
A performance comparison of continuous and

discontinuous Galerkin methods with fast

multigrid solvers∗

Martin Kronbichler† Wolfgang A. Wall†

December 12, 2016

Abstract

This study presents a fair performance comparison of the continu-
ous finite element method, the symmetric interior penalty discontinu-
ous Galerkin method, and the hybridized discontinuous Galerkin method.
Modern implementations of high-order methods with state-of-the-art multi-
grid solvers for the Poisson equation are considered, including fast matrix-
free implementations with sum factorization on quadrilateral and hexa-
hedral elements. For the hybridized discontinuous Galerkin method, a
multigrid approach that combines a grid transfer from the trace space
to the space of linear finite elements with algebraic multigrid on further
levels is developed. Despite similar solver complexity of the matrix-based
HDG solver and matrix-free geometric multigrid schemes with continuous
and discontinuous Galerkin finite elements, the latter offer up to order
of magnitude faster time to solution, even after including the supercon-
vergence effects. This difference is because of vastly better performance
of matrix-free operator evaluation as compared to sparse matrix-vector
products. A roofline performance model confirms the advantage of the
matrix-free implementation.

Keywords. High-order finite elements, Discontinuous Galerkin method, Hy-
bridizable discontinuous Galerkin, Multigrid method, Matrix-free method, High-
performance computing

1 Introduction

The relative efficiency of various realizations of the discontinuous Galerkin (DG)
method as compared to continuous finite elements (continuous Galerkin, CG)
has been the subject of a number of recent studies [20, 27, 31, 51]. The hy-
bridizable discontinuous Galerkin (HDG) method [13, 41] has attracted par-
ticular interest because it promises a more efficient solution of linear systems
than other discontinuous Galerkin methods in terms of the number of degrees
of freedom and nonzero entries in the system matrix. As opposed to contin-
uous finite elements or symmetric interior penalty discontinuous Galerkin [3]
methods that rely on the primal formulation of the differential equation, the
HDG method poses the problem in mixed form using an additional variable for

∗This work was partially supported by the German Research Foundation (DFG) under the
project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority
program “Software for Exascale Computing” (SPPEXA), grant agreement no. KR4661/2-1
and WA1521/18-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS
Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de) through
project id pr83te.
†Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15,

85748 Garching b. München, Germany ({kronbichler,wall}@lnm.mw.tum.de).

1

ar
X

iv
:1

61
1.

03
02

9v
2

 [
m

at
h.

N
A

]
 9

 D
ec

 2
01

6

the flux. In order to avoid solving a linear system involving both the primal
and flux unknowns, an initially counter-intuitive step is taken by introducing
yet another variable, the so-called trace variable defined on the mesh skeleton.
The numerical fluxes in the mixed system are solely expressed in terms of the
trace variable and the local unknowns, avoiding direct coupling between neigh-
boring elements. As a consequence, all element unknowns of the primal and
flux variables can be eliminated prior to solving the global linear system by an
element-by-element Schur complement, resulting in a global system in terms of
the trace variable only. This Schur complement approach is conceptually the
same as the technique of static condensation in continuous finite elements that
eliminates the unknowns with coupling inside a single element as a means for
improving the efficiency of the solution stage, see e.g. [13, 20, 27, 38, 51] and
references therein.

Previous efficiency comparisons have found that HDG is a highly competi-
tive option for two-dimensional problems and direct solvers [27, 31]. This work
widens the perspective by considering large-scale problems which demand for
iterative solvers and optimal complexity preconditioners. In that setting it is
not enough to characterize the sparsity structure in the linear system of equa-
tions or the nonzero entries in the matrix as a proxy for the cost of one operator
evaluation. Instead, the interesting factors for competitive solver times are the
preconditioner efficiency and complexity, i.e., the iteration counts, the number
of matrix-vector products per iteration, and timings for one matrix-vector prod-
uct. This work considers multigrid methods which are among the most compet-
itive solvers for elliptic operators on general meshes [19]. Geometric multigrid
(GMG) methods combine simple iterative schemes on a hierarchy of coarser
meshes. Different error frequencies are attacked on different mesh levels, such
that simple iterative schemes that smooth the respective high frequencies on
each level can be used. For certain applications, GMG is too restrictive because
a mesh coarsening must be explicitly constructed or additional measures need to
be taken for more complex differential operators like operator-dependent coars-
ening or non-standard smoothers [15, 48]. Algebraic multigrid methods are often
used as an alternative, in particular on unstructured meshes, but at a somewhat
higher cost in case more structure is available [19]. In the context of high-order
methods, algebraic multigrid schemes need to be carefully set up in order to
not coarsen too aggressively due to the dense coupling of the wider bases [25].
Therefore, p-multigrid methods are often considered in the high-order finite el-
ement context with a first transfer to a low-order, usually linear, finite element
basis [39] before continuing with the algebraic hierarchy construction.

A second aspect that has not been covered by previous performance com-
parisons is the fact that competitive high-order implementations in the primal
formulation are not based on matrices but rather most efficiently implemented
by matrix-free operator evaluation. A major reason for favoring matrix-free
methods is that most matrix-based iterative solvers are highly memory band-
width limited when executed on modern processors [44] and alternatives that
access less memory can be faster also when performing more arithmetic opera-
tions. In the low-order case with linear shape functions, the most competitive
matrix-free schemes typically rely on a stencil representation, e.g. the block
structure in hierarchical hybrid grids [8, 21]. In case of higher polynomial de-
grees, on-the-fly evaluation of cell and face integrals with sum factorization is
the preferred choice due to a low evaluation complexity. Sum factorization is a
technique established by the spectral element community [30, 33, 43] and used
in well-established codes like Nek5000 [16], SPECFEM 3D [32], or Nektar++
[50]. These methods are also popular in the DG community [6, 36]. At higher
polynomial degrees k in 3D, sum factorization for computing the integrals in
matrix-vector products of continuous finite elements has the same O(k4) com-
plexity per element as the matrix after static condensation, but without a direct
relation to the stencil width of the matrix. This work uses the framework from

2

[36] that has been demonstrated to perform particularly well yet being flexi-
ble with respect to implementing generic differential operators and providing
equally optimized code paths for both continuous and discontinuous Galerkin
schemes. The implementation is available through the general-purpose finite
element library deal.II1 [5]. To the best of our knowledge, the numbers pre-
sented in this study use the fasted CPU code of this kind available through a
common continuous and discontinuous finite element framework. The numbers
are up to an order of magnitude faster than what was reported in the recent
study [19] with similar general-purpose geometric multigrid schemes, reaching
or even outperforming the specialized HPGMG [2] benchmark code. For state-
of-the-art implementations of distributed sparse matrix algebra, the Trilinos2

package [23] is used, providing a fair test bed with mature implementations for
both ends. The present study is novel in comparing optimized sum factorization
solvers to high-performance and optimal complexity iterative solvers for HDG.
Even though the authors in [51] (Remark 1) claim to use some form of sum
factorization, the implementation presented in this study leads to vastly differ-
ent conclusions, showing that previous work has missed some of the relevant
aspects.

The remainder of this work is structured as follows. Section 2 introduces
the Poisson equation and the discretizations with the continuous finite element
method, the symmetric interior penalty method, and the hybridizable discon-
tinuous Galerkin method. An analysis of matrix-vector products of the various
methods, including suggested alternatives for HDG as opposed to the sparse
trace matrix, are given in Section 3. The computational time to reach a certain
level of accuracy as well as performance metrics of the Poisson solvers are given
in Section 4. Section 5 summarizes our findings.

2 Discretization of Poisson’s equation

We consider the Poisson equation as a model problem for elliptic operators,

−∇ · (κ∇u) = f in Ω, (1)

where u is the solution variable, κ > 0 is a diffusion coefficient bounded uni-
formly away from zero, and Ω is a bounded subset of d-dimensional space Rd.
The domain boundary ∂Ω is partitioned into a Dirichlet portion ΓD where
u = gD and a Neumann portion ΓN where −~n · κ∇u = gN is prescribed, re-
spectively. Here, ~n denotes the unit outer normal vector on the boundary ΓN.

For discretization, we assume a tesselation Th of the computational domain
Ω into ne elements Ωe, associated with a mesh size parameter h. In this work, we
assume a mesh consisting of quadrilateral or hexahedral elements which allow
for the most straight-forward and efficient implementation of sum factorization,
with lower proportionality constants than tensorial techniques for triangles and
tetrahedra [50, 45]. All work known to the authors indicate that matrix-based
HDG schemes on quadrilaterals and hexahedra are at least as efficient as on
tetrahedra [31, 37, 51], suggesting that our results are unbiased in comparing
against the fastest matrix-based options. We assume an element Ωe to be the
image of the reference domain [−1, 1]d under a polynomial mapping of degree l,
based on Gauss–Lobatto support points that are placed according to a manifold

1http://www.dealii.org, retrieved on November 13, 2016. The implementations
used in this study are extensions of the step-37 and step-51 tutorial programs of
deal.II, program URLs: https://dealii.org/developer/doxygen/deal.II/step 37.html

and https://dealii.org/developer/doxygen/deal.II/step 51.html. A note to reviewers
of the manuscript: The DG functionality has currently not yet been made available in the
deal.II library but it will be merged during December 2016. Thus, this comment will vanish
in the final version of the manuscript.

2http://www.trilinos.org, retrieved on July 20, 2016

3

description of the computational domain. This enables high-order approxima-
tions of curved boundaries and possibly also in the interior of Ω. For the methods
described below, we denote the bilinear forms associated to integrals over the
elements of the triangulation as well as the faces by

(a, b)Th =
∑

Ωe∈Th

∫
Ωe

a� b d~x, 〈a, b〉∂Th =
∑

Ωe∈Th

∑
F∈faces(Ωe)

∫
F

a� b d~s, (2)

where a, b can be scalar-valued, vector-valued, or tensor-valued quantities and
� denotes the sum of the product in each component.

2.1 Continuous Galerkin approximation

We assume a polynomial approximation of the solution on elements from the
space

V CG
h =

{
vh ∈ H1(Ω) : vh|Ωe ∈ Qk(Ωe) ∀Ωe ∈ Th

}
, (3)

where Qk(Ωe) denotes the space of tensor product polynomials of tensor degree
k on the element Ωe. In this work, we consider a basis representation by La-
grange polynomials in the nodes of the (k + 1)-point Gauss–Lobatto–Legendre
quadrature rule for well-conditioned high order approximation [30]. However,
the exact form of the basis is immaterial, as long as it is represented by a ten-
sor product of 1D formulas. The solution space is then restricted to the space
V CG
h,gD

of functions in V CG
h which satisfy the boundary condition gD on ΓD by

projection or interpolation.
The discrete finite element version of the Poisson equation (1) is found by

multiplication by a test function, integration over Ω, integration by parts of the
left hand side, and insertion of the Neumann boundary condition. The final
weak form is to find a function uh ∈ V CG

h,gD
such that

(∇vh, κ∇uh)Th = (vh, f)Th − 〈vh, gN〉∂Th∩ΓN
(4)

holds for all test functions vh ∈ V CG
h,0D

that are zero on the Dirichlet boundary.
On each element, the left-hand side gives rise to an element stiffness matrix

Ke and the right-hand side to an element load vector be. These local quantities
are assembled into the global stiffness matrixK and the load vector b in the usual
finite element way, including the elimination of Dirichlet rows and columns. In
case of static condensation, the (k − 1)d out of (k + 1)d degrees of freedom
pertaining to basis functions with support on a single element are eliminated
by a Schur complement, reducing the final system size accordingly. We refer to
[20, 51] for details.

2.2 Symmetric interior penalty discontinuous Galerkin dis-
cretization

As a discontinuous Galerkin representative targeting the primal equation amenable
to sum factorization, we choose the symmetric interior penalty (SIP) discontinu-
ous Galerkin method [3]. In a discontinuous Galerkin method, only L2 regularity
of the solution is required and no continuity over element boundaries is enforced,

V DG
h = {vh ∈ L2(Ω) : vh|Ωe ∈ Qk(Ωe) ∀Ωe ∈ Th} . (5)

On each element, the same steps as for continuous Galerkin in terms of
multiplication by test functions, integration over an element and integration
by parts, are taken. Due to the missing intra-element continuity, the terms
−vh~n · κ∇uh do not drop out over the interior faces of the mesh and must be
connected by a numerical flux on ∇uh. The first step is to take the average
1
2

(
∇u−h +∇u+

h

)
of the solution from both elements e− and e+ sharing a face.

4

In order to ensure adjoint consistency through a symmetric weak form, the term
− 1

2 (u−h ~n
− + u+

h ~n
+) · κ∇vh = − 1

2 (u−h − u
+
h)~n− · κ∇vh is added. This term is

consistent with the original equation because the difference (u−h − u
+
h) is zero

for the analytic solution, see also [24] for a derivation from a first-order system.
Finally, a penalty term ~nvhκσ(u−h − u

+
h)~n− is added for ensuring coercivity of

discrete operator. The penalty parameter σ = (k+1)2 d
h in d dimensions depends

on the inverse mesh size h on uniform meshes and is extended to general meshes
by a formula involving surface area and volume from [26]. No tuning with
respect to σ is done in this work. As documented in the literature [24], condition
numbers and multigrid performance would deteriorate as σ is increased. This
gives the following weak form for the DG-SIP method,

(∇vh, κ∇uh)Th −
〈
vh~n, κ

∇u−h +∇u+
h

2

〉
∂Th
−
〈
∇vh

2
, κ~n(u−h − u

+
h)

〉
∂Th

+
〈
vh, κσ(u−h − u

+
h)
〉
∂Th

= (vh, f)Th

(6)

which is to hold for all test functions vh in the space V DG
h . Note that the

bilinear forms 〈·, ·〉∂Th visit each interior face twice with opposite directions of
the normal vector ~n, resulting in a symmetric weak form. Boundary conditions
are imposed by defining suitable extension values u+ in terms of the boundary
condition and the inner solution value u−,

u+ = −u− + 2gD, ∇u+ = ∇u−, on Dirichlet boundaries,

u+ = u−, ∇u+ · ~n = −∇u− · ~n− 2
gN

κ
, on Neumann boundaries.

(7)
Thus, additional contributions of known quantities arise that are eventually
moved to the right-hand side of the final linear system.

2.3 Hybridizable discontinuous Galerkin discretization

For the hybridizable discontinuous Galerkin (HDG) discretization [13], the Pois-
son equation (1) is rewritten as a first-order system by introducing a flux variable
~q = −κ∇u in the equation ∇ · ~q = f . The discrete solution spaces are V DG

h for

uh and
(
V DG
h

)d
for ~qh. An additional trace variable λh that approximates uh

on the interface between elements is introduced. It is defined by polynomials
on the mesh skeleton

M tHDG
h = {µh ∈ L2 (Fh) : µh|F ∈ Qk(F) ∀ faces F ∈ Fh} , (8)

where Fh denotes the collection of all faces in the discretization Th. The func-
tions in M tHDG

h are discontinuous between faces (i.e., over vertices in 2D, over
vertices and edges in 3D). Besides tensor product polynomials Qk(F), we will
also consider polynomials of complete degree k, Pk(F), in combination with the
space Pk(Ωe), easily permitted by the discontinuous formulation on F and Ωe.

For deriving the HDG weak form, the system is multiplied by test functions
~wh, vh, integrated over element Ωe, and gradient and divergence terms are
integrated by parts. For the numerical fluxes, we add a new variable for the
first flux, û = λh, while the second flux is set to ~̂q = ~qh + τ(uh − λh)~n. The

system is closed by enforcing continuity on the second numerical flux ~̂q, which
ensures conservativity. The final weak form for the HDG method is to find the
values ~qh ∈ (V DG

h)d, uh ∈ V DG
h , and λh ∈M tHDG

h,gD
, such that(

~wh, κ
−1~qh

)
Th
− (∇ · ~wh, uh)Th + 〈~wh, ~nλh〉∂Th = 0,

(∇vh, ~qh)Th + 〈vh, ~n · ~qh + τ(uh − λh)〉∂Th = − (vh, f)Th ,

−〈µh, ~n · ~qh + τ(uh − λh)〉∂Th = −〈µh, gN〉∂Th∩ΓN
,

(9)

5

holds for all test functions ~wh ∈ (V DG
h)d, vh ∈ V DG

h , and µh ∈M tHDG
h,0 . Dirichlet

conditions are imposed strongly on the trace space M tHDG
h by projection.

The parameter τ ensures stability if chosen τ > 0 [41]. However, selecting
τ ∝ κ is advantageous because it gives optimal convergence rates k + 1 in both
the solution and the flux. An element-by-element post-processing can then be
performed to recover a solution u∗ that converges at rate k + 2 [13]. Even
though superconvergence has not been proved for quadrilaterals and hexahe-
dra (which need special projection properties, as opposed to tetrahedra [14]),
we observed superconvergence for all constant-coefficient elliptic test cases with
shape-regular but otherwise arbitrary quadrilateral and hexahedral meshes, in-
cluding the test case from [31] where the authors report only rates k + 1 on
quadrilaterals. Note that the superconvergence of HDG essentially contributes
to the high efficiency as compared to other methods documented in previous
studies [27, 31, 51].

Following the notation in [41], the individual terms in Equation (9) are
expanded in terms of the basis functions and put into matrix-vector form. The
system reads A BT CT

B D GT

−C −G H

 ~Qh
~Uh
Λh

 =

 ~0
~Rf
~RgN

 . (10)

The upper left 2×2 block is block-diagonal over elements and can be condensed
out before solving the linear system. Thus, only a symmetric positive definite
linear system KΛh = ~R needs to be solved with

K = H +
(
C G

)(A BT

B D

)−1(
CT

GT

)
, ~R = ~RgN +

(
C G

)(A BT

B D

)−1(~0
~Rf

)
.

(11)

3 Performance of operator evaluation

In this work, we consider high-performance matrix-free evaluation of matrix-
vector products whenever possible, relying on fast integration facilities estab-
lished in spectral elements [30, 33]. While these methods had originally only
been used in the high-degree context with k ≥ 4, recent high-performance real-
izations taking the architecture of modern parallel computers into account have
shown that matrix-free methods outperform sparse matrix kernels by several
times already for k = 2 on quadrilaterals and hexahedra [10, 36].

In a matrix-free setting, the matrix-vector product is interpreted as a weak
form that is tested by all basis functions in an element-by-element way. This
corresponds to computing a residual vector on each element that is assembled
into the global solution vector, given a function uh associated to the input vector
[36]. If denote by ~z = L~y the global operator evaluation and by ~ze = Le~ye the
contribution on element Ωe, the i-th component of the matrix-vector product is
given by quadrature

(ze)i =

∫
Ωe

κ∇φi∇uyeh d~x ≈
∑
q

∇~ξφi (Je)
−1

(wqdet(Je)κ) (Je)
−T∇~ξu

ye
h . (12)

In this expression, uyeh is the finite element function associated to the nodal
solution values ~ye, J is the Jacobian of the transformation from the reference
to the real cell, and wq the quadrature weight. In this work, we use Gauss–
Legendre quadrature with k + 1 points per coordinate direction which exactly
evaluates integrals on Cartesian geometries. The error on curved meshes does
not affect convergence orders for elliptic problems in the current setting apart
from the usual variational crime [9].

6

For the interpolation of the nodal values ye to the quadrature points for
∇~ξu

ye
h in Equation (12) as well as the multiplication by the test function gra-

dients ∇~ξφi for all test functions i = 1, . . . , (k + 1)d, the sum factorization

technique is used [36]. This approach replaces the direct interpolation over all
points in d dimensions by a series of d one-dimensional interpolations. This
reduces the evaluation complexity per element from O((k + 1)2d) operations in
the naive matrix-vector product with a Kronecker matrix to O(d(k + 1)d+1)
operations. The complexity of DG face integrals is only O((k+ 1)d), i.e., linear
in the number of unknowns [6].

Our implementation [34, 36] is available through the deal.II finite element
library [5] and specifically targets modern computer architecture where access
to main memory is usually the bottleneck for PDE-based kernels. This means
that all operations on an element according to Equation (12) are done in close
temporal proximity to service the sum factorization kernels from fast L1 caches.
The complexity of one-dimensional kernels in sum factorization is further cut
down into half by a high-degree optimization based on the even-odd decompo-
sition [33]. A memory optimization is applied for Cartesian and affine meshes
where the Jacobian of the transformation from the reference to the real cell is
constant throughout the whole cell and needs only be kept once. In case cells
are not affine, it is fastest [36] to pre-compute the Jacobian on all quadrature
points and all cells prior to solving linear systems and loading the coefficients in
each matrix-vector product, despite the relatively high memory transfer. The
experiments below consider both the memory-intensive general mesh case and
the simple Cartesian mesh case as they show different performance. For sparse
linear algebra, the Epetra backend of Trilinos is used due to its mature state
[23].

3.1 Variants of matrix-vector products

Since the continuous finite element method, DG-SIP, and the HDG trace matrix
all involve different matrix sizes but the error is most closely related to the
number of elements, the most appropriate metric for comparison would be the
cost per element. On the other hand, we want to acknowledge the ability of
higher order basis functions to use coarser meshes. Thus, we report the numbers
in this section as the cost per element divided by kd, the number of unique
degrees of freedom (DoF) per element on a continuous finite element space. In
other words, if a matrix-vector product on ne elements of degree k takes tmv

seconds, we report the quantity

Equivalent DoFs/s =
nek

d

tmv
, (13)

uniformly across all discretization schemes. Obviously, this selection does not
realistically represent discretization accuracy, a topic we postpone to Section
4. The measurements in this section have been performed on a fully utilized
node of dual-socket Intel Xeon E5-2690 v4 (Broadwell) processors with 2 ×
14 cores running at 2.6 GHz and eight memory channels. By using the full
node, a fair balance between arithmetic bound kernels (sum factorization) and
memory bound kernels (sparse matrix-vector products) is achieved. Reported
memory bandwidth of this setup is approximately 130 GB/s in the STREAM
triad benchmark [40] or sparse matrix-vector products, whereas the theoretical
arithmetic peak is 940 GFLOP/s when measured at the AVX base frequency of
2.1 GHz. All C++ code has been compiled with the GNU compiler gcc, version
6.1, with optimization target AVX2 (Haswell). The minimum runtime out of
five experiments is presented.

Fig. 1 compares the three discretization methods and several implementa-
tions of the matrix-vector product:

7

• CG matrix-free: A standard continuous Galerkin approximation with ten-
sor product basis functions of degree k and Gaussian quadrature on (k+1)d

points according to Sec. 2.1 evaluated in a matrix-free way.

• CG static condensation matrix: Uses the most efficient sparse matrix
representation obtained by static condensation of the (k−1)d cell-interior
degrees of freedom in continuous elements [27].

• DG-SIP matrix-free: Symmetric interior penalty DG method according to
Sec. 2.2 with matrix-free implementation through sum factorization. No
matrix is considered due to its low efficiency [27].

• HDG trace matrix: Sparse matrix-vector product with the trace matrix.

• HDG trace matrix post: Takes the increased accuracy of HDG by super-
convergent post-processing into account. For this label, the data from
“HDG trace matrix” measured at degree k− 1 is reported in terms of the
equivalent degrees of freedom in Equation (13) of one degree higher, kd.

• HDG trace matrix-free: This approach considers an alternative implemen-
tation of the trace matrix-vector product where the matrix system (11) is
expanded in terms of all contributing matrices rather than explicitly form-
ing the Schur complement. This allows most matrix-vector products to
be implemented in a matrix-free way, using a scheme originally proposed
in [37] for fast computation of HDG residuals:

1. Matrix-free multiplication by

(
CT

GT

)
on input Λh.

2. Application of the inverse matrix

(
A BT

B D

)−1

by an inner Schur

complement that computes the nodal values ~Uh, ~Qh given the vectors
~Rq, ~Ru from step 1:

~Uh =
(
D −BA−1BT

)−1
(
~Ru −BA−1 ~Rq

)
,

~Qh = A−1
(
~Rq −BT~Uh

)
.

In this equation, the matrix-vector multiplications by A−1, B, and
BT can all be implemented by matrix-free evaluation, including the
inverse vector mass matrix A−1 for which fast sum factorization tech-
niques exist [37]. Only the (k+1)d×(k+1)d matrix (D−BA−1BT)−1

needs to be explicitly stored.

3. Matrix-free multiplication by
(
C G

)
and the mass matrix H.

This approach is counter-intuitive because it defeats the original purpose
of the static condensation-type elimination of degrees of freedom. This
approach is slower than the trace matrix-vector products for all degrees
in 2D according to Fig. 1. However, up to twice as high performance until
degree five is recorded in 3D due to much reduced memory transfer. The
higher complexity (k+ 1)6 per element of the multiplication by the dense
matrix (D − BA−1BT)−1 dominates over the trace complexity (k + 1)4

for k > 5.

• HDG mixed matrix-free: This approach replaces the condensation into
the trace matrix by applying the numerical fluxes in a more classical DG
way in terms of a system in mixed form in degrees of freedom for u and ~q,(

A BT

B D

)
+

(
CT

GT

)
H−1

(
C G

)
,

8

1 2 3 4 5 6 7 8

108

109

E
q
u
iv

a
le

n
t

D
o
F

s/
s

2D Cartesian mesh

1 2 3 4 5 6 7 8

108

109

2D curved mesh

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

E
q
u
iv

a
le

n
t

D
o
F

s/
s

3D Cartesian mesh

1 2 3 4 5 6 7 8
107

108

109

Polynomial degree

3D curved mesh

CG matrix-free CG stat. cond. matrix DG-SIP matrix-free

HDG trace matrix HDG trace matrix post HDG trace matrix-free

HDG mixed matrix-free

Figure 1: Number of degrees of freedom processed per second on 28 Broadwell
cores as a function of the polynomial degree for various discretizations and
implementations of the matrix-vector product of the 2D and 3D Laplacian.

This is the form taken for explicit time integration in many DG schemes,
including HDG [37]. All matrix-vector products can be performed by sum
factorization, including evaluation of H−1 that is an inverse face mass
matrix [37] or alternatively can be implemented by point-wise fluxes.

3.2 Throughput analysis

The throughput of the matrix-vector products in terms of the number of equiv-
alent degrees of freedom processed per second is measured at large matrix sizes
of around 10 million where the solution vectors (and all other global data) need
to be fetched from main memory rather than caches.

Fig. 1 shows the measurements in two and three space dimensions on both
Cartesian meshes with constant coefficients and curved meshes with variable
coefficients. In all tests, continuous finite elements show the best performance,
apart from linear shape functions. As a point of reference, the operator evalu-
ation with our implementation for Q2 shape functions on general grids is con-
siderably faster at 340 million degrees of freedom per second than HPGMG3 at
140 million degrees of freedom per second (643 mesh), both run on the same
hardware. This shows both the high level of optimization and the benefit of
pre-computed Jacobians [36]. For k ≥ 2, continuous elements provide more
than twice the throughput of the next-best method, the DG-SIP method with
matrix-free implementation. This goes against the preconception of the DG
community [13] which attribute an implementation advantage to DG methods
due to more structure and favorable vectorization properties. Note that the
throughput of the DG-SIP method at 400 million equivalent degrees of freedom

3https://hpgmg.org, retrieved on July 20, 2016

9

per second on the 3D Cartesian mesh translates to around 500–800 million DG
degrees of freedom processed per second at polynomial degrees two through
eight. A remarkable aspect of the matrix-free schemes is that throughput in
terms of degrees of freedom per second appears approximately constant as the
polynomial degree increases, despite the theoretical O(k) complexity per degree
of freedom. One reason for this behavior is that face integrals at cost O(1)
are dominating at lower degrees k ≤ 4 for DG-SIP and the HDG mixed form.
Secondly, the even-odd decomposition [33] limits the cost increase at higher de-
grees. Finally, better arithmetic utilization is achieved for higher polynomial
degrees, as memory access per DoF scales as O(1) in the polynomial degree.

The results also show that HDG with post-processing (black dashed line)
delivers approximately the same performance as matrix-free DG-SIP in two
space dimensions. Without post-processing, HDG falls considerably behind the
matrix-free schemes in 2D. In 3D, all matrix-based schemes are by an order of
magnitude and more slower than the matrix-free schemes. Our results show that
the post-processed HDG solution at assumed convergence rate k + 2 performs
similarly to the statically condensed CG matrix at rate k + 1 because both
have the same kd−1 unique degrees of freedom per face. In other words, the
effect of superconvergence is offset by the discontinuous trace solution spaces
(8) and embedded discontinuous Galerkin with traces based on the skeleton
of the continuous finite element method as used in [42] actually appear more
favorable in terms of accuracy efficiency. In the remainder of this study, the
statically condensed CG results can be taken as a proxy for the performance of
embedded DG methods.

3.3 Performance modeling

In order to document our unbiased comparison, Fig. 2 puts the achieved per-
formance into perspective by a roofline performance model. The performance
boundaries are the memory bandwidth limit (diagonal line to the left) and the
arithmetic throughput limit (horizontal line to the upper right) in terms of the
FLOP/byte ratio of the respective kernel [44]. The FLOP/byte ratio is mea-
sured by an optimistic assumption to memory access that only counts the global
data structures that need to be streamed at least once per matrix-vector prod-
uct, assuming perfect caching of re-usable data such as vector entries accessed
by several elements and no other bottlenecks in the memory hierarchies. The
arithmetic operations per element have been derived by formulas similar to the
ones from [37] and verified by counting instructions of a run of the element
kernel through the Intel Software Development Emulator.4

The results in Fig. 2 show that the sparse matrix-vector product displayed in
the lower left corner is very close to the theoretical performance maximum of the
compressed row storage scheme. The only available optimization of the matrix-
based scheme except for a stencil representation in the constant-coefficient affine
mesh case would be to use the DG matrix structure where blocks of entries are
addressed by one index. In Trilinos, the class Epetra VbrMatrix implements
such a scheme rather than the pointwise indirect addressing of the compressed
row storage in Epetra CrsMatrix. This would increase the throughput by up
to 50%, moving to a FLOP/byte ratio of 0.25. However, inefficiencies and
limitations in the Trilinos implementation prohibit its use in general software
such as a multigrid solver. Even if such an implementation were available,
the performance model show today’s hardware does not permit matrix-based
methods to match the matrix-free implementations. Turning to the matrix-free
implementations, Fig. 2 reveals a clear difference between the Cartesian case
where the memory transfer is mostly due to the solution vector and some index
data, and the curved mesh case where the Jacobian transformation also needs

4https://software.intel.com, Version 7.45, AVX2 (Haswell) mode, retrieved on May 19,
2016.

10

1
8

1
4

1
2

1 2 4 8 16 32

16

32

64

128

256

512

1024

S
T
R
E
A
M

tr
ia
d
m
em

b
w

13
0
G
B
/s

Peak DP 2.1 GHz

w/o FMA

w/o vectorization

k incr

k incr

k
inc

r

k
in

c
r

FLOP/byte ratio

G
F

L
O

P
/
s

CG, Cartesian

CG, curved

DG-SIP, Cartesian

DG-SIP, curved

HDG trace, Cartesian

Figure 2: Roofline model for the evaluation of the 3D Laplacian with different
variants on a dual-socket Intel Xeon E5-2690 v4 (Broadwell), 28 cores. Poly-
nomial degrees k = 1, 2, 4, 8 are considered. Small arrows indicate the behavior
for increasing polynomial degrees.

16 64 256 1024 4096 16k 64k

10−4

10−3

10−2

10−1

Number of cores

T
im

e
m

a
tr

ix
-v

e
c
to

r
p
ro

d
u
c
t

[s
]

CG mat-free

DG-SIP mat-free

HDG matrix

Figure 3: Latency study of matrix-vector products for Laplacian on a 803 mesh
with Q2 elements, involving 4.1 million DoFs.

to be loaded. The former is computation bound, whereas the latter resides
in the memory bound region, albeit further to the right than sparse matrix
kernels. Due to the considerably more complex kernel structures with many
short loops and different operations, the achieved performance is not as close to
the theoretical performance bounds as for the sparse matrix-vector kernel. Given
that our implementation clearly outperforms the benchmark code HPGMG, the
numbers can be considered extremely good nonetheless.

3.4 Latency analysis

A second ingredient to practical solver performance is the latency of matrix-
vector products. This is relevant for multigrid schemes where a series of coarser
representations appear and need to be processed quickly. This section reports
results from the SuperMUC Phase 1 system (2 × 8 core Intel Xeon E5-2680
Sandy Bridge CPU running at 2.7 GHz, Infiniband FDR10 interconnect). Fig. 3
shows that the matrix-free variants scale down to 10−4 seconds where network
latency becomes dominant, a similar result as was reported for HPGMG [2].
This number needs to be compared to a single point-to-point latency of around
10−6 seconds.

The sparse matrix-vector product of HDG already saturates at around 5 ·
10−4 seconds. Investigation of this issue revealed sub-optimal MPI commands in
the data exchange routines of the Epetra sparse matrix [23], involving a global

11

barrier operation in addition to point-to-point communication. However, the
latency could not be reduced to less than 2 · 10−4 seconds even when changing
the Trilinos source code. We conclude that given the right implementation, no
advantage of the discontinuous data structures with less connectivity to neigh-
bors appears on modern high-performance implementations of matrix-vector
products, as opposed to direct solvers [27], showing that the results from [51]
are not general. When going to considerably higher order elements than the
Q2 basis reported in Fig. 3, the time to process a single element, or rather, a
batch of four to eight elements due to vectorization over several elements in
our implementation [36], overlays the communication latency. For DG-SIP, this
transition occurs at k = 6 and at around k = 8 for CG.

4 Performance comparison of multigrid solvers

In this section, we analyze modern multigrid solvers and record the solution ac-
curacy as a function of computing time. All solvers use a multigrid V-cycle as a
preconditioner for a conjugate gradient iteration, which increases solver robust-
ness [48, 47]. The iteration is stopped once the residual norm goes below 10−9

times the right hand side norm. For coarse and low-order discretizations, this
tolerance could be relaxed as e.g. done by the full multigrid cycle in HPGMG
[2], but we refrain from this optimization for ease of comparison. The compar-
isons focus on the three-dimensional case where large-scale iterative solvers are
essential. The trend for 2D is similar to 3D, but the advantage of the matrix-free
schemes is less. In 2D, they provide two to eight times better efficiency, solving
for 10 and 20 million unknowns per seconds on 28 cores for the continuous and
discontinuous matrix-free solvers. The HDG solver reaches between 1 and 3
million degrees of freedom per second.

4.1 Multigrid solvers for matrix-free methods

Due to their fast matrix-vector products, a polynomial Chebyshev accelerated
pointwise Jacobi smoother in a geometric multigrid cycle is the natural choice
[1, 2, 36] for the CG and DG-SIP realizations. Besides matrix-vector prod-
ucts, the Chebyshev smoother only needs access to the matrix diagonal that is
pre-computed and stored before solving. In addition, an estimate of the largest
eigenvalue λ̃max of the Jacobi-preconditioned matrix is used to make the Cheby-
shev iteration address modes with eigenvalue in the interval [0.06λ̃max , 1.2λ̃max].
The eigenvalue estimation is done by 15 iterations with the conjugate gradient
method. In the numbers reported below, the setup cost of the multigrid ingredi-
ents is ignored, just as we ignore the cost for assembling the HDG trace matrix.
We note that the setup of the matrix-free variants is proportional to two to four
V-cycles, considerably less than the matrix creation and assembly for HDG. In
the context of nonlinear systems where the system matrix changes rapidly, the
advantage of matrix-free schemes will thus be even larger than what is reported
here, a property exploited in [35].

For pre- and post-smoothing, a polynomial degree of five in the Chebyshev
method is used, involving five matrix-vector products. The level transfer is
based on the usual geometric embedding operations and also implemented by
tensorial techniques. For the solver on the coarse grid, the Chebyshev itera-
tion is selected, now with parameters such the a-priori error estimate for the
Chebyshev iteration [49] ensures an error below 10−3. The implementation uses
the multigrid facilities of the deal.II finite element library [28, 29], including
adaptively refined meshes with hanging nodes in a massively parallel context
based on a forest-of-tree data layout and Morton cell ordering [4, 11].

12

4.2 Multigrid for HDG

In the context of the HDG trace system, off-the-shelf AMG solvers such as
Trilinos ML [18] work suboptimally or even fail because of a pronounced non-
diagonally dominant character of the matrix together with wide stencils due
to the high-order basis. To overcome these limitations, this work adopts a
variation of the method proposed in [12], where the combination of a high-order
HDG trace space with a continuous finite element discretization involving linear
basis functions on the same mesh was proposed. This concept is closely related
to p-multigrid methods [39] where the structure of a high-order basis is used
by first going to a low-order basis with fewer unknowns rather than going to
coarser meshes as in h-multigrid approaches. The transfer between the HDG
trace space and linear finite elements is realized by the embedding operator that
maps linear shape functions onto the trace polynomials as well as its transpose.
As opposed to the work [12] that constructs a genuine discretization on the
linear finite element space, we select a Galerkin coarse grid operator [48]. As
shown below, the iteration count is only around 15–20, much better than 55–
75 reported in [12] for similar tolerances that are probably to systematic gaps
between different discretizations. The hierarchy is then continued by algebraic
multigrid. Since the connectivity of the matrix is the same as for linear finite
elements and the matrix is (almost) diagonally dominant, optimal or close-to-
optimal performance of the AMG inside the p-AMG scheme can be expected.

Due to a strong non-diagonally dominant matrix structure, optimal multi-
grid performance in HDG cannot be obtained with point-relaxation smoothers.
Instead, block-relaxation scheme with blocks combining all degrees of freedom
on a face or incomplete factorizations are necessary. (Iteration numbers grow
approximately as h−2/3 with point Gauss–Seidel smoothing.) Due to its ro-
bustness, ILU(0) is selected as a smoother both for the HDG trace matrix as
well as in the AMG levels. As soon as the level matrix size goes below 2000, a
direct coarse solver is invoked. For the HDG stabilization parameter, we select
τ = 5 max{κ(~x), ~x ∈ face} as a balance between solver efficiency and accuracy
throughout this study, see also [31].

For the HDG trace matrix, we consider the representation by a sparse ma-
trix because it easily combines with the ILU(0) for the smoother, even though
somewhat higher performance would be available in 3D for 1 ≤ k ≤ 5 with a
matrix-free implementation according to Fig. 1. Operator evaluation with the
mixed form of HDG seems promising due to the considerably faster matrix-
vector product reported in Fig. 1, but the saddle point form is more challenging
to handle, requiring strong ingredients such as overlapping Schwarz smoothers
or block factorizations [7].

For comparison, we also consider an iterative solver based on the statically
condensed matrix for continuous elements. The standard ML-AMG V-cycle
with one sweep of ILU(0) for pre- and post-smoothing on all levels is chosen.
As seen from Table 1 below, no optimal iteration numbers are obtained in this
case for higher polynomial degrees. However, it serves as a point of reference
for matrix-based approaches with black-box preconditioning. Alternatively, a
similar p-multigrid scheme with similar iteration counts as for the HDG trace
system could also be considered.

4.3 Three-dimensional example with smooth solution

We consider the Poisson equation with analytic solution

u(~x) =

(
1

α
√

2π

)3 3∑
j=1

exp
(
−‖~x− ~xj‖2/α2

)
, (14)

given as a sum of three Gaussians centered at the positions ~xj ∈ {(−0.5, 0.5, 0.25)T,
(−0.6,−0.5,−0.125)T, (0.5,−0.5, 0.5)T} and of width α = 1

5 . The equation is

13

Figure 4: Visualization of parts of the three-dimensional shell geometry with
the variable coefficient (15) on a mesh consisting of 393k elements in total.

solved on two domains,

• the unit cube, Ω = (−1, 1)3, with the surfaces at xe = −1 subject to
Neumann boundary conditions and the surfaces at xe = +1 subject to
Dirichlet boundary conditions, e = 1, 2, 3, using constant diffusivity κ = 1,
and

• a full spherical shell in 3D with inner radius 0.5 and outer radius 1.0, using
a polynomial approximation of degree 5 along a spherical manifold for all
elements, and a strongly varying diffusivity

κ(~x) = κ(x1, . . . , xd) = 1 + 106
3∏
e=1

cos(2πxe + 0.1e), (15)

inspired by the variable coefficient case in [47] but using a shift 0.1e in order
to eliminate any potential spatial symmetries in the coefficients. Dirichlet
conditions are set on all boundaries. A visualization of approximately one
eighth of a sample 3D mesh along with the coefficient is given in Fig. 4.
Geometric multigrid methods start with an initial mesh consisting of six
elements.

In both cases, the boundary conditions gD and gN as well as the value of the
forcing f in (1) are set such that the analytic solution (14) is obtained.

Figs. 5 and 6 list the accuracy over the computational time for the constant-
coefficient case with Cartesian mesh and the variable-coefficient case with curved
mesh and high-order mappings. Results appearing in the lower left corner of
these plots combine high accuracy with low computational time. The numbers
are from experiments on a full node with 28 cores of Intel Xeon E5-2690 v4
Broadwell CPUs. Continuous finite elements show the best efficiency over the
whole range of polynomial degrees. The next best method for 2 ≤ k ≤ 4,
the DG-SIP method, is two to six times less efficient. The best matrix-based
schemes is the statically condensed finite element method, slightly ahead of the
HDG method with post-processing. Both results are approximately three to five
times slower than DG-SIP and around 20 times slower than the matrix-free CG
implementation for k ≥ 3. All results are along the optimal convergence rate
curves at O(hk+1) for the primal solution uh and O(hk+2) for the post-processed
solution in HDG, including the variable-coefficient curved mesh cases.

Fig. 5 also includes HDG results with polynomials of complete degree up to
k, Pk, spanned by orthogonal Legendre polynomials, rather than tensor-product
space Qk. This space skips the higher order mixed terms such as xy, xz, yz, xyz
in Q1 elements and thus tightly selects polynomials exactly up to degree k.
The Pk basis reduces both the number of unknowns by going from (k + 1)2

polynomials per face to (k + 1)(k + 2)/2 and also the nonzero entries per row,

14

10−3 10−2 10−1 100 101

10−4

10−2

100

R
e
la

ti
v
e

L
2

e
rr

o
r

k = 1

10−3 10−2 10−1 100 101

10−4

10−2

100

k = 2

10−3 10−2 10−1 100 101
10−7

10−4

10−1

Compute time [s]

R
e
la

ti
v
e

L
2

e
rr

o
r

k = 3

10−3 10−2 10−1 100 101
10−7

10−4

10−1

Compute time [s]

k = 4

CG mat-free CG stat cond DG-SIP mat-free

HDG trace matrix Qk basis HDG trace matrix post k − 1 HDG trace matrix Pk basis

Figure 5: Accuracy over solver time for 3D Laplacian on the unit cube.

reducing the cost per element by up to a factor of four. The computational
results in Fig. 5 show that the decrease in solver times for the tight polynomial
space comes with a decrease in solution accuracy: Even though the solution
still converges optimally at rate k + 1, the error constants are higher and more
elements are needed for reaching the same accuracy. Thus, no savings can
be achieved this way. This observation is in line with results e.g. in [37, 51]
comparing tetrahedral to hexahedral element shapes, where a similar or slightly
better efficiency per degree of freedom of hexahedral elements was demonstrated
in the context of matrix-based HDG.

Table 1 lists the number of iterations to reduce the linear residual by 10−9

with the preconditioned conjugate gradient method as well as solver through-
put. Up to 16 million DoFs per second can be processed with the matrix-free
continuous finite element implementation on 28 cores on Cartesian meshes, and
7.75 million unknowns per second on a curved mesh. Throughout 2 ≤ k ≤ 6,
the throughput is above 13 million unknowns per second on the Cartesian mesh
and 6 million unknowns per second on the curved mesh. For comparison, we
measured 6.86 million DoFs with HPGMG and polynomial degree 2 on the same
system, again slower than our implementation. This is despite a coarser itera-
tion tolerance with fewer iterations of HPGMG that relies on a full multigrid
cycle rather than a V-cycle that further reduces the number of operations on
the finest level [2]. As reported in [47], there is a slight increase in iteration
counts as the polynomial degree k increases, but high-order methods appear
highly attractive nonetheless.

Table 1 confirms that DG-SIP provides the second highest solver through-
put. Note that the cost per degree of freedom is almost independent of the
polynomial degree for the matrix-free multigrid solvers, confirming the results
of matrix-vector products in Sec. 3. The factor between the fastest realization
(at degree between two and four) and the slowest one is only approximately two.
For the matrix-based HDG and statically condensed CG methods, we notice a
distinct decrease in throughput as the polynomial degree increases. This is a

15

10−3 10−2 10−1 100 101

10−4

10−2

100

R
e
la

ti
v
e

L
2

e
rr

o
r

k = 1

10−3 10−2 10−1 100 101

10−4

10−2

100

k = 2

10−3 10−2 10−1 100 101
10−7

10−4

10−1

Compute time [s]

R
e
la

ti
v
e

L
2

e
rr

o
r

k = 3

10−3 10−2 10−1 100 101
10−7

10−4

10−1

Compute time [s]

k = 4

CG mat-free CG stat cond DG-SIP mat-free

HDG trace matrix HDG trace matrix post k − 1

Figure 6: Accuracy over solver time for 3D Laplacian on the sphere with high-
order curved boundaries and variable coefficients according to Eq. (15).

direct consequence of the fact that the matrix rows are more densely populated
for higher degrees, with the cost being directly proportional to this number.
Even though the number of unknowns goes down with static condensation as
compared to matrix-free evaluation, Fig. 1 shows that this reduction is not
nearly enough for competitive performance. In other words, the gap between
the matrix-free implementations and the matrix-based schemes widens as the
degree increases.

Note that the smaller iteration counts for the geometric multigrid approaches
are due to a more expensive smoother that involves five matrix-vector products
rather than only one forward and backward substitution in the ILU of HDG.
The HDG solver with p-AMG is highly competitive in terms of the total number
of operator evaluations to reach the prescribed tolerance of 10−9. For example,
the HDG solver involves 45 operator evaluations and 30 ILU applications on
the finest level in the Cartesian case with k = 2 of Table 1 that lists 15 itera-
tions, as compared to 65 matrix-vector products for the CG solver with GMG
preconditioning at 5 iterations and 156 matrix-vector products for DG-SIP at
12 iterations. It is rather the different performance of matrix-vector products
that favors the matrix-free schemes.

Fig. 7 lists the computational time required to reach a fixed relative accuracy
of 10−6 for various polynomial degrees on a Cartesian mesh with 28 Broadwell
cores, both in two and three space dimensions. Note that the 3D numbers for
k = 1 need significantly more memory and computational resources than what
is available the (fat-memory) single node with 512 GB used for the present tests,
requiring 3.7·1011 degrees of freedom for continuous elements or 4.4·1012 degrees
of freedom in the trace system. For reasons of comparison, extrapolations of
the computational time recorded at around 108 degrees of freedom to accuracy
10−6 have been used under the justified assumption of optimal iteration counts
and convergence rates. The efficiency dramatically increases as the polynomial
degree is risen, enabling the solution to a tolerance of 10−6 in less than 10

16

Table 1: Number of iterations for matrix sizes close to ten million degrees of
freedom as well as absolute performance in terms of degrees of freedom solved
per second on 28 Broadwell cores. Conjugate gradient tolerances: 10−9.

CG mat-free CG stat cond DG-SIP mat-free HDG trace matrix
k its DoFs/s its DoFs/s its DoFs/s its DoFs/s

3D Cartesian mesh, constant coefficients
1 4 7.89 · 106 11 3.94 · 106 14 3.07 · 106 16 2.08 · 106

2 5 1.35 · 107 21 1.17 · 106 12 5.17 · 106 15 1.14 · 106

3 5 1.45 · 107 22 6.17 · 105 10 6.42 · 106 17 6.15 · 105

4 5 1.58 · 107 25 3.46 · 105 10 6.33 · 106 17 4.11 · 105

5 5 1.52 · 107 26 2.29 · 105 11 5.03 · 106 20 2.48 · 105

6 5 1.43 · 107 27 1.98 · 106 11 5.06 · 106 20 1.87 · 105

7 5 1.25 · 107 26 1.30 · 105 13 4.04 · 106 21 1.40 · 105

8 5 1.17 · 107 27 9.90 · 104 12 3.64 · 106 21 1.13 · 105

3D curved mesh, variable coefficients
1 5 3.13 · 106 14 3.38 · 106 13 2.51 · 106 217 1.56 · 105

2 5 7.75 · 106 23 1.06 · 106 11 3.36 · 106 32 5.43 · 105

3 6 6.51 · 106 22 6.40 · 105 10 4.15 · 106 46 2.31 · 105

4 5 7.38 · 106 24 3.68 · 105 12 3.51 · 106 30 2.32 · 105

5 7 6.88 · 106 23 2.65 · 105 13 3.12 · 106 27 1.82 · 105

6 8 6.08 · 106 24 1.85 · 105 15 2.65 · 106 24 1.57 · 105

7 10 4.90 · 106 25 1.35 · 105 17 2.35 · 106 27 1.09 · 105

8 11 4.47 · 106 25 1.12 · 105 21 1.95 · 106 22 1.14 · 105

2 4 6

10−2

100

102

Polynomial degree k

C
o
m

p
u
te

ti
m

e
[s

]

2D Cartesian mesh

2 4 6 8

10−1

100

101

102

103

104

Polynomial degree k

3D Cartesian mesh

CG mat-free CG stat cond DG-SIP mat-free

HDG trace matrix HDG trace matrix post

Figure 7: Time to reach a discretization accuracy of 10−6 as a function of the
polynomial degree.

seconds for degree k = 3 with the matrix-free CG method and the post-processed
HDG method at k = 3 in three dimensions, or 0.01 seconds in 2D.

When increasing the polynomial degree further, different saturation points
appear in 3D. Matrix-based schemes mainly suffer from the aforementioned
increase of nonzero entries per row, despite the number of DoFs still going
down, a behavior also described in [19]. The faster matrix-free schemes with
approximately constant timings per unknown run into latency issues instead,
including the coarse grid solver. Furthermore, the granularity of the mesh sizes
that are tested in the pattern 43, 83, 123, 163, 203, 243, 283, 323, 403, 483 (and
continuing with multiples of 4, 5, 6, 7 times a power of two) result in selecting
the mesh 123 for all of k = 6, 7, 8, whereas the next coarser size 83 is too coarse
unless k ≥ 9.

4.4 Three-dimensional example with non-smooth solution

We now consider the Laplacian on a cube (−1, 1)3 with a slit along the plane
{x = 0, y < 0,−1 < z < 1}. The solution is given by

u(x, y, z) = r
1
2 + sin(0.5φ) with r =

√
x2 + y2, φ = arctan

(y
x

)
+ π,

17

Mesh around singularity

2 4 6
10−1

100

101

102

103

104

Polynomial degree k

C
o
m

p
u
te

ti
m

e
[s

]

3D uniform, 10−4

2 4 6
10−1

100

101

102

103

104

Polynomial degree k

3D adaptive, 10−5

CG mat-free CG stat cond DG-SIP mat-free

HDG trace matrix HDG trace matrix post

Figure 8: Singular solution. Time to reach a discretization accuracy of 10−4 on
the uniform mesh and 10−5 on the adaptive mesh as a function of the polynomial
degree on 28 cores.

and constant in z-direction. Fig. 8 shows the solution around the singularity on
a slice at z = 0 with elevation along the function value. Due to the singularity,
convergence rates in the L2 norm are only linear in the mesh size, irrespective
the polynomial degree. Fig. 8 lists the time to reach a discretization accuracy
of 10−4 on uniform meshes and 10−5 with adaptive meshes which are created
by successively refining the 15% of the elements with the largest jump in the
gradient over element boundaries as a simple error estimator [17]. The results
confirm the considerably higher efficiency of the matrix-free schemes both in
the uniform and adaptive mesh case. Furthermore, the methods become more
efficient as the polynomial degree is increased also on the adaptive mesh, as
opposed to the matrix-based methods that level off and high order methods do
not pay off. Also note that DG-SIP is more efficient than continuous elements
on the uniform mesh due to better solution accuracy around the singularity,
allowing for coarser meshes.

4.5 Scalability in the massively parallel context

The parallel behavior of the solvers is shown in Fig. 9 by a strong scaling ex-
periment and in Fig. 10 by a weak scaling experiment. All codes have been
parallelized with pure MPI according to the techniques described in [4, 11, 36].
Two large-scale parallel systems have been used, SuperMUC Phase 1 consisting
of up to 9216 nodes with 2 × 8 cores (Intel Xeon E5-2680 Sandy Bridge, 2.7
GHz), and SuperMUC Phase 2 consisting of up to 512 nodes with 2× 14 cores
(Intel Xeon E5-2697 v3 Haswell, 2.6 GHz). In Fig. 9, we observe ideal strong
scaling of the geometric multigrid solvers until a lower threshold of approxi-
mately 0.05–0.1 seconds where communication latency becomes dominant. We
note that the scaling in the GMG solvers for CG and DG-SIP saturates below
30 000 degrees of freedom per core in both panels of Fig. 9. Also note the wide
range of problem sizes with almost two orders of magnitude going from satu-
rated scaling to the size that still fits into approximately 2 GB RAM memory
per core, much more than for the matrix-based realization. On the other hand,
the HDG solver is already saturated at around 0.5 seconds. This breakdown is
due to the non-ideal behavior of the ML-AMG part also reported in [46]. The
scaling of the HDG solver is relatively good until matrix sizes go below 5000
rows per core. Note that on a smaller 643 mesh, nearly linear scaling down to
approximately 0.2s has been obtained.

The weak scaling plots in Fig. 10 display the time to solve a linear system

18

32 128 512 2048 8192 32k 128k

10−1

100

101

Number of cores

S
o
lv

e
r

ti
m

e
[s

]

1283 mesh, Q3 elements

128 512 2048 8192 32k 128k

10−1

100

101

Number of cores

2563 mesh, Q3 elements

CG SandyB CG Haswell DG-SIP SandyB

DG-SIP Haswell HDG SandyB linear scaling

Figure 9: Strong scaling experiment on SuperMUC Phase 1 (SandyB) and Su-
perMUC Phase 2 (Haswell) on up to 147 456 cores.

with one million degrees of freedom per core for the three chosen discretizations
as the number of processors and the problem size increase at the same rate.
Between the smallest and largest configuration in the weak scaling tests, parallel
efficiencies of 75%, 78%, 75%, and 87% have been measured for the CG method
on SuperMUC Phase 1 and Phase 2 as well as DG-SIP on SuperMUC Phase
1 and Phase 2, respectively. For the HDG linear solvers, the weak scaling is
somewhat worse, reaching 40% when going from 28 to 14 336 Haswell cores of
SuperMUC Phase 2. Approximately half of the decrease in efficiency is due
to the increase in solver iterations from 18 to 29, and the other half is due to
inefficiencies in the AMG hierarchy.

The largest computation on 147 456 cores achieved an arithmetic throughput
of about 1.4 PFLOP/s for DG-SIP, out of a theoretical peak of 3.2 PFLOP/s on
SuperMUC Phase 1. To put the obtained results into perspective, we compare
the CG solution time of 1.52s on 288 cores and 2.04s on 147 456 cores to the
numbers from [19] which were obtained on the Stampede system with the same
Intel Xeon E5-2680 Sandy Bridge processors, outperforming both the 2.5s for
HPGMG at Q2 elements and more than 20s for GMG implementation of the
authors from [19] on fourth degree elements. In addition, we could solve a DG-
SIP system with one million degrees of freedom per core in 1.92s on SuperMUC
Phase 2. Note that the computational time per core on the Sandy Bridge and
Haswell systems, respectively, is similar for the continuous elements (limited
mainly by indirect addressing into vectors), whereas there is a considerably
advantage of the Haswell system with fused multiply-add instruction and faster
L1 cache access for DG-SIP.

5 Conclusions

In this study, a performance comparison between continuous and discontinuous
Galerkin methods has been presented. The work has concentrated on state-of-
the-art multigrid solvers for the Laplacian as the prototype elliptic equation.
As opposed to previous studies that focused on direct solvers, our experiments
show that the primal formulation in terms of continuous finite elements or dis-
continuous Galerkin symmetric interior penalty methods allows for up to an
order of magnitude more efficient solution than the HDG method in 3D, also
when including superconvergence of HDG. In two space dimensions, the perfor-
mance gap is approximately a factor of two to five times for polynomial degrees
2 ≤ k ≤ 5. When comparing the continuous finite element implementation

19

36 288 2304 18k 147k

100

101

102

Number of cores

S
o
lv

e
r

ti
m

e
[s

]

CG SandyB

CG Haswell

DG-SIP SandyB

DG-SIP Haswell

HDG Haswell

Figure 10: Weak scaling experiment on SuperMUC Phase 1 (SandyB) and Su-
perMUC Phase 2 (Haswell) using a grain size of 1 million unknowns per core
and Q3 elements in 3D.

against the interior penalty discontinuous Galerkin method, a performance ad-
vantage of a factor of two to three for the continuous case has been recorded.

Our results are due to the beneficial properties of modern sum factorization
implementations on quadrilateral and hexahedral meshes. Depending on the
structure of the equations and the behavior of the solution, either continuous fi-
nite elements or symmetric interior penalty discontinuous Galerkin methods are
the preferred choice. We found that the time to solution per degree of freedom is
almost constant for polynomial degrees between two and eight at a similar rate
as for the HPGMG benchmark, and better than matrix-based multigrid schemes
on linear finite elements. Thus, the polynomial degree can be chosen as high as
the meshing of the geometry allows for without compromising throughput. The
promising results in this study motivate to pursue developments of matrix-free
solvers in non-elliptic contexts, where the Jacobi-related techniques used here
are not sufficient and matrix-based methods use Gauss–Seidel or ILU smoothers.

Our conclusions go against the results of previous efficiency studies and are
mainly explained by the different performance of matrix-vector products. In
particular, counting degrees of freedom or arithmetic operations is not enough
to judge application performance. The higher performance is due to a reduced
memory transfer as compared to memory-limited sparse matrix kernels. A
roofline performance model has been developed which shows that our results
are close to the performance limits of the underlying hardware, making the con-
clusions general without bias towards any of the methods. Moreover, the per-
formance model allows for predicting performance on other HPC systems with
different machine balances. Note that reaching the high performance numbers
recorded for the matrix-free solvers needs careful implementation that is only
realistic for large finite element libraries that can distribute the development
burden over many applications. However, we expect the developments from
[2, 10, 36] to become mainstream library components of finite element codes in
the future, similarly to high-performance dense linear algebra implementations
of BLAS and LAPACK. In order to exploit the fast matrix-free approaches also
in the context of HDG, alternative evaluation schemes have been presented in
this work. The HDG mixed system involving the primal variable and the flux
is clearly faster than the sparse matrix-vector product with the trace matrix,
despite considerably fewer degrees of freedom in the latter. Given appropriate
solvers, these approaches promise best HDG performance.

20

Acknowledgments

The authors would like to thank Katharina Kormann and Niklas Fehn for dis-
cussions about the manuscript and Timo Heister and Guido Kanschat on the
multigrid implementation in deal.II.

References

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid
smoothing: polynomial versus Gauss–Seidel, J. Comput. Phys., 188 (2003),
pp. 593–610, doi:10.1016/S0021-9991(03)00194-3.

[2] M. Adams, J. Brown, J. Shalf, B. Van Straalen, E. Strohmaier,
and S. Williams, High-performance geometric multigrid, 2016,
https://hpgmg.org.

[3] D. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified
analysis of discontinuous Galerkin methods for elliptic problems, SIAM J.
Numer. Anal., 39 (2002), pp. 1749–1779, doi:10.1137/S0036142901384162.

[4] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler,
Algorithms and data structures for massively parallel generic finite element
codes, ACM Trans. Math. Softw., 38 (2011), doi:10.1145/2049673.2049678.

[5] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat,
M. Kronbichler, M. Maier, B. Turcksin, and D. Wells, The
deal.II library, version 8.4, J. Numer. Math., 24 (2016), pp. 135–141,
doi:10.1515/jnma-2016-1045, www.dealii.org.

[6] P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch,
M. Ohlberger, S. Turek, J. Fahlke, S. Kaulmann, S. Müthing,
and D. Ribbrock, EXA-DUNE: Flexible PDE Solvers, Numerical Meth-
ods and Applications, Springer International Publishing, Cham, 2014,
pp. 530–541, doi:10.1007/978-3-319-14313-2 45.

[7] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution
of saddle point problems, Acta Numerica, 14 (2005), pp. 1–137,
doi:10.1017/S096249290400.

[8] B. Bergen, T. Gradl, U. Rüde, and F. Hülsemann, A massively
parallel multigrid method for finite elements, Comput. Sci. Eng., 8 (2006),
pp. 56–62, doi:10.1109/MCSE.2006.102.

[9] S. C. Brenner and L. R. Scott, The mathematical theory of finite ele-
ment methods, Springer-Verlag, New York, 3rd ed., 2008, doi:10.1007/978-
0-387-75934-0.

[10] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements
in 3D, J. Sci. Comput., 45 (2010), pp. 48–63, doi:10.1007/s10915-010-9396-
8.

[11] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of octrees, SIAM J.
Sci. Comput., 33 (2011), pp. 1103–1133, doi:10.1137/100791634.

[12] B. Cockburn, O. Dubois, J. Gopalakrishnan, and S. Tan, Multigrid
for an HDG method, IMA J. Numer. Anal., 34 (2014), pp. 1386–1425,
doi:10.1093/imanum/drt024.

21

[13] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hy-
bridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic equations, SIAM J. Numer. Anal., 47
(2009), pp. 1139–1365, doi:10.1137/070706616.

[14] B. Cockburn, J. Guzmán, and H. Wang, Superconvergent discontin-
uous Galerkin methods for second-order elliptic problems, Math. Comput.,
78 (2009), pp. 1–24, doi:10.1090/S0025-5718-08-02146-7.

[15] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast It-
erative Solvers with Applications in Incompressible Fluid Dynamics, Oxford
Science Publications, Oxford, 2005.

[16] P. F. Fischer, J. W. Lottes, and S. Kerkemeier, Nek5000 Web page,
2015, https://nek5000.mcs.anl.gov.

[17] J. P. d. S. R. Gago, D. W. Kelly, O. C. Zienkiewicz, and
I. Babuška, A posteriori error analysis and adaptive processes in the finite
element method: Part II — Adaptive mesh refinement, Int. J. Num. Meth.
Engrg., 19 (1983), pp. 1621–1656.

[18] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G.
Sala, ML 5.0 Smoothed Aggregation User’s Guide, Tech. Report 2006-
2649, Sandia National Laboratories, 2006.

[19] A. Gholami, D. Malhotra, H. Sundar, and G. Biros, FFT, FMM,
or multigrid? A comparative study of state-of-the-art Poisson solvers for
uniform and nonuniform grids in the unit cube, SIAM J. Sci. Comput., 38
(2016), pp. C280–C306, doi:10.1137/15M1010798.

[20] G. Giorgiani, D. Modesto, S. Fernández-Méndez, and A. Huerta,
High-order continuous and discontinuous Galerkin methods for wave
problems, Int. J. Numer. Meth. Fluids, 73 (2013), pp. 883–903,
doi:10.1002/fld.3828.

[21] B. Gmeiner, U. Rde, H. Stengel, C. Waluga, and B. Wohlmuth,
Performance and scalability of hierarchical hybrid multigrid solvers for
stokes systems, SIAM Journal on Scientific Computing, 37 (2015),
pp. C143–C168, doi:10.1137/130941353.

[22] G. Hager and G. Wellein, Introduction to High Performance Comput-
ing for Scientists and Engineers, CRC Press, Boca Raton, 2011.

[23] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J.
Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski,
E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tumi-
naro, J. M. Willenbring, W. A., and K. S. Stanley, An overview
of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423,
www.trilinos.org.

[24] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin
methods: Algorithms, analysis, and applications, vol. 54 of Texts in Applied
Mathematics, Springer, 2008, doi:10.1007/978-0-387-72067-8.

[25] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and L. N. Olson,
Algebraic multigrid for high-order finite elements, J. Comput. Phys., 204
(2005), pp. 520–532, doi:10.1016/j.jcp.2004.10.021.

[26] K. Hillewaert, Development of the discontinuous Galerkin method for
high-resolution, large scale CFD and acoustics in industrial geometries,
PhD thesis, Univ. de Louvain, 2013.

22

[27] A. Huerta, A. Angeloski, X. Roca, and J. Peraire, Efficiency of
high-order elements for continuous and discontinuous Galerkin methods,
Int. J. Numer. Meth. Eng., 96 (2013), pp. 529–560, doi:10.1002/nme.4547.

[28] B. Janssen and G. Kanschat, Adaptive multilevel methods with local
smoothing for H1- and Hcurl-conforming high order finite element methods,
SIAM J. Sci. Comput., 33 (2011), pp. 2095–2114, doi:10.1137/090778523.

[29] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on
locally refined meshes, Comput. & Struct., 82 (2004), pp. 2437–2445,
doi:10.1016/j.compstruc.2004.04.015.

[30] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for
computational fluid dynamics, Oxford University Press, 2nd ed., 2005.

[31] R. M. Kirby, S. J. Sherwin, and B. Cockburn, To CG or to
HDG: A comparative study, J. Sci. Comput., 51 (2012), pp. 183–212,
doi:10.1007/s10915-011-9501-7.

[32] D. Komatitsch and J. Tromp, Introduction to the spectral element
method for three-dimensional seismic wave propagation, Geophys. J. Int.,
139 (1999), pp. 806–822, doi:10.1046/j.1365-246x.1999.00967.x.

[33] D. Kopriva, Implementing spectral methods for partial differential equa-
tions, Springer, Berlin, 2009.

[34] K. Kormann and M. Kronbichler, Parallel finite element operator
application: Graph partitioning and coloring, in Proc. 7th IEEE Int. Conf.
eScience, 2011, pp. 332–339, doi:10.1109/eScience.2011.53.

[35] M. Kronbichler, A. Diagne, and H. Holmgren, A fast massively
parallel two-phase flow solver for the simulation of microfluidic chips, Int. J.
High Perf. Comput. Appl., in press (2016), doi:10.1177/1094342016671790.

[36] M. Kronbichler and K. Kormann, A generic interface for parallel
finite element operator application, Comput. Fluids, 63 (2012), pp. 135–
147, doi:10.1016/j.compfluid.2012.04.012.

[37] M. Kronbichler, S. Schoeder, C. Müller, and W. A. Wall, Com-
parison of implicit and explicit hybridizable discontinuous Galerkin meth-
ods for the acoustic wave equation, Int. J. Numer. Meth. Eng., 106 (2016),
pp. 712–739, doi:10.1002/nme.5137.

[38] R. Löhner, Improved error and work estimates for high-order el-
ements, Int. J. Numer. Meth. Fluids, 72 (2013), pp. 1207–1218,
doi:10.1002/fld.3783.

[39] H. Luo, J. D. Baum, and R. Löhner, A p-multigrid discontinuous
Galerkin method for the Euler equations on unstructured grids, J. Com-
put. Phys., 211 (2006), pp. 767–783, doi:10.1016/j.jcp.2005.06.019.

[40] J. D. McCalpin, STREAM: Sustainable memory bandwidth in high per-
formance computers, 1991–2007. A continually updated technical report.
http://www.cs.virginia.edu/stream.

[41] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-
order hybridizable discontinuous Galkerin method for linear convection–
diffusion equations, J. Comput. Phys., 228 (2009), pp. 3232–3254,
doi:10.1016/j.jcp.2009.01.030.

[42] N. C. Nguyen, J. Peraire, and B. Cockburn, A class of embedded
discontinuous Galkerin methods for computational fluid dynamics, J. Com-
put. Phys., 302 (2015), pp. 674–692, doi:10.1016/j.jcp.2015.09.024.

23

http://www.cs.virginia.edu/stream

[43] S. A. Orszag, Spectral methods for problems in complex geometries, J.
Comput. Phys., 37 (1980), pp. 70–92, doi:10.1016/0021-9991(80)90005-4.

[44] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design, Morgan Kaufmann, Burlington, 4th ed., 2009.

[45] J. Schöberl, C++11 implementation of finite elements in NGSolve, Tech.
Report ASC Report No. 30/2014, Vienna University of Technology, 2014.

[46] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and
G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests
of octrees, in SC12: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2012,
doi:10.1109/SC.2012.91.

[47] H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid al-
gorithms for high-order continuous finite element discretizations, Numer.
Linear Algebra Appl., 22 (2015), pp. 664–680, doi:10.1002/nla.1979.

[48] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Else-
vier Academic Press, London, 2001.

[49] R. S. Varga, Matrix iterative analysis, Springer, Berlin, 2nd ed., 2009.

[50] P. E. J. Vos, S. J. Sherwin, and R. M. Kirby, From h to p efficiently:
Implementing finite and spectral/hp element methods to achieve optimal
performance for low- and high-order discretizations, J. Comput. Phys., 229
(2010), pp. 5161–5181, doi:10.1016/j.jcp.2010.03.031.

[51] S. Yakovlev, D. Moxey, R. M. Kirby, and S. J. Sherwin, To CG or
to HDG: A comparative study in 3D, J. Sci. Comput., 67 (2016), pp. 192–
220, doi:10.1007/s10915-015-0076-6.

24

	1 Introduction
	2 Discretization of Poisson's equation
	2.1 Continuous Galerkin approximation
	2.2 Symmetric interior penalty discontinuous Galerkin discretization
	2.3 Hybridizable discontinuous Galerkin discretization

	3 Performance of operator evaluation
	3.1 Variants of matrix-vector products
	3.2 Throughput analysis
	3.3 Performance modeling
	3.4 Latency analysis

	4 Performance comparison of multigrid solvers
	4.1 Multigrid solvers for matrix-free methods
	4.2 Multigrid for HDG
	4.3 Three-dimensional example with smooth solution
	4.4 Three-dimensional example with non-smooth solution
	4.5 Scalability in the massively parallel context

	5 Conclusions

