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Abstract. In this paper, we consider the numerical approximations for a hydrodynamical model
of smectic-A liquid crystals. The model, derived from the variational approach of the modified
Oseen-Frank energy, is a highly nonlinear system that couples the incompressible Navier-Stokes
equations and a constitutive equation for the layer variable. We develop two linear, second-order
time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms
in the constitutive equation, the projection method for the Navier-Stokes equations, and some
subtle implicit-explicit treatments for the convective and stress terms. Moreover, we prove the
well-posedness of the linear system and their unconditionally energy stabilities rigorously. Various
numerical experiments are presented to demonstrate the stability and the accuracy of the numerical
schemes in simulating the dynamics under shear flow and the magnetic field.

1. Introduction

Liquid crystals (LCs) are one important intermediate phase which exhibits features from both
the solid and the fluid state, e.g., it flows like liquids, while at the same time, displays an ordering
property like solid. Thus it is often viewed as the fourth state of the matter besides the gas,
liquid and solid. There are two main different phases in thermotropic liquid crystals: nematic
and smectic. In nematic phases, the rod-like molecules self-align to have a long-range directional
order with their long axes roughly parallel. While maintaining long-range directional order, the
molecules are free to flow and their center of mass positions are randomly distributed as in a liquid,
see [6,7,13,17,21–24,43,50,66,71,74–77,84]. In smectic phases, the molecules maintain the general
orientational order of nematics, but also tend to align themselves in layers or planes. Hence,
molecules in this state show a degree of translational order that are not present in the nematic
phase. Motion is restricted to within these planes, and separate planes are observed to flow past
each other, see [5, 7, 10, 11, 14, 24–26, 30, 39, 43, 48]. Note there are many different smectic phases,
all characterized by different types and degrees of positional and orientational order. Here we
consider the numerical approximations for the smectic-A phase, where the directions of molecules
are perpendicular to the smectic plane, and there is no particular positional order inside the layer.

There is a large quantity of studies on modeling and simulation to investigate the flows of
liquid crystal systems. One of the most well-known continuum theories is the Ericksen-Leslie
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theory [16,17,38], where, to describe this anisotropic structure, a dimensionless unit vector, called
the director, is introduced to represent the direction of preferred orientation of molecules in the
neighborhood of any point. The corresponded mathematical model can often be obtained from
the energetic variational approach for the phenomenon-logical Oseen-Frank energy, leading to a
well-posed nonlinear gradient flow system. The first mathematical model for the smectic-A phase
is developed in the pioneering work [13] by de Gennes et. al., where the Oseen-Frank energy is
modified by coupling the director field and a complex order parameter that represents the layer
structure. Following the model of de Genes et. al., a number of models for smectic phase have been
developed and studied during the last two decades, see [1, 7, 10, 14, 24, 30, 43, 52]. In this paper,
we consider the numerical approximations for solving a particular hydrodynamics coupled smectic-
A model developed by W. E. in [14] since it appears to the minimal model of unknowns, where
the director field is assumed to be strictly equal to the gradient of the layer and thus the total
free energy is reduced to a simplified version with one order parameter. In addition, rather than
imposing non-convex constraint directly on the gradient of the layer variable, we use a commonly
used technique in liquid crystal theory to modify the free energy by adding a penalization potential
of a Ginzburg-Landau type. Such a term can efficiently relax the unit norm constraint numerically,
while, in the meantime, it also introduces a stiffness issue into the system [2,11,30,73,84], for which
certain numerical methods like fully implicit or explicit type methods (cf. [20,55]), are numerically
unstable.

From the numerical point of view, for a stiff PDE system, we expect to establish schemes that
can verify the so called “energy stable” property at the discrete level irrespectively of the coarseness
of the discretization, namely, the energy stability does not impose any limitations on the time step.
In what follows, those algorithms will be called unconditionally energy stable. Schemes with this
property is specially preferred since it is not only critical for the numerical scheme to capture the
correct long time dynamics with large time steps, but also provides sufficient flexibility for dealing
with the stiffness issue. However, it is remarkable that, unlike the enormous algorithm developments
on the nematic models (cf. [12,37,42,45–47,57,85,87–90]), very few attempts of developing energy
stable schemes had been made for smectic models in any form. We notice, for solving the particular
smectic-A model of W. E. [14], Guillén et. al. developed a linear, second order scheme in [30], where
the nonlinear term induced by the penalization Ginzburg-Landau potential is approximated by a
Hermite quadrature formula. This scheme can be regarded as one of the limited efforts in the
algorithm designs, however, it is not unconditionally energy stable, i.e., there exists a time step
constraint that is dependent on the penalization parameter, so it is not efficient in practice.

Therefore, in this paper, the main purpose is to develop some more efficient and effective numer-
ical schemes for solving the hydrodynamics coupled smectic-A model in [14]. We expect that our
developed schemes can own the following three desired properties, i.e., (i) accurate (second order
in time); (ii) stable (the unconditional energy dissipation law holds); and (iii) easy to implement
and efficient (only need to solve some fully linear equations at each time step). To achieve such
a goal, instead of using traditional discretization approaches like simple implicit [20], stabilized
explicit [8,45,54,55,57–59,68,72,83,85], convex splitting [67,88,89], or other various tricky Taylor
expansions [30,63] to discretize the nonlinear potentials, we adopt the so-called “Invariant Energy
Quadratization” (IEQ) method, which is a novel approach and had been successfully applied for
various gradient flow models in the authors’ recent work (cf. [9,69,70,78–82,86,87]). The essential
idea of the IEQ method is to transform the free energy into a quadratic form (since the nonlinear
potential is usually bounded from below) of a set of new variables via a change of variables. The
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new, equivalent system still retains the equivalent energy dissipation law in terms of the new vari-
ables. Through such a reformulation, all nonlinear terms can be treated semi-explicitly that leads
to a well-posed linear system at each time step.

When this IEQ method is applied to the flow coupled model such as the smectic-A model
considered in this paper, there are still new challenges due to the nonlinear couplings between the
multiple variables, namely, the velocity, the director field as well as the layer, where, in particular,
the equation for the velocity is not gradient flow model. To this end, we use the projection method
to solve Navier-Stokes equations, and a subtle implicit-explicit treatment to treat the convective
and stress terms. Finally we obtain two efficient schemes that are accurate (second order in time),
easy-to-implement (linear), and unconditionally energy stable (with a discrete energy dissipation
law). Moreover, we rigorously prove that the well-posedness and unconditionally energy stabilities
hold for the two proposed schemes, and demonstrate the stability and the accuracy of the proposed
schemes through a number of classical benchmark simulation, in particular, the layer motions under
shear flow and magnetic force. To the best of the authors’ knowledge, the proposed schemes here
are the first second order accurate schemes for the flow coupled smectic-A model with unconditional
energy stabilities.

The rest of the paper is organized as follows. In Section 2, we present the whole system and show
the energy law in the continuous level. In Section 3, we develop the numerical schemes and prove
their well-posedness and unconditional stabilities. In Section 4, we present various 2D numerical
experiments to demonstrate the stability and the accuracy of the developed numerical schemes in
simulating the dynamics under shear flow and the magnetic field. Finally, some concluding remarks
are presented in Section 5.

2. Model

We now give a brief introduction for the hydrodynamical smectic-A phase model in [14, 30].
Let Ω ⊂ Rd with d = 2, 3 be the bounded domain occupied by the LCs with boundary ∂Ω. The
standard Oseen-Frank distortional energy for the bulk free energy takes the following form:

E(d) =

∫

Ω

(K1

2
(∇ · d)2 +

K2

2
(d · (∇× d))2 +

K3

2
|d× (∇× d)|2

)
dx,(2.1)

where the unit vector d represents the average orientation of liquid crystal molecules and K1,K2,K3

are elastic constants for the three canonical distortional modes: splay, twist and bending, re-
spectively. For simplicity, we suppress the anisotropic distortional elastic modes by assuming
K1 = K2 = K3 = K. Then, the Oseen-Frank energy density reduces to the Dirichlet functional

E(d) = K

∫

Ω

1

2
|∇d|2dx.(2.2)

For uniaxial smectic LCs, the molecules are aligned in layers with the normal vector n. More
specific, for smectic-A phase, d is strictly perpendicular to the layers thus d = n. Due to the
incompressibility of the layers, we have ∇ · n = 0, then there exists a layer function φ(x, t) such
that ∇φ = n. In turn, the Dirichlet functional is reduced to

E(φ) = K

∫

Ω

1

2
(∆φ)2dx, with |∇φ| = 1.(2.3)

The norm 1 constraint applied to |∇φ| can bring up some additional numerical challenges in
algorithm designs. A common technique to overcome it is to introduce a penalty term of the
Ginzburg-Landau type F (∇φ) = 1

4ε2
(|∇φ|2 − 1)2 with ε � 1 to regularize the distortional energy

in the cores of topological defects [30, 41, 45, 87, 89, 90], where ε is a penalization parameter that is
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proportional to the size of the defect core (or zone). This regularization allows the free energy to
be finite at the defect core, extending the classical Ericksen-Leslie model to handle liquid crystal
flows where defects are created and annihilated in time and space. Then, the regularized elastic
bulk energy density is given by

E(φ) = K

∫

Ω

(1

2
|∆φ|2 +

(|∇φ|2 − 1)2

4ε2

)
dx.(2.4)

Assuming u is the fluid velocity field and applying the generalized Fick’s law that the mass flux is
proportional to the gradient of the chemical potential [3,4,44], we have the following hydrodynamical
model for the smectic-A phase LCs system [14,30]:

φt +∇ · (uφ) = −Mw,(2.5)

w =
δE

δφ
= K(∆2φ− 1

ε2
∇ · (|∇φ|2 − 1)∇φ)),(2.6)

ut + (u · ∇)u−∇ · σ(u, φ) +∇p+ φ∇w = 0,(2.7)

∇ · u = 0,(2.8)

where p is the pressure, M is the elastic relaxation time, σ is the dissipative (symmetric) stress
tensor given in [14] that reads as,

σ(u, φ) =µ1

(
∇φTD(u)∇φ

)
∇φ⊗∇φ+ µ4D(u)

+ µ5

(
D(u)∇φ⊗∇φ+∇φ⊗D(u)∇φ

)
,

(2.9)

where µ1, µ4, µ5 are nonnegative parameters, and D(u) = 1
2(∇u +∇uT ) is a deformation tensor.

We set the non-slip boundary condition for u and the following boundary conditions for φ to remove
all boundary integral terms,

u|∂Ω = 0, ∂m(∆φ)|∂Ω = 0, ∂mφ|∂Ω = 0,(2.10)

where m is the outward normal on the boundary. It is easy to see that the equation (2.5) is

mass-conserved for the layer function φ, i.e.,
d

dt

∫

Ω
φdx = 0.

We can easily derive the PDE energy dissipation law for the above model. Here and after, for
any function f, g ∈ L2(Ω), we use (f, g) =

∫
Ω f(x)g(x)dx to denote the L2 inner product between

functions f(x) and g(x), and ‖f‖2 = (f, f).
By taking the L2 inner product of (2.5) with w, of (2.6) with φt, of (2.7) with u, and summing

up the obtained equalities, we can obtain

d

dt

∫

Ω

(1

2
|u|2 +K

(1

2
|∆φ|2 +

(|∇φ|2 − 1)2

4ε2
))
dx

= −
∫

Ω

(
µ1(∇φTD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +M |w|2

)
dx ≤ 0,

(2.11)

Even though the above PDE energy law is straightforward, the variable w involves the fourth
order derivative of ∆2φ, and it is not convenient to use them as test functions in numerical ap-
proximations. This makes it difficult to prove the energy dissipation law in the discrete level. To
overcome it, we can reformulate the momentum equation (2.7) to an equivalent form which is more
applicable for numerical approximations.
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Define φ̇ = φt +∇ · (uφ), ψ = −∆φ, and notice that w = − φ̇
M , then (2.5)-(2.7) can be rewritten

as,

φ̇

M
= K∆ψ +

K

ε2
∇ · (|∇φ|2 − 1)∇φ)),(2.12)

ψ = −∆φ,(2.13)

ut + (u · ∇)u−∇ · σ(u, φ) +∇p− 1

M
φ∇φ̇ = 0.(2.14)

∇ · u = 0.(2.15)

with the boundary conditions as

u|∂Ω = 0, ∂mψ|∂Ω = 0, ∂mφ|∂Ω = 0,(2.16)

This equivalent system (2.12)-(2.15) still admits the similar energy law. We take the time
derivative for (2.13) to obtain

ψt = −∆φt,(2.17)

Thus, by taking the L2 inner product of (2.12) with φt, of (2.17) with Kψ, of (2.14) with u, using
the incompressible condition (2.15), and summing them up, one can obtain the similar energy law
as follows,

d

dt

∫

Ω

(1

2
|u|2 +

K

2
|ψ|2 +

K

4ε2
(|∇φ|2 − 1)2

)
dx

= −
∫

Ω

(
µ1(∇φTD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +

1

M
|φ̇|2

)
dx ≤ 0,

(2.18)

Note that the above derivation is suitable in a finite dimensional approximation since the test
functions φt and ψ are both in the same subspaces as φ. Hence, it allows us to design numerical
schemes which satisfy the energy dissipation law in the discrete level.

Remark 2.1. In [13], de Genes et. al. presented a total free energy of smectic-A phase LCs that
is described by the director field d and a complex order parameter Ψ that represents the average
direction of molecular alignment and the layer structure, respectively. The smectic order parameter
is written as Ψ(x) = ρ(x)eiqω(x), where ω(x) is the order parameter to describe the layer structure
so that ∇ω is perpendicular to the layer, and the smectic layer density ρ(x) is the mass density of
the layers. Thus the total free energy proposed by de Genes et. al. reads as follows,

E(Ψ,d) =

∫

Ω

(
C|∇Ψ− iqdΨ|2 +K|∇d|2 +

g

2
(|Ψ|2 − r

g
)2
)
dx,(2.19)

where the order parameters C, k, g, r are all fixed positive constants. By assuming the density

ρ(x) = r/g and φ(x) = ω(x)
d and rescaling other parameters, one can obtain the normalized energy

as (cf. [24]),

E(φ,d) =

∫

Ω

( |∇φ− d|2
2η2

+
|∇d|2

2

)
dx.(2.20)

where η is a constant determined by the domain size and other parameters. Therefore, the free
energy (2.3) can be viewed the approximation of the de Genes’ energy when η → 0.

3. Numerical schemes

We now construct time marching schemes for solving the model system (2.12)-(2.15). Our aim is
to construct schemes that are not only easy-to-implement, but also unconditionally energy stable.
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Here the term easy-to-implement is referred to “linear” and “decoupled” in comparison with its
counter parts: “nonlinear” and “coupled”. Thus we use the IEQ approach to discretize the double
well potential since it is an efficient linear approach, and the projection methods for the Navier-
Stokes equation [28, 29, 62] since it can decouple the calculations of the pressure from the velocity
field. The key point of IEQ method is to make the nonlinear potential quadratic. More precisely,
we define an auxiliary function U as

U = |∇φ|2 − 1,(3.1)

thus the total energy of (4.7) turns to a new form as

E(φ,U) = K

∫

Ω

(1

2
(∆φ)2 +

1

4ε2
U2
)
dx.(3.2)

Then we obtain an equivalent PDE system by taking the time derivative for the new variable U :

φ̇

M
= K∆ψ +

K

ε2
∇ · (U∇φ)

)
,(3.3)

ψ = −∆φ,(3.4)

Ut = 2∇φ · ∇φt,(3.5)

ut + (u · ∇)u−∇ · σ(u, φ) +∇p− 1

M
φ∇φ̇ = 0,(3.6)

∇ · u = 0.(3.7)

The boundary conditions for the new system are still (2.10) since the equation (3.5) for the new
variable U is simply an ODE with time. The initial conditions read as

u|(t=0) = u0, φ|(t=0) = φ0, U |(t=0) = |∇φ0|2 − 1.(3.8)

It is clear that the new equivalent system (3.3)-(3.7) still retains the similar energy law. By
taking the L2 inner product of (3.3) with φt, taking the time derivative of (3.4) and the L2 inner
product with Kψ, of (3.5) with K

2ε2
U , of (3.6) with u, using the incompressible condition (3.7),

and summing the obtained equalities up, one can obtain the similar energy law as follows,

d

dt
E(u, ψ, U) = −

∫

Ω

(
µ1(∇φTD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +

1

M
|φ̇|2

)
dx ≤ 0.(3.9)

where

E(u, ψ, U) =

∫

Ω

(1

2
|u|2 +

K

2
|ψ|2 +

K

4ε2
U2
)
dx(3.10)

Remark 3.1. We emphasize that the new transformed system (3.3)-(3.7) is exactly equivalent to
the original system (2.12)-(2.15), since (2.12) can be easily obtained by integrating (3.5) with respect
to the time. For the time-continuous case, the potentials in the new free energy (3.10) are the same
as the Lyapunov functional in the original free energy of (2.11). We will develop unconditionally
energy stable numerical schemes for time stepping of the transformed system (3.3)-(3.7), and the
proposed schemes should formally follow the new energy dissipation law (3.9) in the discrete sense,
instead of the energy law for the originated system (2.11).

3.1. Crank-Nicolson Scheme. Let δt > 0 denote the time step size and set tn = n δt for 0 ≤
n ≤ N with the ending time T = N δt. We first develop a second order scheme that is based on
the Crank-Nicolson, that reads as follows.
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Scheme 1. Having computed φn, Un,un, pn, we update φn+1, Un+1,un+1, pn+1 as follows (we com-
pute φ1, U1,u1, p1 by assuming φ−1 = φ0, ψ−1 = ψ0 = −∆φ0, U−1 = U0,u−1 = u0, p−1 = p0 for
the initial step):

Step 1:

1

M
φ̇n+1 = K∆ψn+ 1

2 +
K

ε2
∇ · (Un+ 1

2∇φ?,n+ 1
2 ),(3.11)

ψn+1 = −∆φn+1,(3.12)

Un+1 − Un = 2∇φ?,n+ 1
2 · (∇φn+1 −∇φn),(3.13)

ũn+1 − un

δt
+B(u?,n+ 1

2 , ũn+ 1
2 )−∇ · σ(ũn+ 1

2 , φ?,n+ 1
2 ) +∇pn − 1

M
φ?,n+ 1

2∇φ̇n+1 = 0,(3.14)

with the boundary conditions

ũn+1|∂Ω = 0, ∂mφ
n+1 = ∂mψ

n+1|∂Ω = 0,(3.15)

where 



B(u,v) = (u · ∇)v +
1

2
(∇ · u)v,

φ?,n+ 1
2 =

3

2
φn − 1

2
φn−1, u?,n+ 1

2 =
3

2
un − 1

2
un−1,

ψn+ 1
2 =

ψn+1 + ψn

2
, ũn+ 1

2 =
ũn+1 + un

2
, Un+ 1

2 =
Un+1 + Un

2
,

φ̇n+1 =
φn+1 − φn

δt
+∇ · (ũn+ 1

2φ?,n+ 1
2 ).

(3.16)

Step 2:

un+1 − ũn+1

δt
+

1

2
∇(pn+1 − pn) = 0,(3.17)

∇ · un+1 = 0, un+1 ·m|∂Ω = 0.(3.18)

Remark 3.2. Here, for solving the Navier-Stokes equation, we use a second order pressure correc-
tion scheme [64] to decouple the computations of pressure from that of the velocity. This projection
methods are analyzed in [53] where it is shown (discrete time, continuous space) that the schemes
are second order accurate for velocity in `2(0, T ;L2(Ω)) but only first order accurate for pressure in
`∞(0, T ;L2(Ω)). The loss of accuracy for pressure is due to the artificial boundary condition (3.17)
imposed on pressure [15, 28]. One can use the rotational projection type schemes to improve the
order of pressure to 3/2. However, how to prove the energy stability for the corresponding schemes
are open questions. We also remark that the Crank-Nicolson scheme with linear extrapolation is
a popular time discretization for the Navier-Stokes equation. We refer to [28, 36] and references
therein for analysis on this type of discretization.

Schemes (3.11)-(3.14) is totally linear scheme since we handle the convective and stress term by
compositions of implicit (Crank-Nicolson) and explicit (second order extrapolation) discretization.
Apparently, the new variable U brings up some extra computational cost. But actually, we do not
need to calculate Un+1 explicitly in every step. By rewriting (3.13), we obtain

Un+ 1
2 = Sn +∇φ?,n+ 1

2 · ∇φn+1,(3.19)
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where Sn = Un − ∇φ?,n+ 1
2 · ∇φn. Then (3.11) and (3.14) can be written as the following system

with unknowns (φ,u), where φn+1 and ũn+1 are its solutions,

φ+
δt

2
∇ · (uφ?,n+ 1

2 ) +
KMδt

2
∆2φ− KMδt

ε2
∇ · (∇φ?,n+ 1

2 · ∇φ)∇φ?,n+ 1
2 ) = f1,(3.20)

δtM

2
u +

δt2M

4
B(u?,n+ 1

2 ,u)− Mδt2

4
∇ · σ(u, φ?,n+ 1

2 )(3.21)

−δt
2
∇
(
φ+

δt

2
∇ · (uφ?,n+ 1

2 )
)
φ?,n+ 1

2 = f2,

where f1 and f2 are given from previous time steps that read as



f1 =φn − δt

2
∇ · (unφ?,n+ 1

2 ) +
KMδt

2
ψn +

KMδt

ε2
∇ · (Sn∇φ?,n+ 1

2 ),

f2 =
Mδt

2
un − Mδt2

4
B(u?,n+ 1

2 ,un) +
δt2M

4
∇ · σ(un,∇φ?,n+ 1

2 )− Mδt2

2
∇pn

− δt

2
φ?,n+ 1

2∇
(
φn − δt

2
∇ · (unφ?,n+ 1

2 )
)
.

(3.22)

We first show the well-posedness of the above linear system (3.20)-(3.21) as follows.

Theorem 3.1. The linear system (3.20)-(3.21) (or (3.11)-(3.14)) admits a unique solution in
(φ,u) ∈ (H2, H1)(Ω).

Proof. By taking the L2 inner product of (3.11) with 1, we obtain∫

Ω
φn+1dx =

∫

Ω
φndx = · · · =

∫

Ω
φ0dx.(3.23)

Let vφ = 1
|Ω|
∫

Ω φ
0dx, and we define φ̂ = φ − vφ. Then

∫
Ω φ̂dx = 0 and (φ̂,u) is the solution of

the following linear system with unknowns denoted by (φ,u),

φ+
δt

2
∇ · (uφ?,n+ 1

2 ) +
KMδt

2
∆2φ− KMδt

ε2
∇ · (∇φ?,n+ 1

2 · ∇φ)∇φ?,n+ 1
2 ) = f1 − vφ,(3.24)

δtM

2
u +

δt2M

4
B(u?,n+ 1

2 ,u)− Mδt2

4
∇ · σ(u, φ?,n+ 1

2 )(3.25)

−δt
2
∇
(
φ+

δt

2
∇ · (uφ?,n+ 1

2 )
)
φ?,n+ 1

2 = f2.

We denote the above linear system (3.24)-(3.25) as

AX = B,(3.26)

with X = (φ,u)T and B = (f1 − vφ, f2)T .

For any X1 = (φ1,u1)T and X2 = (φ2,u2)T with
∫

Ω φ1dx =
∫

Ω φ2dx = 0 with the boundary
conditions (3.15), we have

XT
1 AX2 ≤ C1(‖φ1‖H2 + ‖u1‖H1)(‖φ2‖H2 + ‖u2‖H1),(3.27)

where C1 = C(δt,M, ε2,K,u?,n+ 1
2 , φ?,n+ 1

2 , φn, µ1, µ4, µ5).
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For any X = (φ,u)T with
∫

Ω φdx = 0, we derive

XTAX =‖φ+
δt

2
u∇φ?,n+ 1

2 ‖2 +
KMδt

2
‖∆φ‖2 +

KMδt

ε2
‖∇φ?,n+ 1

2∇φ‖2 +
δtM

2
‖u‖2

+
Mδt2

4

(
µ1‖(∇φ?,n+ 1

2 )TD(u)∇φ?,n+ 1
2 ‖2 + µ4‖D(u)‖2 + 2µ5‖D(u)∇φ?,n+ 1

2 ‖2
)

≥C2(‖φ‖2H2 + ‖u‖2H1),

(3.28)

where C2 = C(δt,M, ε2,K,u?,n+ 1
2 , φ?,n+ 1

2 , φn, µ4). Then from the Lax-Milgram theorem, we con-
clude the linear system (3.26) admits a unique solution (φ,u) ∈ (H2, H1)(Ω).

�

The energy stability of the scheme (3.11)-(3.18) is presented as follows.

Theorem 3.2. The scheme (3.11)-(3.18) is unconditionally energy stable satisfying the following
discrete energy dissipation law,

En+1
tot−cn2 = Entot−cn2 −

δt

M
‖φ̇n+1‖2 − δt

(
µ1‖(∇φ?,n+ 1

2 )TD(ũn+ 1
2 )∇φ?,n+ 1

2 ‖2

+ µ4‖D(ũn+ 1
2 )‖2 + µ5‖D(ũn+ 1

2 )∇φ?,n+ 1
2 ‖2
)
,

(3.29)

where

Entot−cn2 =
1

2
‖un‖2 +

K

2
‖ψn‖2 +

K

4ε2
‖Un‖2 +

δt2

8
‖∇pn‖2.(3.30)

Proof. By taking the L2 inner product of (3.11) with φn+1−φn
δt and using integration by parts, we

obtain
1

M
‖φ̇n+1‖2 +

1

M
(∇φ̇n+1, ũn+ 1

2φ?,n+ 1
2 )

=
K

δt
(∆ψn+ 1

2 , φn+1 − φn)− K

δtε2

(
Un+ 1

2∇φ?,n+ 1
2 ,∇(φn+1 − φn)

)
.

(3.31)

We take the subtraction between n+ 1 step and n step for (3.12) to obtain

ψn+1 − ψn = −∆(φn+1 − φn).(3.32)

By taking the L2 inner product of (3.32) with K
δtψ

n+ 1
2 and using integration by parts, we obtain

K

2δt
(‖ψn+1‖2 − ‖ψn‖2) = −K

δt
(∆(φn+1 − φn), ψn+ 1

2 )

= −K
δt

(φn+1 − φn,∆ψn+ 1
2 ).

(3.33)

By taking the L2 inner product of (3.13) with K
2ε2δt

Un+ 1
2 , we obtain

K

4ε2δt
(‖Un+1‖2 − ‖Un‖2) =

K

ε2δt

(
∇φ?,n+ 1

2 (∇φn+1 −∇φn), Un+ 1
2

)
.(3.34)

By taking the L2 inner product of (3.14) with ũn+ 1
2 , we obtain

1

2δt
(‖ũn+1‖2 − ‖un‖2) +

(
σ(ũn+ 1

2 ,∇φ?,n+ 1
2 ),∇ũn+ 1

2

)
+ (∇pn, ũn+ 1

2 )

− 1

M

(
φ?,n+ 1

2∇φ̇n+1, ũn+ 1
2

)
= 0.

(3.35)
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By taking the L2 inner product of (3.17) with un+1 and performing integration by parts, we have

1

2δt
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0,(3.36)

where we use explicitly the divergence-free condition for un+1 as

(∇(pn+1 − pn),un+1) = −((pn+1 − pn),∇ · un+1) = 0.(3.37)

We rewrite the projection step (3.17) as

1

δt
(un+1 + un − 2ũn+ 1

2 ) +
1

2
∇(pn+1 − pn) = 0.(3.38)

By taking the inner product of the above equation with δt
2∇pn, one arrives at

δt

8

(
‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2

)
=
(
∇pn, ũn+ 1

2

)
.(3.39)

On the other hand, it follows directly from (3.17) that

δt

8
‖∇(pn+1 − pn)‖2 =

1

2δt
‖un+1 − ũn+1‖2.(3.40)

Finally, by combining (3.31), (3.33), (3.34)-(3.36), (3.39) and (3.40), we obtain

1

M
‖φ̇n+1‖2 +

K

2δt
(‖ψn+1‖2 − ‖ψn‖2) +

K

4ε2δt
(‖Un+1‖2 − ‖Un‖2)

+
δt

8
(‖∇pn+1‖2 − ‖∇pn‖2) +

1

2δt
(‖un+1‖2 − ‖un‖2)

+
(
σ(ũn+ 1

2 ,∇φ?,n+ 1
2 ),∇ũn+ 1

2

)
= 0.

(3.41)

�
Remark 3.3. One can formally verify that the energy law (3.29) is a second order approximation

of the continuous energy law (3.9) at time level tn+ 1
2 .

Remark 3.4. We notice that the idea of the IEQ approach is very simple but quite different
from the traditional time marching schemes. For example, it does not require the convexity as
the convex splitting approach (cf. [18]) or the boundness for the second order derivative as the
linear stabilization approach (cf. [55, 56, 65]). Through a simple substitution of new variables, the
complicated nonlinear potentials are transformed into quadratic forms. We summarize the great
advantages of this quadratic transformations as follows: (i) this quadratization method works well
for various complex nonlinear terms as long as the corresponding nonlinear potentials are bounded
from below; (ii) the complicated nonlinear potential is transferred to a quadratic polynomial form
which is much easier to handle; (iii) the derivative of the quadratic polynomial is linear, which
provides the fundamental support for linearization method; (iv) the quadratic formulation in terms
of new variables can automatically maintain this property of positivity (or bounded from below) of
the nonlinear potentials.

Remark 3.5. We remark that when the nonlinear potential takes the fourth order polynomial type,
e.g. F (ψ) = (ψ2 − 1)2 where ψ = φ for Cahn-Hilliard equation and ψ = |∇φ| for the smectic
model in this paper or the MBE model [81], this IEQ method is exactly the same as the Lagrange
multiplier method in [31, 63]. But the Lagrange multiplier method will only work the fourth order
polynomial type potential since its derivative ψ3 can be decomposed into λ(ψ)ψ with λ(ψ) = |ψ|2
which can be viewed as a Lagrange multiplier term. However, for other type potentials, the Lagrange
multiplier method is not applicable. About the application of the IEQ approach to handle other
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type of nonlinear potentials, e.g., the logarithmic Flory-Huggins potential, or anisotropic gradient
entropy, etc., we refer to the authors’ other work in [69, 78, 79, 81, 86, 87].

3.2. Adam-bashforth Scheme. We further develop another second order version scheme based
on the backward differentiation formula with the Adam-Bashforth explicit interpolation (BDF2),
that reads as follows.

Scheme 2. Having computed the numerical solutions of (φ,U,u, p) at tn and tn−1, we update
φn+1, Un+1,un+1, pn+1 as follows:

Step 1:

1

M
φ̇n+1 = K∆ψn+1 +

K

ε2
∇ · (Un+1∇φ∗,n+1)(3.42)

ψn+1 = −∆φn+1,(3.43)

3Un+1 − 4Un + Un−1 = 2∇φ∗,n+1 · (3∇φn+1 − 4∇φn +∇φn−1)(3.44)

3ũn+1 − 4un + un−1

2δt
+B(u∗,n+1, ũn+1)−∇ · σ(ũn+1, φ∗,n+1) +∇pn(3.45)

− 1

M
φ∗,n+1∇φ̇n+1 = 0,

with the boundary conditions

ũn+1|∂Ω = 0, ∂mφ
n+1|∂Ω = ∂mψ

n+1|∂Ω = 0,(3.46)

where 



u∗,n+1 = 2un − un−1, φ∗,n+1 = 2φn − φn−1,

φ̇n+1 =
3φn+1 − 4φn + φn−1

2δt
+∇ · (ũn+1φ∗,n+1).

(3.47)

Step 2:

3
un+1 − ũn+1

2δt
+∇(pn+1 − pn) = 0,(3.48)

∇ · un+1 = 0, un+1 ·m|∂Ω = 0.(3.49)

Similar to the Crank-Nicolson scheme, one can rewrite the equations (3.5) as follows:

Un+1 = Zn + 2∇φ∗,n+1 · ∇φn+1,(3.50)

where Zn = 4Un−Un−1

3 − 2∇φ∗,n+1 · 4∇φn−∇φn−1

3 . Then φn+1 and ũn+1 are the solutions for the
following system with unknowns (φ,u),

φ+
2δt

3
∇ · (uφ∗,n+1) +

2KMδt

3
∆2φ− 4KMδt

3ε2
∇ · ((∇φ∗,n+1 · ∇φ)∇φ∗,n+1) = g1,(3.51)

2δtM

3
u +

4δt2M

9
u∗,n+1 · ∇u− 4Mδt2

9
∇ · σ(u, φ∗,n+1)(3.52)

−2δt

3
φ∗,n+1∇

(
φ+

2δt

3
∇ · (uφ∗,n+1)

)
= g2,

where 



g1 =
4φn − φn−1

3
+

2KMδt

3ε2
∇ · (Zn∇φ∗,n+1),

g2 =
2Mδt

9
(4un − un−1)− 4Mδt2

9
∇pn − 2δt

9
φ∗,n+1∇(4φn − φn−1).

(3.53)
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Theorem 3.3. The linear system (3.42)-(3.45) (or (3.51)-(3.52)) admits a unique solution in
(φ,u) ∈ (H2, H1)(Ω).

Proof. The proof of well-posedness is similar to Theorem 3.1, thus we omit the details here. �

Theorem 3.4. The scheme (3.42)-(3.49) is unconditionally energy stable satisfying the following
discrete energy dissipation law,

En+1
tot−bdf2 ≤ Entot−bdf2 −

δt

M
‖φ̇n+1‖2 − δt

(
µ1‖(∇φ∗,n+1)TD(ũn+1)∇φ∗,n+1‖2

+ µ4‖D(ũn+1)‖2 + µ5‖D(ũn+1)∇φ∗,n+1‖2
)
,

(3.54)

where

En+1
tot−bdf2 =

1

2

(‖un+1‖2
2

+
‖2un+1 − un‖2

2

)
+
K

2

(‖ψn+1‖2
2

+
‖2ψn+1 − ψn‖2

2

)

+
K

4ε2

(‖Un+1‖2
2

+
‖2Un+1 − Un‖2

2

)
+
δt2

3
‖∇pn+1‖2.

(3.55)

Proof. By taking the L2 inner product of (3.42) with 3φn+1−4φn+φn−1

2δt , we obtain

1

M
‖φ̇n+1‖2 +

1

M

(
∇φ̇n+1, ũn+1φ∗,n+1

)
=

K

2δt
(∆ψn+1, 3φn+1 − 4φn + φn−1)

− K

2δtε2

(
Un+1∇φ∗,n+1,∇(3φn+1 − 4φn + φn−1)

)
.

(3.56)

We take the subtraction of (3.43) with n and n− 1 step to obtain

3ψn+1 − 4ψn + ψn−1 = −∆(3φn+1 − 4φn + φn−1)(3.57)

By taking the L2 inner product of (3.57) with K
2δtψ

n+1, using the integration by parts and the
following identity

2(3a− 4b+ c, a) = |a|2 − |b|2 + |2a− b|2 − |2b− c|2 + |a− 2b+ c|2,(3.58)

we obtain
K

4δt
(‖ψn+1‖2 − ‖ψn‖2 + ‖2ψn+1 − ψn‖2 − ‖2ψn − ψn−1‖2 + ‖ψn+1 + 2ψn − ψn−1‖2)

= − K

2δt
(3φn+1 − 4φn + φn−1,∆ψn+1)

(3.59)

By taking the L2 inner product of (3.44) with K
4δtε2

Un+1 and applying (3.58), we obtain

K

8ε2δt

(
‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2 + ‖Un+1 − 2Un + Un−1‖2

)

=
K

2δtε2
(∇φ∗,n+1(3∇φn+1 − 4∇φn +∇φn−1), Un+1).

(3.60)

By taking the L2 inner product of (3.14) with ũn+1, we obtain

(
3ũn+1 − 4un + un−1

2δt
, ũn+1) +

(
σ(ũn+1,∇φ∗,n+1),∇ũn+1

)
+ (∇pn, ũn+1)

− 1

M

(
φ∗,n+1∇φ̇n+1, ũn+1

)
= 0.

(3.61)

From (3.48), for any function v with ∇ · v = 0, we can derive

(un+1,v) = (ũn+1,v).(3.62)
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Then for the first term in (3.61), we have

1

2δt
(3ũn+1 − 4un + un−1, ũn+1)

=
1

2δt
(3ũn+1 − 3un+1, ũn+1) +

1

2δt
(3un+1 − 4un + un+1, ũn+1)

=
1

2δt
(3ũn+1 − 3un+1, ũn+1) +

1

2δt
(3un+1 − 4un + un+1,un+1)

=
1

2δt
(3ũn+1 − 3un+1, ũn+1 + un+1) +

1

2δt
(3un+1 − 4un + un−1,un+1)

=
3

2δt
(‖ũn+1‖2 − ‖un+1‖2) +

1

4δt

(
‖un+1‖2 − ‖un‖2

+ ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2
)
.

(3.63)

For the projection step, we rewrite (3.17) as

3

2δt
un+1 +∇pn+1 =

3

2δt
ũn+1 +∇pn.(3.64)

By squaring both sides of the above equality, we obtain

9

4δt2
‖un+1‖2 + ‖∇pn+1‖2 =

9

4δt2
‖ũn+1‖2 + ‖∇pn‖2 +

3

δt
(ũn+1,∇pn),(3.65)

namely, we have

3

4δt
(‖un+1‖2 − ‖ũn+1‖2) +

δt

3
(‖∇pn+1‖2 − ‖∇pn‖2) = (ũn+1,∇pn).(3.66)

By taking the L2 inner product of (3.48) with un+1, we have

3

4δt

(
‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2

)
= 0.(3.67)

Finally, by combining (3.56), (3.57), (3.60), (3.61), (3.63), (3.66) and (3.67), we obtain

1

M
‖φ̇n+1‖2 +

3

4δt
‖un+1 − ũn+1‖2 +

δt

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+
K

4δt

(
‖ψn+1‖2 − ‖ψn‖2 + ‖2ψn+1 − ψn‖2 − ‖2ψn − ψn−1‖2 + ‖ψn+1 − 2ψn + ψn−1‖2

)

+
K

8ε2δt

(
‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2 + ‖Un+1 − 2Un + Un−1‖2

)

+
1

4δt

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)

+ (σ(ũn+1,∇φ∗,n+1),∇ũn+1) = 0,

that concludes the theorem. �

Remark 3.6. Heuristically, the 1
δt(E

n+1
tot−bdf2−Entot−bdf2) is a second order approximation of d

dtE(φ,U)

at t = tn+1. For instance, for any smooth variable S with time, one can write
(‖Sn+1‖2 + ‖2Sn+1 − Sn‖2

2δt

)
−
(‖Sn‖2 + ‖2Sn − Sn−1‖2

2δt

)

∼=
(‖Sn+2‖2 − ‖Sn‖2

2δt

)
+O(δt2) ∼= d

dt
‖S(tn+1)‖2 +O(δt2).
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Remark 3.7. Although we consider only time discrete schemes in this paper, the results here can
be carried over to any consistent finite-dimensional Galerkin type approximations since the analyses
are based on the variational formulation with all test functions in the same space as the space of
the trial functions. The details for the fully discrete scheme will be left to the interested readers.

Remark 3.8. For the numerical schemes proposed in this paper, the energy stability is formally
derived. The error estimates for the second order scheme for the layer variable is straightforward
when the velocity field is null. This is because the H2 bound exists for φ from the Poincaré inequality,
and the corresponding convergence analysis can be further carried out. For the hydrodynamics
coupled model, we have combine the analysis work for the projection method, see [53, 64], and
follow the same lines as [19] to handle the nonlinear convective and stress terms where the basic
tool is to use sobolev embeddings among various Banach spaces. We will implement the rigorous
error analysis in the future work.

4. Numerical simulations

We now present various numerical experiments to validate the theoretical results derived in the
previous sections and demonstrate the stability and accuracy of the proposed numerical schemes.
In all examples, we use the inf-sup stable Iso-P2/P1 element [61] for the velocity and pressure, and
linear element for the phase function φ and ψ. As for as the stable element for the Navier-Stokes
variables (u, p), one can read the related literatures in [32–35, 40]. If not explicit specified, the
model parameters take default values given below:

ε = 0.05, µ4 = 0.02, µ1 = µ5 = 0,M = 1× 10−6,K = 0.01.(4.1)

4.1. Accuracy test. We first perform numerical simulations to test the convergence rates of the
two proposed schemes (3.11)-(3.18) (denoted by CN2), and (3.42)-(3.49) (denoted by BDF2).

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1× 10−2 4.61× 10−4 − 4.75× 10−4 − 1.18× 10−1 − 1.81× 10−4 −
5× 10−3 1.15× 10−4 2.003 1.19× 10−4 1.997 5.87× 10−2 1.007 4.53× 10−5 1.998

2.5× 10−3 2.88× 10−5 1.997 2.97× 10−5 2.002 2.94× 10−2 0.997 1.13× 10−5 2.003

1.25× 10−3 7.21× 10−6 1.998 7.43× 10−6 1.999 1.47× 10−2 1.000 2.83× 10−6 1.997

6.25× 10−4 1.80× 10−6 2.002 1.86× 10−6 1.998 7.30× 10−3 1.009 7.08× 10−7 1.999

Table 1. The L2 errors for the velocity field u = (u, v), the phase variable φ and
the pressure p at t = 1 for by the scheme CN2 using different temporal resolutions
with the exact solution of (4.2).
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δt Erroru Order Errorv Order Errorp Order Errorφ Order

1× 10−2 4.00× 10−3 − 4.12× 10−3 − 3.92× 10−1 − 1.57× 10−3 −
5× 10−3 9.62× 10−4 2.055 9.91× 10−4 2.055 1.96× 10−1 1.000 3.78× 10−4 2.054

2.5× 10−3 2.36× 10−4 2.027 2.43× 10−4 2.027 9.92× 10−2 0.982 9.26× 10−5 2.029

1.25× 10−3 5.83× 10−5 2.017 6.00× 10−5 2.017 4.91× 10−2 1.014 2.29× 10−5 2.015

6.25× 10−4 1.45× 10−5 2.007 1.49× 10−5 2.009 2.46× 10−2 0.997 5.69× 10−6 2.008

Table 2. The L2 errors for the velocity field u = (u, v), the phase variable φ and
the pressure p at t = 1 for by the scheme BDF2 using different temporal resolutions
with the exact solution of (4.2).

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1× 10−2 4.61× 10−4 − 4.75× 10−4 − 1.18× 10−1 − 2.01× 10−4 −
5× 10−3 1.18× 10−4 1.966 1.21× 10−4 1.972 5.87× 10−2 1.007 5.12× 10−5 1.973

2.5× 10−3 3.12× 10−5 1.919 3.21× 10−5 1.914 2.94× 10−2 0.997 1.23× 10−5 2.057

1.25× 10−3 8.14× 10−6 1.938 8.21× 10−6 1.967 1.47× 10−2 1.000 2.97× 10−6 2.050

6.25× 10−4 2.09× 10−6 1.961 2.16× 10−6 1.926 7.33× 10−3 1.003 7.92× 10−7 1.901

Table 3. The L2 numerical errors at t = 1 that are computed by the scheme
CN2 using various temporal resolutions with the initial conditions of (4.3), for mesh
refinement test in time.

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1× 10−2 4.00× 10−3 − 4.12× 10−3 − 3.93× 10−1 − 1.56× 10−3 −
5× 10−3 9.64× 10−4 2.052 9.93× 10−4 2.052 1.96× 10−1 1.003 3.71× 10−4 2.072

2.5× 10−3 2.39× 10−4 2.012 2.46× 10−4 2.013 9.82× 10−2 0.997 9.95× 10−5 1.898

1.25× 10−3 5.74× 10−5 2.057 5.94× 10−5 2.050 4.91× 10−2 1.000 2.60× 10−5 1.936

6.25× 10−4 1.49× 10−5 1.945 1.57× 10−5 1.919 2.46× 10−2 0.997 6.42× 10−6 2.017

Table 4. The L2 numerical errors at t = 1 that are computed by the scheme BDF2
using various temporal resolutions with the initial conditions of (4.3), for mesh
refinement test in time.

4.1.1. Presumed exact solution. In the first example, we set the computed domain to be Ω = [0, 2]2

and assume the following functions



u(t, x, y) = π sin(2πy) sin2(πx) sin t,

v(t, x, y) = −π sin(2πx) sin2(πy) sin t,

φ(t, x, y) = 2 + cos(πx) cos(πy) sin t,

p(t, x, y) = cos(πx) sin(πy) sin t

(4.2)
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to be the exact solution, and impose some suitable force fields such that the given solution can
satisfy the system. We use 10145 nodes and 19968 triangle elements for the discretization of the
space. In Table 1 and 2, we list the L2 errors of the velocity field u = (u, v), the phase variable
φ and the pressure p between the numerically simulated solution and the exact solution at t = 1
with different time step sizes, for the schemes CN2 and BDF2, respectively. We observe that the
schemes CN2 and BDF2 achieve almost perfect second order accuracy for u and φ, and first order
accuracy for p in time as expected, respectively.

4.1.2. Mesh refinement in time. We now perform more refinement tests for temporal convergence.
We set the initial conditions as follows,

φ0 = 2, u0 = (u0, v0) = 0, p0 = 0.(4.3)

We perform the refinement test of the time step size. Since the exact solutions are not known,
we choose the solution obtained by the scheme CN2 with the time step size δt = 1× 10−6 as the
benchmark solution for computing errors. We present the L2 of the variables between the numerical
solution and the exact solution at t = 1 with different time step sizes in Table 3 and Table 4 for
the schemes CN2 and BDF2, respectively. As the previous tests, we observe that the schemes CN2
and BDF2 achieve almost perfect second order accuracy for u and φ, and the first order accuracy
for p, respectively.

4.2. Layer motion. In this example, we consider the layer motion using the second order scheme
CN2. The following initial conditions are taken as follows,

φ0 = sinx cos2 y,u0 = (u0, v0) = 0, p0 = 0,(4.4)

that had been studied in [30]. We set the computed domain to be Ω = [−1, 1]2 and the space is
discretized by using 10145 nodes and 19968 triangle elements. The model parameters are from
(4.1).

We emphasize that any time step size δt is allowable for the computations from the stability
concern since all developed schemes are unconditionally energy stable. But larger time step will
definitely induce large numerical errors. Therefore, we need to discover the rough range of the allow-
able maximum time step size in order to obtain good accuracy and to consume as low computational
cost as possible. This time step range could be estimated through the energy evolution curve plots,
shown in Fig. 1, where we compare the time evolution of the free energy for five different time step
sizes until t = 200 using the second order scheme CN2. We observe that all five energy curves show
decays monotonically for all time step sizes, which numerically confirms that our algorithms are
unconditionally energy stable. For smaller time steps of δt = 0.0001, 0.0005, 0.001, 0.005, 0.01, all
five energy curves coincide very well, that means we can just use the maximum allowable time step
δt = 0.01 without worrying the accuracy.

In Fig. 2 and Fig. 3, we show the dynamical evolution of the layer function φ, and the velocity field
u until the simulation reaches the steady state, respectively. The obtained results show qualitatively
consistent features with the numerical examples in [30].

4.3. Layer undulation under shear flow. In this example, we consider the numerical simula-
tions of the layer undulation under shear flow using the second order scheme CN2. We set the
computed domain to be Ω = [−1, 1]× [−0.5, 0.5] and the space is discretized by using 10145 nodes
and 19968 triangle elements. The initial condition reads as follows:

φ0 = y,u0 = (0.4y, 0), p0 = 0,(4.5)
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Fig. 1. Time evolution of the free energy functional till t = 200 for five different
time steps of δt = 0.01, 0.005, 0.001, 0.0005, and 0.0001 using the scheme CN2. The
energy curves show the decays for all time steps, which confirms that our algorithm
is unconditionally stable. The small differences in the energy evolution for all five
time steps are shown as well.

Fig. 2. The dynamical evolution of the layer function φ for the layer motion example
with the time step δt = 0.01. Snapshots of the numerical approximation are taken
at t = 1, 10, 20, 30. 50, 100, 190, and 200.
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Fig. 3. The profiles of the velocity field u for the layer motion example with the
time step δt = 0.01. Snapshots of the numerical approximation of u are taken at
t = 1, 10, 20, 30. 50, 100, 190, and 200.
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Fig. 4. The dynamical evolution of the layer function φ for the layer undulations
under the shear flow with the time step δt = 0.01. Snapshots of the numerical
approximation are taken at t = 1, 3, 4, 6, 10, 30, 100, 200.

and the boundary condition for the velocity field are set to be

u|y=0.5 = (0.2, 0), u|y=−0.5 = (−0.2, 0), u|x=±1 = (0, 0).(4.6)

The model parameters are still from (4.1).
In Fig. 4 and Fig. 5, we show the dynamical evolution of the layer function φ, and the velocity field

u until the simulation reaches the steady state, respectively. The obtained profiles of undulational
layers are consistent with the theoretical results predicted in [48] and the numerical results using
the molecular dynamics approach in [60].

4.4. The sawtooth feature under external magnetic field. Applying an external magnetic
field is one of the most efficient approach to control and produce various nano-structured materials,
and had been well-studied in a number of experimental, modeling and numerical literatures, see
[25,27,49,51]. In the last numerical example, we consider the dynamical behaviors of the smectic-A
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Fig. 5. The dynamical evolution of the velocity field u for the layer undulations
under the shear flow with the time step δt = 0.01. Snapshots of the numerical
approximation are taken at t = 1, 3, 4, 6, 10, 30, 100, 200.

LCs in the presence of an applied magnetic field. When an external magnetic filed is applied, an
additional term contributed by it is added to the free energy of the model system, that reads as

E(φ,u) =

∫

Ω

(1

2
|u|2 +

K

2
|∆φ|2 +K

(|∇φ|2 − 1)2

4ε2
− τ(∇φ · h)2

)
dx,(4.7)

where h is a given unit vector representing the direction of the magnetic field, and τ is a nonnegative
parameter denoting the strength of the applied magnetic field.

Thus the new equation for the layer function φ reads as follows

φt +∇ · (uφ) = −Mw,(4.8)

w =
δE

δφ
= K(∆2φ− 1

ε2
∇ · (|∇φ|2 − 1)∇φ)) + τ∇ · (∇φ · h)h,(4.9)
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Fig. 6. The dynamical evolution of the layer function φ under external the magnetic
field with the time step δt = 0.01. Snapshots of the numerical approximation are
taken at t = 1, 17, 18, 19, 20, 30, 150, 200.

and the equations for the fluid velocity are still (2.7)-(2.8). The magnetic field term can be viewed
as an imposed external force, i.e., we treat this term by the second order extrapolations.

We let h = (1, 0) and τ = 10 and choose the same initial conditions, computed domain and the
space discretizations as the previous shear flow example. In Fig. 6, we present that the dynamical
motion of the layer variable φ, the undulation profile is formed from t = 2.1 to t = 3. This sawtooth
feature is qualitatively consistent with the numerical simulation in [27] using the de Gennes’ smectic-
A model. The final equilibrium solution is obtained after t = 150. We present the snapshots of the
velocity field in Fig. 7 as well.

5. Conclusions and remarks

In this paper, we have constructed a set of efficient numerical schemes for solving the hydro-
dynamics coupled smectic-A LCs model. The schemes are (i) second order accurate in time; (ii)
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Fig. 7. The dynamical evolution of the velocity field u under external the magnetic
field with the time step δt = 0.01. Snapshots of the numerical approximation are
taken at t = 1, 17, 18, 19, 20, 30, 150, 200.

unconditional energy stable; and (iii) linear and easy to implement. Various numerical results are
presented to validate the accuracy of our schemes. We have also presented a number of numerical
simulations to show the morphological evolutions, in particular, the layer undulation under shear
flow as well as the sawtooth profile induced by the external magnetic field.
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