫ t

0

ϕ′
−(Ms) dMs +

2p− 1

2
L0
t (M), t � 0.(4.6)

Hence, ϕ(M) is a semimartingale.

(iii) For p = 0, 1, this statement follows from [8, section 2.11]. For p ∈ (0, 1), this
statement follows from [10, Chap. XII, Exercise 2.16].

(iv) This statement is a consequence of the following fact. Let (Bt; t � 0) be
a Brownian motion started at a point B0. Let a < B0 < c. Set Ta(B) = inf{t �
0: Bt = a}, Tc(B) = inf{t � 0: Bt = c}. Then

P
{
Tc(B) < Ta(B)

}
=

B0 − a

c− a

(see [10, Chap. II, Proposition 3.8].

Remark. As opposed to the case of a Brownian motion, the stochastic integral∫ t

0
I(Bp

s = 0) dBp
s is not equal to zero. This follows from (4.6).

For more information on skew Brownian motions, see [1], [2], [6].
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Fig. 3. A simulated path of Xn (p = 0.9, n = 2500).

4.2. The results. Let (Xk; k ∈ Z+) be an integer-valued Markov chain with
X0 = 0 and the transition probabilities

P{Xk+1 = i+ 1 | Xk = i} =
1

2
, P{Xk+1 = i− 1 | Xk = i} =

1

2
if i 	= 0,

P{Xk+1 = 1 | Xk = 0} = p, P{Xk+1 = −1 | Xk = 0} = 1− p,

where p ∈ [0, 1]. Let f : R→ Rd be a Borel function. For each n ∈ N, we consider

Xn
k/n =

1√
n
Xk, k ∈ Z+,(4.7)

Y n
k/n =

k∑
i=1

f
(
Xn

(i−1)/n

)(
Xn

i/n −Xn
(i−1)/n

)
, k ∈ Z+,(4.8)

and construct the processes (Xn
t ; t � 0), (Y n

t ; t � 0) by linear interpolation of
(Xn

k/n; k ∈ Z+), (Y
n
k/n; k ∈ Z+).

Theorem 4.1. If f is piecewise continuous, then

(Xn
t , Y

n
t ; t � 0)

Law−−−−→
n→∞

(
Bp

t ,

∫ t

0

f(Bp
s ) dB

p
s ; t � 0

)
,(4.9)

where Bp is a skew Brownian motion with parameter p started at zero.
Remark. If f is only locally bounded, then the conclusion of Theorem 4.1 does not

hold. In order to see this, one need only consider the function given by Example 2.1.

4.3. The proofs. Theorem 4.1 follows from Lemma 4.4 given below.
Lemma 4.2. Let (Bp

t ; t � 0) be a skew Brownian motion with parameter p ∈ [0, 1]
started at a point Bp

0 . Let a 	= 0 and (Ht; t � 0) be a bounded (FBp

t )-predictable
process such that, for any t � 0, Ht equals zero on the set {Bp

t 	= a}. Then∫ t

0

Hs dB
p
s = 0, t � 0.

Proof. By the Itô–Tanaka formula,

Bp
t = Bp

0 +

∫ t

0

ϕ′
−(Ms) dMs +

2p− 1

2
L0
t (M), t � 0,
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where M is given by (4.3) and ϕ is given by (4.5). Hence,∫ t

0

HsdB
p
s =

∫ t

0

Hsϕ
′
−(Ms) dMs +

2p− 1

2

∫ t

0

Hs dL
0
s(M)

=

∫ t

0

Hsϕ
′
−(a) I(Ms = a) dMs = Nt, t � 0.

(In the latter equality we applied Proposition 3.2.) The process N is a local martingale
and

〈N〉t =
∫ t

0

(Hsϕ
′
−(a) I(Ms = a))2d〈M〉s, t � 0.

By the occupation times formula (see [10, Chap. VI, Corollary 1.6]),∫ t

0

I(Ms = a) d〈M〉s =
∫
R

I(x = a)Lx
t (M) dx = 0, t � 0.

Hence, N = 0. This is the desired statement.
Lemma 4.3. Let (Bp

t ; t � 0) be a skew Brownian motion with parameter p started
at zero. Define a collection of stopping times (τn

k ; n ∈ N, k ∈ Z+) by τn
0 = 0,

τn
k+1 = inf

{
t � τn

k :
∣∣Bp

t −Bp
τn
k

∣∣ � 1√
n

}
.

Then

Law
(
Bp

τn
k
; k ∈ Z+

)
= Law(Xn

k/n; k ∈ Z+),(4.10)

∀m ∈ N, max
k=0,...,mn

∣∣∣∣τn
k − k

n

∣∣∣∣ P−−−−→
n→∞ 0.(4.11)

Proof. Since Bp is a strong Markov process (see Lemma 4.1 (i)), the sequence
(Bp

τn
k
; k ∈ Z+) is a Markov chain. It follows from Lemma 4.1 (iv) that this Markov

chain has the same transition probabilities as (Xn
k/n; k ∈ Z+). Thus, we get (4.10).

In order to prove (4.11), let us consider a Brownian motion B̃ started at zero and
a collection of stopping times (τ̃n

k ; n ∈ N, k ∈ Z+) given by τ̃n
0 = 0,

τ̃n
k+1 = inf

{
t � τ̃n

k :
∣∣B̃t − B̃τn

k

∣∣ � 1√
n

}
.

Note that we can write

τn
k+1 = inf

{
t � τn

k :
∣∣|Bp

t | − |Bp
τn
k
|∣∣ � 1√

n

}
,

τ̃n
k+1 = inf

{
t � τ̃n

k :
∣∣|B̃t| − |B̃τn

k
|∣∣ � 1√

n

}
.

As Law(|Bp
t |; t � 0) = Law(|B̃t|; t � 0) (see Lemma 4.1 (iii)), we get Law(τn

k ;
k ∈ Z+) = Law(τ̃n

k ; k ∈ Z+). Now, (4.11) follows from the equality E(τ̃n
k+1 − τ̃n

k ) =
1/n combined with the arguments used in the proof of Lemma 2.1.

Lemma 4.4. Let f be piecewise continuous. Let (Bp
t ; t � 0) be a skew Brownian

motion with parameter p started at zero. Let (τn
k ; n ∈ N, k ∈ Z+) be the collection

of stopping times given by Lemma 4.3. Set Xn
k/n = Bp

τn
k

and define Y n through Xn

using (4.8). Then

(Xn
t , Y

n
t ; t � 0)

u.p.−−−−→
n→∞

(
Bp

t ,

∫ t

0

f(Bp
s ) dB

p
s ; t � 0

)
.
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Proof. As in Lemma 2.2, it will suffice to prove the convergence

(Y n
t ; t � 0)

u.p.−−−−→
n→∞

(∫ t

0

f(Bp
s ) dB

p
s ; t � 0

)
(4.12)

for one-dimensional functions f . We will do this in several steps.
Step 1. Suppose that f(x) = I(x > 0). Consider the processes

Ỹ n
t =

∫ t

0

Hn
s dB

p
s , t � 0,(4.13)

where

Hn
t =

∞∑
i=1

I(τn
i−1 � t < τn

i ) f
(
Bp

τn
i−1

)
, t � 0.

It is easy to see that Hn
t equals f(Bp

t ) on the set {Bp
t /∈ (−1/

√
n, 0) ∪ (0, 1/

√
n)}.

Hence, the processes Hn tend to f(Bp) pointwise. Now, it follows from the Lebesgue
dominated convergence theorem for stochastic integrals (see [9, Chap. I, Theorem 4.40])
that

(Ỹ n
t ; t � 0)

u.p.−−−−→
n→∞

(∫ t

0

f(Bp
s ) dB

p
s ; t � 0

)
.

Using the equality Ỹ n
τn
k
= Y n

τn
k
and keeping in mind that Y n is linear on each [τn

k−1, τ
n
k ],

we get (4.12).

Step 2. Let f(x) = I(x > a), where a 	= 0. Let Ỹ n be the process defined

by (4.13). In view of Lemma 4.2, Ỹ n can be rewritten as

Ỹ n
t =

∫ t

0

Kn
s dBp

s , t � 0,

where Kn
t = Hn

t I(B
p
t 	= a). It is easy to see that Kn

t equals f(Bp
t ) on the set

{Bp
t /∈ (a − 1/

√
n, a) ∪ (a, a + 1/

√
n)}. Hence, the processes Hn tend to f(Bp)

pointwise. We now proceed similarly to Step 1.
Step 3. We derive (4.12) for piecewise continuous functions in the same way as in

the proof of Lemma 2.2 (Steps 2–5).
Proof of Theorem 4.1. In view of (4.10), the process (Xn

t , Y
n
t ; t � 0) defined in

Lemma 4.4 has the same distribution as the “original” process (Xn
t , Y

n
t ; t � 0) that

appears in (4.9). The desired result now follows from the fact that the convergence
in probability uniformly on compact intervals implies the weak convergence.

5. Limit behavior of the “horizontal-vertical” random walk.

5.1. Limit behavior. Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with

Eξk = 0, Eξ2
k = 1. Let us set X0 = 0, Y0 = 0,

Xk+1 =

{
Xk + ξk+1 if Yk > Xk,

Xk if Yk � Xk,
Yk+1 =

{
Yk if Yk > Xk,

Yk − ξk+1 if Yk � Xk.

For each n ∈ N, we consider

Xn
k/n =

1√
n
Xk, Y n

k/n =
1√
n
Yk, k ∈ Z+,

and construct the processes (Xn
t ; t � 0), (Y n

t ; t � 0) by linear interpolation of
(Xn

k/n; k ∈ Z+), (Y
n
k/n; k ∈ Z+).
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Fig. 4. A construction of the limit process.

Theorem 5.1. Let B be a Brownian motion started at zero. Set

X∞
t =

∫ t

0

I(Bs � 0) dBs =
1

2
Lt −B−

t , t � 0,(5.1)

Y ∞
t = −

∫ t

0

I(Bs > 0) dBs =
1

2
Lt −B+

t , t � 0.(5.2)

Here, L is the local time of B at zero and B−
t = −(Bt ∧ 0). Then

(Xn
t , Y

n
t ; t � 0)

Law−−−−→
n→∞ (X∞

t , Y ∞
t ; t � 0).

Proof. Let us consider the processes

X̃n
t = Xn

t − Y n
t , Ỹ n

t = Xn
t + Y n

t .

Then

X̃n
(k+1)/n = X̃n

k/n +
ξk+1√

n
, Ỹ n

(k+1)/n = Ỹ n
k/n − ξk+1√

n
sign X̃n

k/n.

In other words,

X̃n
k/n =

1√
n

k∑
i=1

ξi, Ỹ n
k/n = − 1√

n

k∑
i=1

ξi sign X̃n
(i−1)/n, k ∈ Z+.

The result now follows from Theorem 2.1.

5.2. Another construction of the limit process. Let us now present another
equivalent construction of the limit process (X∞

t , Y ∞
t ; t � 0) given by Theorem 5.1.

Imagine that the line k = {x = y} is a string and there is a frame that consists
of a line l that is orthogonal to k, a horizontal ray m, and a vertical ray n. The
elements l,m, n have a common point P . The frame is not motionless; i.e., the
point P , to which l, m, and n are “attached,” can slide along k.

Let (Bt; t � 0) be a Brownian motion started at zero. Suppose that the point P
slides along k in such a way that Pt = kLt, where k = ( 1

2 ,
1
2 ) and (Lt; t � 0) is

the local time of B at zero. Then l, m, and n also move. We will denote them
by lt,mt, and nt. Suppose that there is a point Qt ∈ lt given by Qt = Pt + l̄Bt,
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Fig. 5. A simulated path of the limit process.

where l̄ = ( 1
2 ,− 1

2 ). Let Rt be the projection of Qt on mt ∪nt along k (if Bt < 0, then
Rt ∈ mt; if Bt > 0, then Rt ∈ nt). The process

(Rt; t � 0) = (Rx
t , R

y
t ; t � 0)

is a two-dimensional random process with

Rx
t =

1

2
Lt +

1

2
Bt − 1

2
|Bt|, Ry

t =
1

2
Lt − 1

2
Bt − 1

2
|Bt|, t � 0.

We see that Rx = X∞, Ry = Y ∞, where X∞, Y ∞ are given by (5.1), (5.2). Thus,
(Rt; t � 0) is the limit process given by Theorem 5.1.

Remarks. (i) It is seen from this construction that the limit process (X∞
t , Y ∞

t ;
t � 0) is a two-dimensional homogeneous Markov process (note that (Bt, Lt; t � 0)
is the one).

(ii) Let a > 0. Consider the stopping time

τa = inf
{
t � 0: (X∞

t , Y ∞
t ) = (a, a)

}
.

Then

τa = inf{t � 0: Lt = 2a} Law
= inf{t � 0: St = 2a} = inf{t � 0: Bt = 2a}.

Here, St = maxs�t Bs, and we applied Lévy’s theorem (see [10, Chap. VI, rela-

tion (2.3)]). The last random variable is known to have the distribution density

pa(x) =
2a√
2πx3

e−2a2/x, x � 0

(see [10, Chap. III, section (3)]). In particular, Eτa = ∞.

(iii) The above construction of the limit process also shows that the sample paths
of (X∞, Y ∞) (in the phase space) consist of vertical and horizontal intervals. These
intervals represent the excursions of the Brownian motion B plotted against its local
time at zero (for the definition of an excursion, see [10, Chap. XII]). The length of
each (vertical or horizontal) interval shows the height of the corresponding excursion.
Thus, the paths of R yield a transparent representation of the excursion process of a
Brownian motion.
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