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Abstract

We develop geometric optimisation on the manifold of Hermitian positive definite (HPD)
matrices. In particular, we consider optimising two types of cost functions: (i) geodesically
convex (g-convex); and (ii) log-nonexpansive (LN). G-convex functions are nonconvex in the
usual euclidean sense, but convex along the manifold and thus allow global optimisation. LN
functions may fail to be even g-convex, but still remain globally optimisable due to their special
structure. We develop theoretical tools to recognise and generate g-convex functions as well as
cone theoretic fixed-point optimisation algorithms. We illustrate our techniques by applying them
to maximum-likelihood parameter estimation for elliptically contoured distributions (a rich class
that substantially generalises the multivariate normal distribution). We compare our fixed-point
algorithms with sophisticated manifold optimisation methods and obtain notable speedups.

Keywords: Manifold optimisation, geometric optimisation, geodesic convexity, log-nonexpansive,
conic fixed-point theory, Thompson metric, vector transport, Riemannian BFGS

1 Introduction

Hermitian positive definite (HPD) matrices possess a remarkably rich geometry that is a cornerstone
of modern convex optimisation [38] and convex geometry [9]. In particular, HPD matrices form
a convex cone, the strict interior of which is a differentiable Riemannian manifold which is also a
prototypical CAT(0) space (i.e., a metric space of nonpositive curvature [12]). This rich structure
enables “geometric optimisation” on the set of HPD matrices—enabling us to solve certain problems
that may be nonconvex in the Euclidean sense but are convex in the manifold sense (see §2 or [49]), or
failing that, still have enough geometry (see §4) so as to admit efficient optimisation.

This paper formally develops conic geometric optimisation1 for HPD matrices. We present key
results that help recognise geodesic convexity (g-convexity); we also present sufficient conditions that
place even several non geodesically convex functions within the grasp of geometric optimisation.

Motivation

We begin by noting that the widely studied class of geometric programs ultimately reduces to conic
geometric optimisation on 1 × 1 HPD matrices (i.e., positive scalars; see Remark 10). Geometric

∗A part of this work was done while the author was at Carnegie Mellon University, Pittsburgh (Machine Learning
Dept.) on leave from the MPI for Intelligent Systems, Tübingen, Germany. A preliminary fraction of this paper was
presented at the Advances in Neural Information Processing Systems, 2013 conference.
†School of ECE, College of Engineering, University of Tehran, Tehran, Iran
1To our knowledge the name “geometric optimisation” has not been previously attached to g-convex and cone theoretic

HPD matrix optimisation, though several scattered examples do exist. Our theorems offer a formal starting point for
recognising HPD geometric optimisation problems.
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programming has enjoyed great success across a spectrum of applications—see e.g., the survey of Boyd
et al. [11]; we hope this paper helps conic geometric optimisation gain wider exposure.

Perhaps the best known conic geometric optimisation problem is computation of the Karcher
(Fréchet) mean of a set of HPD matrices, a topic that has attracted great attention within matrix
theory [7, 8, 25, 48], computer vision [16], radar imaging [41, Part II], medical imaging [17, 52]—we
refer the reader to the recent book [41] for additional applications and references. Another basic
geometric optimisation problem arises as a subroutine in image search and matrix clustering [18].

Conic geometric optimisation problems also occur in several other areas: statistics (covariance
shrinkage) [15], nonlinear matrix equations [31], Markov decision processes and more broadly in the
fascinating areas of nonlinear Perron-Frobenius theory [32].

As a concrete illustration of our ideas, we discuss the task of maximum likelihood estimate (mle)
for elliptically contoured distributions (ECDs) [13, 21, 37]—see §5. We use ECDs to illustrate our
theory, not only because of their instructive value but also because of their importance in a variety of
applications [42].

Outline

The main focus of this paper is on recognising and constructing certain structured nonconvex functions
of HPD matrices. In particular, Section 2 studies the class of geodesically convex functions, while
Section 4 introduces “log-nonexpansive” functions. We present a limited-memory BFGS algorithm
in Section 3, where we also present a derivation for the parallel transport, which, we could not find
elsewhere in the literature. Even though manifold optimisation algorithms apply to both classes of
functions, for log-nonexpansive functions we advance fixed-point theory and algorithms separately
in Section 4. We present an application of geometric optimisation in Section 5, where we consider
statistical inference with elliptically contoured distributions. Numerical results are the subject of
Section 6.

2 Geodesic convexity for HPD matrices

Geodesic convexity (g-convexity) is a classical concept in geometry and analysis; it is used extensively in
the study of Hadamard manifolds and metric spaces of nonpositive curvature [12, 43], i.e., metric spaces
having a g-convex distance function. The concept of g-convexity has been previously explored in nonlin-
ear optimisation [45], but its importance and applicability in statistical applications and optimisation
has only recently gained more attention [49, 51]. It is worth noting that geometric programming [11]
ultimately relies on “geometric-mean” convexity [40], i.e., f(xαy1−α) ≤ [f(x)]α[f(y)]1−α, which is
nothing but logarithmic g-convexity on 1× 1 HPD matrices (positive scalars).

To introduce g-convexity on n× n HPD matrices we begin by recalling some key definitions—see
[12, 43] for extensive details.

Definition 1 (g-convex sets). Let M be a d-dimensional connected C2 Riemannian manifold. A set
X ⊂M is called geodesically convex if any two points of X are joined by a geodesic lying in X . That
is, if x, y ∈ X , then there exists a shortest path γ : [0, 1]→ X such that γ(0) = x and γ(1) = y.

Definition 2 (g-convex functions). Let X ⊂ M be a g-convex set. A function φ : X → R is called
geodesically convex, if for any x, y ∈ X , we have the inequality

φ(γ(t)) ≤ (1− t)φ(γ(0)) + tφ(γ(1)) = (1− t)φ(x) + tφ(y), (1)

where γ(·) is the geodesic γ : [0, 1]→ X with γ(0) = x and γ(1) = y.



3

2.1 Recognising g-convexity

Unlike scalar g-convexity, for matrices recognising g-convexity is not so easy. Indeed, for scalars, a
function f : R++ → R is log-g-convex (and hence g-convex) if and only if log ◦f ◦ exp is convex. A
similar characterisation does not seem to exist for HPD matrices, primarily due to the noncommutativity
of matrix multiplication. We develop some theory below for helping recognise and construct g-convex
functions.

To define g-convex functions on HPD matrices recall that Pd is a differentiable Riemannian manifold
where geodesics between points are available in closed form. Indeed, the tangent space to Pd at any
point can be identified with the set of Hermitian matrices, and the inner product on this space leads
to a Riemannian metric on Pd. At any point A ∈ Pd, this metric is given by the differential form
ds = ‖A−1/2dAA−1/2‖F; for A,B ∈ Pd there is a unique geodesic path [6, Thm. 6.1.6]

γ(t) = A#tB := A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1]. (2)

The midpoint of this path, namely A#1/2B is called the matrix geometric mean, which is an object
of great interest [6, 7, 8, 25]—we drop the 1/2 and denote it simply by A#B. Starting from the
geodesic (2), many g-convex functions can be constructed by extending monotonic convex functions
to matrices. To that end, first recall the fundamental operator inequality [2] (where � denotes the
Löwner partial order):

A#tB � (1− t)A+ tB. (3)

Theorem 3 uses the operator inequality (3) to construct “tracial” g-convex functions.

Theorem 3. Let h : R+ → R be monotonically increasing and convex; let λ : Pn → Rn+ denote the

eigenvalue map and λ↓(·) its decreasingly sorted version. Then,
∑k
j=1 h(λ↓j (·)) is g-convex for each

1 ≤ k ≤ n.

Proof. It suffices to establish midpoint convexity. Inequality (3) implies that

λj(A#B) ≤ λj
(
A+B

2

)
, for 1 ≤ j ≤ n.

Since h is monotonic, for 1 ≤ k ≤ n it follows that∑k

j=1
h(λ↓j (A#B)) ≤

∑k

j=1
h(λ↓j

(
A+B

2

)
). (4)

Lidskii’s theorem [5, Thm.III.4.1] yields the majorisation λ↓
(
A+B

2

)
≺ λ↓(A)+λ↓(B)

2 , which combined
with a celebrated result of Hardy et al. [23]2 and convexity of h yields

k∑
j=1

h(λ↓j
(
A+B

2

)
) ≤

k∑
j=1

h
(λ↓j (A)+λ↓j (B)

2

)
≤ 1

2

k∑
j=1

h(λ↓j (A)) + 1
2

k∑
j=1

h(λ↓j (B)).

Now invoke inequality (4) to conclude that
∑k
j=1 h(λ↓j (·)) is g-convex.

Example 4. Theorem 3 shows that the following functions are g-convex: (i) φ(A) = tr(eA); (ii)

φ(A) = tr(Aα) for α ≥ 1; (iii) λ↓1(eA); (iv) λ↓1(Aα) for α ≥ 1.

We now construct examples of g-convex functions different from those obtained via Theorem 3. Let us
start with a motivating example.

Example 5. Let z ∈ Cd. The function φ(A) := z∗A−1z is g-convex. To prove this claim it suffices to
verify midpoint convexity: φ(A#B) ≤ 1

2φ(A)+ 1
2φ(B) for A,B ∈ Pd. Since (A#B)−1 = A−1#B−1 and

A−1#B−1 � A−1+B−1

2 ([6, 4.16]), it follows that φ(A#B) = z∗(A#B)−1z ≤ 1
2 (z∗A−1z + z∗B−1z) =

1
2 (φ(A) + φ(B)).

2For a more recent textbook exposition, see e.g., [40, Theorem 1.5.4].



4

Below we substantially generalise this example; but first some background.

Definition 6 (Positive linear map). A linear map Φ from Hilbert space H1 to a Hilbert space H2 is
called positive, if for 0 � A ∈ H1, Φ(A) � 0. It is called strictly positive if Φ(A) � 0 for A � 0; finally,
it is called unital if Φ(I) = I.

Lemma 7 ([6, Ex.4.1.5]). Define the parallel sum of HPD matrices A,B as

A : B := [A−1 +B−1]−1.

Then, for any positive linear map Π : Pd → Pk, we have

Φ(A : B) � Φ(A) : Φ(B).

Building on Lemma 7, we are ready to state a key theorem that helps us recognise and construct
g-convex functions (see Thm. 15, for instance). This result is by itself not new—e.g., it follows from
the classic paper of Kubo and Ando [30]; due to its key importance we provide our own proof below
for completeness.

Theorem 8. Let Φ : Pd → Pk be a strictly positive linear map. Then,

Φ(A#tB) � Φ(A)#tΦ(B), t ∈ [0, 1], for A,B ∈ Pd. (5)

Proof. The key insight of the proof is to use the integral identity [3]:∫ 1

0

λα−1(1− λ)β−1

[λa−1 + (1− λ)b−1]α+β
dλ =

Γ(α)Γ(β)

Γ(α+ β)
aαbβ

Using α = 1− t and β = t > 0, for C � 0 this yields the integral representation

Ct =
Γ(1)

Γ(t)Γ(1− t)

∫ 1

0

[
λC−1 + (1− λ)I

]−1
λt(1− λ)1−t

dλ, (6)

where Γ is the usual Gamma function. Since A#tB = A1/2(A−1/2BA−1/2)tA1/2, using (6) we may
write it as

A#tB =
∫ 1

0

[
(1− λ)A−1 + λB−1

]−1
dµ(λ), (7)

for a suitable measure dµ(λ). Applying the map Φ to both sides of (7) we obtain

Φ(A#tB) =
∫ 1

0
Φ
([

(1− λ)A−1 + λB−1
]−1)

dµ(λ)

=
∫ 1

0
Φ(Ā : B̄)dµ(λ),

where Ā = (1− λ)−1A and B̄ = λ−1B. Using Lemma 7 and linearity of Φ we see∫ 1

0
Φ(Ā : B̄)dµ(λ) �

∫ 1

0

(
Φ(Ā) : Φ(B̄)

)
dµ(λ)

=
∫ 1

0

[
(1− λ)Φ(A)−1 + λΦ(B)−1

]−1
dµ(λ)

(7)
= Φ(A)#tΦ(B),

which completes the proof.

A corollary of Theorem 8 (that subsumes Example 5) follows.

Corollary 9. Let A,B ∈ Pd, and let X ∈ Cd×k have full column rank; then

trX∗(A#tB)X ≤ [trX∗AX]1−t[trX∗BX]t, t ∈ [0, 1]. (8)
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Proof. Use the positive linear map A 7→ trX∗AX in Theorem 8.

Remark 10. Corollary 9 actually proves a result stronger than g-convexity: it shows log-g-convexity,
i.e., φ(X#Y ) ≤

√
φ(X)φ(Y ), so that log φ is g-convex. It is easy to verify that if φ1, φ2 are log-g-convex,

then both φ1φ2 and φ1 + φ2 are log-g-convex.

Remark 11. More generally, if h : R+ → R+ is nondecreasing and log-convex, then the map

A 7→∑k
i=1 log h(λi(A)) is g-convex. The proof is the same as of Theorem 3. For instance, if h(x) = ex,

we obtain the special case that A 7→ log tr(eA) is g-convex, i.e.,

log
∑n

i=1
eλi(A#B) ≤ log

∑n

i=1
e
λi(A)+λi(B)

2 ≤ 1
2 log

∑n

i=1
eλi(A) + 1

2 log
∑n

i=1
eλi(B).

We mention now another corollary to Theorem 8; we note in passing that it subsumes a more
complicated result of Gurvits and Samorodnitsky [22, Lem. 3.2].

Corollary 12. Let Ai ∈ Cd×k with k ≤ d such that rank([Ai]
m
i=1) = k; also let B � 0. Then

φ(X) := log det(B +
∑
iA
∗
iXAi) is g-convex on Pd.

Proof. By our assumption on Ai and B, the map Φ = S 7→ B+
∑
iA
∗
iXAi is strictly positive. Thm. 8

implies that Φ(X#Y ) = B +
∑
iA
∗
i (X#Y )Ai � Φ(X)#Φ(Y ). This operator inequality is stronger

than what we require. Indeed, since log det is monotonic and determinants are multiplicative, from
this inequality it follows that

φ(S#R) = log det Φ(S#R) ≤ log det(Φ(S)#Φ(R))

≤ 1
2 log det Φ(S) + 1

2 log det Φ(R) = 1
2φ(S) + 1

2φ(R).

Observe that the above result extends to φ(X) = log det
(
B +

∫∞
0
A∗λXAλdµ(λ)

)
, where µ is some

positive measure on (0,∞).

Remark 13. Corollary 12 may come as a surprise to some readers because log det(X) is well-known to
be concave (in the Euclidean sense), and yet log det(B +A∗XA) turns out to be g-convex—moreover,
log det(X) is g-linear, i.e., both g-convex and g-concave.

Example 14. In [48] (see also [14, 18]) a dissimilarity function to compare a pair of HPD matrices is
studied. Specifically, for X,Y � 0, this function is called the S-Divergence and is defined as

S(X,Y ) := log det
(
X+Y

2

)
− 1

2 log det(X)− 1
2 log det(Y ). (9)

Divergence (9) proves useful in several applications [14, 18, 48], and very recently its joint g-convexity
(in both variables) was discovered [48]. Corollary 12 along with Remark 13 yield g-convexity of S(X,Y )
in either X or Y separately.

We are now ready to state our next key g-convexity result. A similar result was obtained in [51];
our result is somewhat more general as it allows incorporation of positive linear maps. Moreover, our
proof technique is completely different.

Theorem 15. Let h : Pk → R be nondecreasing (in Löwner order) and g-convex. Let r ∈ {±1}, and
let Φ be a positive linear map. Then, φ(S) = h(Φ(Sr)) is g-convex.

Proof. It suffices to prove midpoint g-convexity. Since r ∈ {±1}, (X#Y )r = Xr#Y r. Thus, applying
Theorem 8 to Φ and noting that h is nondecreasing it follows that

h(Φ(X#Y )r) = h(Φ(Xr#Y r)) ≤ h(Φ(Xr)#Φ(Y r)). (10)

By assumption h is g-convex, so the last inequality in (10) yields

h(Φ(Xr)#Φ(Y r)) ≤ 1
2h(Φ(Xr)) + 1

2h(Φ(Y r)) = 1
2φ(X) + 1

2φ(Y ). (11)

Notice that if h is strictly g-convex, then φ(S) is also strictly g-convex.
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Example 16. Let h = log det(X) and Φ(X) = B+
∑
iA
∗
iXAi. Then, φ(X) = log det(B+

∑
iA
∗
iX

rAi)
is g-convex. With h(X) = tr(Xα) for α ≥ 1, tr(B +

∑
iA
∗
iX

rAi)
α is g-convex.

Next, Theorem 17 presents a method for creating essentially logarithmic versions of our “tracial”
g-convexity result Theorem 3.

Theorem 17. If f : R→ R is convex, then φ(·) :=
∑k
i=1 f(log λ↓i (·)) is g-convex for each 1 ≤ k ≤ n.

If h : R→ R is nondecreasing and convex, φ(·) =
∑k
i=1 h(| log λ(·)|) is g-convex for each 1 ≤ k ≤ n.

To prove Theorem 17 we will need the following majorisation.

Lemma 18. Let ≺log denote the log-majorisation order, i.e., for x, y ∈ Rn++ ordered nonincreasingly,

we say x ≺log y if
∏n−1
i=1 xi ≤

∏n−1
i=1 yi and

∏n
i=1 xi =

∏n
i=1 yi. Then, for A,B ∈ Pn and t ∈ [0, 1], we

have the log-majorisation between the eigenvalues:

λ(A#tB) ≺log λ(A1−tBt) ≺log λ(A1−t)λ(Bt).

Proof. The first majorisation follows from a recent result of Matharu and Aujla [35]. The second one
follows easily from λ1(AB) ≤ σ1(AB) ≤ σ1(A)σ1(B) = λ1(A)λ1(B) (the final equality holds since
A,B ∈ Pn). Apply this inequality to the antisymmetric (Grassmann) exterior product ∧k(AB), since

σ1(∧k(AB)) =
∏k
j=1 σj(AB) (see e.g., [5, I; IV.2]; then we obtain λ1(∧k(AB)) ≤ σ1(∧k(AB)). Now

set A← A1−t, B ← Bt, and use the multiplicativity ∧k(AB) = ∧kA ∧k B to complete the proof.

Theorem 17. From Lemma 18 we have the majorisation

λ(A#tB) ≺log λ(A1−tBt) ≺log λ(A1−t)λ(Bt);

on taking logarithms, this majorisation may be written equivalently as

log λ(A#tB) ≺ (1− t) log λ(A) + t log λ(B). (12)

Applying a classical result of [23] on majorisation under convex functions, from (12) we obtain the
inequality

φ(A#tB) =
∑k

i=1
f(log λi(A#tB)) ≤

∑k

i=1
f ((1− t) log λi(A) + t log λi(B))

≤ (1− t)
∑k

i=1
f(log λi(A)) + t

∑k

i=1
f(log λi(B))

= (1− t)φ(A) + tφ(B).

Applying the Ky-Fan norm
∑k
i=1 σi(·)—that is, the sum of top-k singular values—to (12), we obtain

the weak-majorisation (see e.g., [5, II] for more on majorisation):

σ(logA#tB) ≺w σ [(1− t) log λ(A) + t log λ(B)] ≺w (1− t)σ(logA) + tσ(logB). (13)

Since h is monotone and convex, (13) yields g-convexity of
∑k
i=1 h(| log λi(·)|).

Corollary 19. Let Φ : Rn → R+ be a symmetric gauge function (i.e., Φ is a norm, invariant to
permutation and sign changes). Also, let X ∈ GLn(C). Then, Φ(σ(log(X∗AX)) is g-convex.

Proof. Note that X∗(A#B)X = (X∗AX)#(X∗BX); now apply Theorem 17.

Example 20. Consider δR(A,X) := ‖log(X−1/2AX−1/2)‖F the Riemannian distance between A,X ∈
Pd [6, Ch. 6]. Since ‖ log λ(X−1/2AX−1/2)‖2 = ‖σ(logX−1/2AX−1/2)‖2, it follows from Corollary 19
that A 7→ δR(A,X) is g-convex (see also [6, Cor. 6.1.11]).
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This immediately shows that computing the Fréchet (Karcher) mean and median of HPD matrices
(also known as geometric mean and median of HPD matrices, respectively) are g-convex optimisation
problems; formally, these problems are given by

min
X�0

∑m

i=1
wiδR(X,Ai), (Geometric Median),

min
X�0

∑m

i=1
wiδ

2
R(X,Ai), (Geometric Mean),

where
∑
i wi = 1, wi ≥ 0, and Ai � 0 for 1 ≤ i ≤ m. The latter problem has received great interest

in the literature [6, 7, 8, 25, 36, 41, 48], and its optimal solution is unique owing to the (strict)
g-convexity of its objective. The former problem is less well-known but in some cases proves more
favourable [4, 41]—again, despite the nonconvexity of the objective, its g-convexity ensures every local
solution is global.

We conclude this section by using Lemma 18 to prove the following log-convexity analogue to
Theorem 17 (cf. the scalar case studied in [39, Prop. 2.4]).

Theorem 21. Let f(x) =
∑
j≥0 ajx

j be real analytic with aj ≥ 0 for j ≥ 0 and radius of convergence

R. Then, φ(·) =
∏k
i=1 f(λi(·)) is log-g-convex on matrices with spectrum in (0, R).

Proof. It suffices to verify that log φ(A#B) ≤ 1
2 log φ(A) + 1

2 log φ(B). Since f ′ ≥ 0, we have

φ(A#B) =
∏k

i=1
f(λi(A#B)) ≤

∏k

i=1
f(λ

1/2
i (A)λ

1/2
i (B)) (using Lemma 18)

≤
∏k

i=1

√
f(λi(A))

√
f(λi(B)) (Cauchy-Schwarz on power-series of f)

=
√
φ(A)

√
φ(B).

Taking logarithms, we see that φ(·) is log-g-convex (and hence also g-convex).

Example 22. Some examples of f that satisfy conditions of Theorem 21 are exp, sinh on (0,∞),
− log(1− x) and (1 + x)/(1− x) on (0, 1); see [39] for more examples.

2.2 Multivariable g-convexity

We describe now an extension of g-convexity to multiple matrices; a two-variable version was also
partially explored in [49, 51], though under a different name. We begin our multivariable extension by
recalling a few basic properties of the Kronecker product [34].

Lemma 23. Let A ∈ Rm×n, B ∈ Rp×q. Then, A⊗B := [aijB] ∈ Rmp×nq satisfies:

(i) (A⊗B)∗ = A∗ ⊗B∗

(ii) (A⊗B)−1 = A−1 ⊗B−1

(iii) Assuming that the respective products exist,

(AC ⊗BD) = (A⊗B)(C ⊗D) (14)

(iv) A⊗ (B ⊗ C) = (A⊗B)⊗ C
(v) If A = UD1U

∗ and B = V D2V
∗ then (A⊗B) = (U ⊗ V )(D1 ⊗D2)(U ⊗ V )∗.

(vi) Let A,B � 0, and t ∈ R; then
(A⊗B)t = At ⊗Bt. (15)

(vii) If A � B and C � D, then (A⊗ C) � (B ⊗D).
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Proof. Identities (i)–(iii) are classic; (v) follows easily from (i) and (iv), while (vi) and (vii) follow from
(v); (viii) is an easy exercise.

We will need the following easy but key result on tensor products of geometric means.

Lemma 24. Let A,B ∈ Pd1 and C,D ∈ Pd2 . Then,

(A#B)⊗ (C#D) = (A⊗ C)#(B ⊗D). (16)

Proof. Denote γ(X,Y ) := (X−1/2Y X−1/2)1/2. Observe that

γ(A,B)⊗ γ(C,D) = (A−1/2BA−1/2)1/2 ⊗ (C−1/2DC−1/2)1/2

= [(A−1/2BA−1/2)⊗ (C−1/2DC−1/2)]1/2

= [(A⊗ C)−1/2(B ⊗D)(A⊗ C)−1/2]1/2

= γ(A⊗ C,B ⊗D),

where the second equality follows from Lemma 23-(iii), while the third one from Lemma 23-(ii),(iii),
and (vi). A similar manipulation then shows that

(A#B)⊗ (C#D) = (A1/2γ(A,B)A1/2)⊗ (C1/2γ(C,D)C1/2),

= (A1/2 ⊗ C1/2)(γ(A,B)⊗ γ(C,D))(A1/2 ⊗ C1/2)

= (A⊗ C)1/2(γ(A,B)⊗ γ(C,D))(A⊗ C)1/2

= (A⊗ C)1/2γ(A⊗ C,B ⊗D)(A⊗ C)1/2

= (A⊗ C)#(B ⊗D),

which concludes the proof.

Lemma 24 inductively extends to the multivariable case, so that⊗m
i=1(Ai#Bi) = (

⊗m
i=1Ai) # (

⊗m
i=1Bi) . (17)

Using identity (17) we thus obtain the following multivariate analogue to Theorem 17.

Theorem 25. Let h be an increasing convex function on R+ → R. Then, the map
∏m
i=1 trh(Xi) is

jointly g-convex, i.e., trh(
⊗m

i=1Xi) is g-convex in its variables.

Proof. Let (A1, B1), . . . , (Am, Bm) be pairs of HPD matrices of arbitrary sizes (such that for each i,
Ai, Bi are of the same size. Let j index the eigenvalues of the tensor product

⊗m
i=1(Ai#Bi). Then,

starting with identity (17) we obtain

λj [
⊗m

i=1(Ai#Bi)] = λj [(
⊗m

i=1Ai) # (
⊗m

i=1Bi)] ≤ 1
2λj [

⊗m
i=1Ai +

⊗m
i=1Bi]

trh (
⊗m

i=1(Ai#Bi)) =
∑
j

h (λj [
⊗m

i=1(Ai#Bi)]) ≤
∑
j

h
(
1
2λj [

⊗m
i=1Ai +

⊗m
i=1Bi]

)
≤ 1

2

∑
j

h(λj(
⊗m

i=1Ai)) + 1
2

∑
j h(λj(

⊗m
i=1Bi))

= 1
2 trh(

⊗m
i=1Ai) + 1

2 trh(
⊗m

i=1Bi)

= 1
2

m∏
i=1

trh(Ai) + 1
2

m∏
i=1

trh(Bi),

which shows the desired multivariable g-convexity of the map trh(
⊗m

i=1Xi).

Again, using (17) we obtain the following multivariate analogue to Theorem 8.
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Theorem 26. Let (X1, Y1), . . . , (Xm, Ym) be pairs of HPD matrices of arbitrary sizes (such that for
each i, Xi, Yi are of the same size). Let Φi : Hi → H′i be a positive linear map for each i, and Φ the
positive multilinear map defined by Φ ≡ ⊗mi=1Ai 7→ ⊗mi=1Φi(Ai). Then,

Φ(⊗mi=1(Xi#Yi)) � Φ(⊗iXi)#Φ(⊗iYi). (18)

Proof. Expanding the definition of Φ we have

Φ(
⊗

i(Xi#Yi)) =
⊗

i Φi(Xi#Yi) �
⊗

i[Φi(Xi)#Φi(Yi)]

=
[⊗

i Φi(Xi)
]
#
[⊗

i Φi(Yi)
]

= Φ(
⊗

iXi)#Φ(
⊗

i Yi).

The operator inequality (18) follows upon invoking Theorem 8 and Lemma 23-(viii).

Building on Theorem 26, we also derive a generalisation to Theorem 15.

Theorem 27. Let h : ⊗iH′i → R be nondecreasing (in Löwner order) and g-convex Let ri ∈ {±1} and
let Φ : ⊗iHi → ⊗iH′i be a strictly positive multilinear map. Then, φ(X1, . . . , Xm) = (h ◦ Φ)(

⊗
iX

ri
i )

is jointly g-convex (i.e., g-convex in X1, . . . , Xm).

Proof. Since φ is continuous, it suffices to establish midpoint g-convexity.

(h ◦ Φ)(
⊗

i(Xi#Yi)
ri) = (h ◦ Φ)(

⊗
i(X

ri
i #Y rii ))

� h
(
Φ(
⊗

iX
ri
i )#Φ(

⊗
i Y

ri
i ))

� 1
2 ((h ◦ Φ)(

⊗
iX

ri
i ) + (h ◦ Φ)(

⊗
i Y

ri
i ))

= 1
2 (φ(X1, . . . , Xm) + φ(Y1, . . . , Ym)) .

Since h is nondecreasing, using Theorem 26 the first inequality follows. The second one follows as h is
g-convex, which completes the proof.

Using identities (15) and (17) with Lemma 18 we obtain the following log-majorisations.

Proposition 28. Let (Ai, Bi)
m
i=1 be pairs of HPD matrices of compatible sizes. Then,

λ(
⊗m

i=1Ai#tBi) ≺log λ([
⊗m

i=1Ai]
1−t[

⊗m
i=1Bi]

t), t ∈ [0, 1]

λ([
⊗m

i=1Ai]
1−t[

⊗m
i=1Bi]

t) ≺log λ[
⊗m

i=1A
1−t
i ]λ[

⊗m
i=1B

t
i ].

Proposition 28 grants us the following multivariate analogue to Theorem 17.

Theorem 29. If f : R → R is convex, then φ(·) :=
∑k
j=1 f(log λj(

⊗m
i=1Xi)) is g-convex on

{Xi ∈ Pn}mi=1 for each 1 ≤ k ≤ n . If h : R → R is nondecreasing and convex, then φ(·) =∑k
j=1 h(| log λj(

⊗m
i=1Xi)|) is g-convex for 1 ≤ k ≤ n.

Theorem 29 brings us to the end of our theoretical results on recognising and constructing g-convex
functions. We are now ready to devote attention to optimisation algorithms. In particular, we
first discuss manifold optimisation [1] techniques in §3. Then, in §4 we introduce a special class of
functions that overlaps with g-convex functions, but not entirely, and admits simpler “conic fixed-point”
algorithms.

3 Manifold optimisation for g-convex functions

Since Pd is a smooth manifold, we can use optimisation techniques based on exploiting smooth manifold
structure. In addition to common concepts such as tangent vectors and derivatives along manifolds,
different optimisation methods need a subset of new definitions and explicit expressions for inner
products, gradients, retractions, vector transport and Hessians [1, 24].
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Since Pd can be viewed as a sub-manifold of the Euclidean space R2d2 , most of concepts of
importance to our study can be defined by using the embedding structure of Euclidean space. The
tangent space at any point is the space Hd of d× d hermitian matrices. The derivative of a function
on the manifold in any direction in the tangent space is simply the embedded Euclidean derivative in
that direction.

For several optimisation algorithms, two different inner product formulations were tested in [25] for
Pd. The authors observed that the intrinsic inner product leads to the best convergence speed for the
tested algorithms. We too observed that the intrinsic inner product yields more than a hundred times
faster convergence for our algorithms compared to the induced inner product of Euclidean space. The
intrinsic inner product of two tangent vectors at point X on the manifold is given by

gX(η, ξ) = tr(ηX−1ξX−1), η, ξ ∈ Hd. (19)

This intrinsic inner product leads to geodesics of the form (2). Now that we have set up an inner
product tensor, we can define the gradient direction as the direction of the maximum change. The
inner product between the gradient vector and a vector in the tangent space is equal to the gradient of
the function in that direction. If gradHf(X) = 1

2 (gradf(X) + (gradf(X))∗) is the hermitian part of
Euclidean gradient, then the gradient in intrinsic metric is given by:

gradHPDf(X) = XgradHf(X)X.

The simplest gradient descent approach, namely steepest descent, also needs the notion of projection
of a vector in the tangent space onto a point on the manifold. Such a projection is called retraction.
If the manifold is Riemannian, a particular retraction is the exponential map, i.e., moving along a
geodesic. If the inner product is the induced inner product of the manifold, then the retraction is
normal retraction on the Euclidean space which is obtained by summing the point on the manifold
and the vector on the tangent space. The intrinsic inner product of (19) of the Riemannian manifold
leads to the following exponential map:

RHPD
X (ξ) = X1/2 exp(X−1/2ξX−1/2)X1/2, ξ ∈ Hd. (20)

From a numerical perspective, our experiments revealed that the following equivalent representation of
the retraction (20) gives the best computational speed:

RHPD
X (ξ) = X exp(X−1ξ), ξ ∈ Hd. (21)

Definitions of the gradient and retraction suffice for implementing steepest descent on Pd. For
approaches such as conjugate gradients or quasi-newton methods, we need to relate the tangent vector
at one point to the tangent vector at another point, i.e., we need to define vector transport. A special
case of vector transport on a Riemannian manifold is parallel transport: for the induced Euclidean
metric, parallel transport is simply the identity map. In order to compute the parallel transport one
first needs to compute the Levi-Civita connection. This connection is a way to compute directional
derivatives of vector fields. It is a map from the Cartesian product of tangent bundles to the tangent
bundle:

∇ : TM× TM→ TM,

where TM is the tangent bundle of manifold M (i.e. the space of smooth vector fields on M). It can
be verified that for the intrinsic metric (19) the following connection satisfies all the needed properties
(see e.g., [25]):

∇HPD
ζX ξX = Dξ(X)[ζX ]− 1

2 (ζXX
−1ξX + ξXX

−1ζX),

where Dξ(X) denotes the classical Fréchet derivative of ξ(X). ξX and ζX are vector fields on the
manifold Hd. Subindex X is used to discriminate a vector field from a tangent vector.
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Consider P (t), a vector field along the geodesic curve γ(t). Parallel transport along a curve is given
by the differential equation

DtP (t) = ∇γ̇(t)P (t) = 0, s.t. P (0) = η.

For the intrinsic metric, the above equation becomes

Ṗ (t)− 1
2 (γ̇(t)X−1t P (t) + P (t)X−1t γ̇(t)) = 0.

The geodesic passing through γ(0) = X with γ̇ = ξ is given by

γ(t) = X1/2 exp(tX−1/2ξX−1/2)X1/2.

For t = 1 we get the retraction (20). It can be shown that along the geodesic curve the following
equation gives the parallel transport:

P (t) = X1/2 exp(t 12X
−1/2ξX−1/2)X−1/2ηX−1/2 exp(t 12X

−1/2ξX−1/2)X1/2.

Thus, parallel transport for the intrinsic inner product is given by

T HPD
X,Y (η) = X1/2(X−1/2Y X−1/2)1/2X−1/2ηX−1/2(X−1/2Y X−1/2)1/2X1/2.

It is important to note that this parallel transport can be written in a compact form that is also
computationally more advantageous, namely,

T HPD
X,Y (η) = EηE∗, where E = (Y X−1)1/2. (22)

We are now ready to describe a quasi-newton method on Pd. Different algorithms such as conjugate-
gradient, BFGS, and trust-region methods for the Riemmanian manifold Pd are explained in [25].
Here we only provide details for a limited memory version of Riemmanian BFGS (RBFGS). The
RBFGS algorithm for general retraction and vector transport was originally explained in [44] and the
proof of convergence appeared in [46], although for a slightly different version. It was proved that
for g-convex functions and with line-search that satisfies Wolfe conditions, RBFGS algorithm has a
(local) superlinear convergence rate. The RBFGS algorithm can be transformed into a limited-memory
RBFGS (L-RBFGS) algorithm by unrolling the update step of the approximate Hessian computation
as shown in Algorithm 1. As may be apparent from the algorithm, parallel transport and its inverse
can be the computational bottlenecks. One possible speed-up is to store the matrix E and its inverse
in (22).

4 Geometric optimisation for log-nonexpansive functions

Though manifold optimisation is powerful and widely applicable (see e.g., the excellent toolbox [10]),
for a special class of geometric optimisation problems we may be able to circumvent its heavy machinery
in favour of potentially much simpler algorithms.

This motivation underlies the material developed in this section, where ultimately our goal is to
obtain fixed-point iterations by viewing Pd as a convex cone instead of a Riemannian manifold. This
viewpoint is grounded in nonlinear Perron-Frobenius theory [32], and it proves to be of practical value
for our application in §5. Notably, for certain problems we can obtain globally optimal solutions even
without g-convexity. We believe the general conic optimisation theory developed in this section may
be of wider interest.

Consider thus the following minimisation problem

minS�0 Φ(S), (23)
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Algorithm 1 L-RBFGS

Given: Riemannian manifold M with Riemannian metric g; vector transport T on M with
associated retraction R; initial value X0; a smooth function f
Set initial Hdiag = 1/

√
gX0

(gradf(X0), gradf(X0))
for k = 0, 1, . . . do

Obtain descent direction ξk by unrolling the RBFGS method
ξk ← HessMul(−gradf(Xk), k)

Use line-search to find α s.t. f(RXk(αξk)) is sufficiently smaller than f(Xk)
Calculate Xk+1 = RXk(αξk)
Define Sk = TXk,Xk+1

(αξk)
Define Yk = gradf(Xk+1)− TXk,Xk+1

(gradf(Xk))
Update Hdiag = gXk+1

(Sk, Yk)/gXk+1
(Yk, Yk)

Store Yk; Sk; gXk+1
(Sk, Yk); gXk+1

(Sk, Sk)/gXk+1
(Sk, Yk); Hdiag

end for
return Xk

function HessMul(P, k)
if k > 0 then

Pk = P − gXk+1
(Sk,Pk+1)

gXk+1
(Yk,Sk)

Yk

P̂ = T −1Xk,Xk+1
HessMul(TXk,Xk+1

Pk, k − 1)

return P̂ − gXk+1
(Yk,P̂ )

gXk+1
(Yk,Sk)

Sk +
gXk+1

(Sk,Sk)

gXk+1
(Yk,Sk)

P

else
return HdiagP

end if
end function

where Φ is a continuously differentiable real-valued function on Pd. Since the constraint set {S � 0} is
an open subset of a Euclidean space, the first-order optimality condition for (23) is similar to that of
unconstrained optimisation. A point S∗ is a candidate local minimum of Φ only if its gradient at this
point is zero, that is,

∇Φ(S∗) = 0. (24)

The nonlinear (matrix) equation (24) could be solved using numerical techniques such as Newton’s
method. But, such approaches can be computationally more demanding than the original optimisation
problem, especially because they involve the (inverse of) the second derivative ∇2Φ at each iteration.
We propose to exploit a fixed-point iteration that offers a simpler method for solving (24). More
importantly, the fixed-point technique allows one to show that under certain conditions the solution
to (24) is unique, and therefore potentially a global minimum (essentially, if the global minimum is
attained, then it must be this unique stationary point).

Assume therefore that (24) is rewritten as the fixed-point equation

S∗ = G(S∗). (25)

Then, a fixed-point of the map G : Pd → Pd is a potential solution (since it is a stationary point) to
the minimisation problem (23). The natural question is how to find such a fixed-point, and starting
with a feasible S0 � 0, whether it suffices to perform the Picard iteration

Sk+1 ← G(Sk), k = 0, 1, . . . . (26)

Iteration (26) is (usually) not a fixed-point iteration when cast in a normed vector space—the conic
geometry of Pd alluded to previously suggests that it might be better to analyse the iteration using a
non-vectorial metric.
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We provide below a class of sufficient conditions ensuring convergence of (26). Therein, the correct
metric space in which to study convergence is neither the Euclidean (or Banach) space Rn nor the
Riemannian manifold Pd with distance (50). Instead, a conic metric proves more suitable, namely, the
Thompson part metric, an object of great interest in nonlinear Perron-Frobenius theory [31, 32].

Our sufficient conditions stem from the following key definition.

Definition 30 (Log-nonexpansive). Let f : (0,∞)→ (0,∞). We say f is log-nonexpansive (LN) on a
compact interval I ⊂ (0,∞) if there exists a constant 0 ≤ q ≤ 1 such that

| log f(t)− log f(s)| ≤ q| log t− log s|, ∀s, t ∈ I. (27)

If q < 1, we say f is q-log-contractive. If for every s 6= t it holds that

| log f(t)− log f(s)| < | log t− log s|, ∀s, t s 6= t,

we say f is log-contractive.

We use log-nonexpansive functions in a concrete optimisation task in Section 4.2. The proofs
therein rely on core properties of the Thompson metric and contraction maps in the associated metric
space—we cover requisite background in Section 4.1. The content of Section 4.1 is of independent
interest as the theorems therein provide techniques for establishing contractivity (or nonexpansivity)
of nonlinear maps from Pd to Pk.

4.1 Thompson metric and contractive maps

On Pd, the Thompson metric is defined as (cf. δR which uses ‖·‖F)

δT (X,Y ) := ‖log(Y −1/2XY −1/2)‖, (28)

where ‖·‖ is the usual operator norm (largest singular value), and ‘log’ is the matrix logarithm. Let us
recall some core (known) properties of (28)—for details please see [31, 32, 33].

Proposition 31. Unless noted otherwise, all matrices are assumed to be HPD.

δT (X−1, Y −1) = δT (X,Y ) (29a)

δT (B∗XB,B∗Y B) = δT (X,Y ), B ∈ GLn(C) (29b)

δT (Xt, Y t) ≤ |t|δT (X,Y ), for t ∈ [−1, 1] (29c)

δT

(∑
i
wiXi,

∑
i
wiYi

)
≤ max

1≤i≤m
δT (Xi, Yi), wi ≥ 0, w 6= 0 (29d)

δT (X +A, Y +A) ≤ α

α+ β
δT (X,Y ), A � 0, (29e)

where α = max {‖X‖, ‖Y ‖} and β = λmin(A).

We prove now a powerful refinement to (29b), which shows contraction under “compression.”

Theorem 32. Let X ∈ Cd×p, where p ≤ d have full column rank. Let A, B ∈ Pd. Then,

δT (X∗AX,X∗BX) ≤ δT (A,B). (30)

Proof. Let AC = X∗AX and BC = X∗BX denote the “compressions” of A and B, respectively; these
compressions are invertible since X is assumed to have full column rank. The largest generalised
eigenvalue of the pencil (A,B) is given by

λ1(A,B) := λ1(A−1B) = max
x 6=0

x∗Bx

x∗Ax
. (31)
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Starting with (31) we have the following relations:

λ1(A−1B) = λ1(A−1/2BA−1/2) = max
x 6=0

x∗A−1/2BA−1/2x

x∗x

= max
w 6=0

w∗Bw

(A1/2w)∗(A1/2w)
= max

w 6=0

w∗Bw

w∗Aw

≥ max
w=Xp,p6=0

w∗Bw

w∗Aw
= max

p 6=0

p∗X∗BXp

p∗X∗AXp

= max
p 6=0

p∗BCp

p∗ACp
= λ1(A−1C BC) = λ1(A

−1/2
C BA

−1/2
C ).

Similarly, we can show that λ1(B−1A) = λ1(B−1/2AB−1/2) ≥ λ1(B
−1/2
C ACB

−1/2
C ). Since A, B and

the matrices AC , BC are all positive, we may conclude

max
{

log λ1(A−1U BU ), log λ1(B−1U AU )
}
≤ max

{
λ1(A−1B), log λ1(B−1A)

}
, (32)

which is nothing but the desired claim δT (X∗AX,X∗BX) ≤ δT (A,B).

Theorem 32 can be extended to encompass more general “compression” maps, namely to those
defined by operator monotone functions, a class that enjoys great importance in matrix theory—see
e.g., [5, Ch. V] and [6].

Theorem 33. Let f be an operator monotone (i.e., if X � Y , then f(X) � f(Y )) function on (0,∞)
such that f(0) ≥ 0. Then,

δT (f(X), f(Y )) ≤ δT (X,Y ), X, Y ∈ Pd. (33)

Proof. If f is operator monotone with f(0) ≥ 0, then it admits the integral representation [5, (V.53)]

f(t) = γ + βt+

∫ ∞
0

λt

λ+ t
dµ(λ), (34)

where γ = f(0), β ≥ 0, and dµ(t) is a nonnegative measure. Using (34) we get

f(A) = γI + βA+

∫ ∞
0

(λA)(λI +A)−1dµ(λ) =: γI + βA+M(A).

Similarly, we obtain f(B) = γI + βB +M(B). Now, consider at first

δT (M(A),M(B)) = δT (
∫
λA(λI +A)−1dµ(t),

∫
λA(λI +A)−1dµ(t))

≤ max
λ

δT (λA(λI +A)−1, λB(λI +B)−1)

≤ max
λ

δT ((λA−1 + I)−1, (λB−1 + I)−1)

= max
λ

δT (I + λA−1, I + λB−1)

≤ max
λ

ᾱ

ᾱ+ 1
δT (λA−1, λB−1), ᾱ := max{‖A−1‖, ‖B−1‖},

=
ᾱ

ᾱ+ 1
δT (A,B) < δT (A,B).

Next, defining α := max{‖βA + M(A)‖, ‖βB + M(B)‖}, we can use the above contraction to help
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prove contraction for the map f as follows:

δT (f(A), f(B)) = δT (γI + βA+M(A), γI + βB +M(B))

≤ α

α+ γ
δT (βA+M(A), βB +M(B)),

≤ α

α+ γ
max {δT (βA, βB), δT (M(A),M(B))}

≤ α

α+ γ
δT (A,B).

Moreover, for A 6= B the inequality is strict if f(0) > 0.

Example 34. Let X ∈ Cd×k, let f = tr for t ∈ (0,∞) and r ∈ (0, 1). Then,

δT ((X∗AX)r, (X∗BX)r) ≤ δT (A,B), ∀A,B ∈ Pd,
δT (X∗ArX,X∗BrX) ≤ δT (A,B), ∀A,B ∈ Pd.

Theorem 32 and Theorem 33 together yield the following general result.

Corollary 35. Let Φ : Pd → Pk (k ≤ d), and Ψ : Pk → Pr (r ≤ k) be completely positive (see e.g., [6,
Ch. 3]) maps. Then,

δT (f(Φ(X)), f(Φ(Y ))) ≤ δT (X,Y ), X, Y ∈ Pd, (35)

δT (Ψ(f(X)),Ψ(f(Y ))) ≤ δT (X,Y ), X, Y ∈ Pk. (36)

Proof. We prove (35); the proof of (36) is similar, hence omitted. From Theorem 33 it follows that
δT (f(Φ(X)), f(Φ(Y ))) ≤ δT (Φ(X),Φ(Y )). Since Φ is completely positive, it follows from a result of
Choi [19] and Kraus [29] that there exist matrices Vj ∈ Cd×k, 1 ≤ j ≤ dk, such that

Φ(X) =
∑nk

i=1
V ∗j XVj X ∈ Pd.

Theorem 32 and property (29d) imply that δT (Φ(X),Φ(Y )) ≤ δT (X,Y ), which proves (35).

4.1.1 Thompson log-nonexpansive maps

Let G be a map from X ⊆ Pd → X . Analogous to (27), we say G is (Thompson) log-nonexpansive if

δT (G(X),G(Y )) ≤ δT (X,Y ), ∀X,Y ∈ X ;

the maps is called log-contractive if the inequality is strict. We present now a key result that justifies
our nomenclature and the analogy to (27): it shows that the sum of a log-contractive map and
a log-nonexpansive map is log-contractive. This behaviour is a striking feature of the nonpositive
curvature of Pd; such a result does not hold in normed vector spaces.

Theorem 36. Let G be a log-nonexpansive map and F be a log-contractive one. Then, their sum
G + F is log-contractive.

Proof. We start by writing Thompson metric in an alternative form [32]:

δT (A,B) = max{logW (A/B), logW (B/A)}, (37)

where W (A/B) := inf{λ > 0, A � λB}. Let λ = exp(δT (X,Y )); then it follows that X � λY . Since G
is nonexpansive in δT , using (37) it further follows that

G(X) � λG(Y ),
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and F is log-contractive map, we obtain the inequality

F(X) ≺ λtF(Y ), where t ≤ 1.

Write H := G + F ; then, we have the following inequalities:

H(X) ≺ λH(Y ) + (λt − λ)F(Y )

H(Y )−1/2H(X)H(Y )−1/2 ≺ λI + (λt − λ)H(Y )−1/2F(Y )H(Y )−1/2

H(Y )−1/2H(X)H(Y )−1/2 ≺ λI + (λt − λ)λmin(H(Y )−1/2F(Y )H(Y )−1/2)I,

As λmax(H(Y )−1/2H(X)H(Y )−1/2) > λmax(H(X)−1/2H(Y )H(X)−1/2), using (37) we obtain

δT (H(X),H(Y )) < δT (X,Y ) + log
(
1 + λmin(H(Y )−1/2F(Y )H(Y )−1/2)

[
λt−1 − 1

])
. (38)

We also have the following eigenvalue inequality

λmin(H(Y )−1/2F(Y )H(Y )−1/2) ≤ λmin(F(Y ))

λmax(G(Y )) + λmin(F(Y ))
. (39)

Combining inequalities (38) and (39) we see that

δT (H(X),H(Y )) < δT (X,Y ) + log
(
1 + λmin(F(Y ))

λmax(G(Y ))+λmin(F(Y ))

[
exp(δT (X,Y ))t−1 − 1

])
. (40)

Similarly, since λmax

(
H(Y )−1/2H(X)H(Y )−1/2

)
< λmax

(
H(X)−1/2H(Y )H(X)−1/2

)
, we also obtain

the bound (notice we now have F(X) instead of F(Y ))

δT (H(X),H(Y )) < δT (X,Y ) + log
(
1 + λmin(F(X))

λmax(G(X))+λmin(F(X))

[
exp(δT (X,Y ))t−1 − 1

])
. (41)

Combining (40) and (41) into a single inequality, we get

δT (H(X),H(Y ))

< δT (X,Y ) + log
(
1 + λmin(F(X),F(Y ))

λmax(G(X),G(Y ))+λmin(F(X),F(Y ))

[
exp(δT (X,Y ))t−1 − 1

])
.

As the second term is ≤ 0, the inequality is strict, proving log-contractivity of H.

Using log-contractivity we can finally state our main result for this section.

Theorem 37. If G is log-contractive and equation (25) has a solution, then this solution is unique
and iteration (26) converges to it.

Proof. If (44) has a solution, then from a theorem of Edelstein [20], it follows that the log-contractive
map G yields iterates that stay within a compact set and converge to a unique fixed point of G. This
fixed-point is positive definite by construction (starting from a positive definite matrix, none of the
operations in (44) violates positivity). Thus, the unique solution is positive definite.

4.2 Example of log-nonexpansive optimisation

To illustrate how to exploit log-nonexpansive functions for optimisation, let us consider the following
minimisation problem

minS�0 Φ(S) := 1
2n log det(S)−

∑
i
logϕ(xTi S

−1xi), (42)

which arises in maximum-likelihdood estimation of ECDs (see Section 5 for further examples and
details) and also M-estimation of the scatter matrix [27].
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The first-order necessary optimality condition for (42) stipulates that a candidate solution S � 0
must satisfy

∂Φ(S)

∂S
= 0 ⇐⇒ 1

2nS
−1 +

n∑
i=1

ϕ′(xTi S
−1xi)

ϕ(xTi S
−1xi)

S−1xix
T
i S
−1 = 0. (43)

Defining h ≡ −ϕ′/ϕ, (43) may be rewritten more compactly in matrix notation as the equation

S = 2
n

∑n

i=1
xih(xTi S

−1xi)x
T
i = 2

nXh(DS)XT , (44)

where h(DS) := Diag(h(xTi S
−1xi)), and X = [x1, . . . , xm]. We then solve the nonlinear equation (44)

via a fixed-point iteration. Introducing the nonlinear map G : Pd → Pd that maps S to the right
hand side of (44), we use fixed-point iteration (26) to find the solution. In order to show that the
Picard iteration converges (to the unique fixed-point), it is enough to show that G is log-contractive
(see Theorem 37). The following proposition gives sufficient condition on h, under which the map is
log-contractive.

Proposition 38. Let h be log-nonexpansive. Then, the map G in (26) is log-nonexpansive. Moreover,
if h is log-contractive, then G is log-contractive.

Proof. Let S,R � 0 be arbitrary. Then, we have the following chain of inequalities

δT (G(S),G(R)) = δT
(
2
nXh(DS)XT , 2

nXh(DR)XT
)

≤ δT
(
h(DS), h(DR)

)
≤ max

1≤i≤n
δT
(
h(xTi S

−1xi), h(xTi R
−1xi)

)
≤ max

1≤i≤n
δT
(
xTi S

−1xi, x
T
i R
−1xi

)
≤ δT

(
S−1, R−1

)
= δT (S,R).

The first inequality follows from (29b) and Theorem 32; the second inequality follows since h(DS) and
h(DR) are diagonal; the third follows from (29d); the fourth from another application of Theorem 32,
while the final equality is via (29a). This proves log-nonexpansivity (i.e., nonexpansivity in δT ). If in
addition h is log-contractive and S 6= R, then the second inequality above is strict, that is,

δT (G(S),G(R)) < δT (S,R) ∀S,R and S 6= R.

If h is merely log-nonexpansive (not log-contractive), it is still possible to show uniqueness of (44)
up to a constant. Our proof depends on the compression property of δT proved in Theorem 32.

Theorem 39. Let the data X = {x1, . . . , xn} span the whole space. If h is LN, and S1 6= S2 are
solutions to equation (44), then iteration (26) converges to a solution, and S1 ∝ S2.

Proof. Without loss of generality assume that S1 = I. Let S2 6= cI. Theorem 32 implies that

δT
(
xih(xTi S

−1
2 xi)x

T
i , xih(xTi S

−1
1 xi)xi

)
≤ δT

(
h(xTi S

−1
2 xi), h(xTi xi)

)
≤ δT

(
xTi S

−1
2 xi, x

T
i xi
)

=
∣∣∣log

xTi S
−1
2 xi

xTi xi

∣∣∣ .
As per assumption, the data span the whole space. Since S2 6= cI, we can find x1 such that∣∣∣log

xT1 S
−1
2 x1

xT1 x1

∣∣∣ < δT (S2, I).

Therefore, we obtain the following inequality for point x1:

δT
(
x1h(xTi S

−1
2 x1)xT1 , x1h(xT1 S

−1
1 x1)x1

)
< δT (S2, S1). (45)

Using Proposition 38 and invoking Theorem 36, it then follows that

δT (G(S2),G(S1)) < δT (S2, S1).

But this means that S2 cannot be a solution to (44), a contradiction. Therefore, S2 ∝ S1.
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4.2.1 Computational efficiency

So far we did not address computational efficacy of the fixed-point algorithm. The rate of convergence
depends heavily on the contraction factor, and as we will see in the experiments, without further care
one obtains poor contraction factors that can lead to a very slow convergence. We briefly discuss below
a useful speedup technique that seems to have a dramatic impact on the empirical convergence speed
(see Figure 2).

At the fixed point S∗ we have G(S∗) = S∗, or equivalently for a new map M we have

M(S∗) := S∗−1/2G(S∗)S∗−1/2 = I.

Therefore, one way to analyse the convergence behaviour is to assess how fast M(Sk) converges to
identity. Using the theory developed beforehand, it is easy to show that

δT (M(Sk+1), I) ≤ ηδT (M(Sk), I),

where η is the contraction factor between Sk and Sk+1, so that

δT (G(Sk+1),G(Sk)) < ηδT (Sk+1, Sk).

To increase the convergence speed we may replace Sk+1 by its scaled version αkSk+1 such that

δT (M(αkSk+1), I) ≤ δT (M(Sk+1), I).

One can do a search to find a good αk. Clearly, the sequence Sk+1 = αkG(Sk) converges at a faster
pace. We will see in the numerical results section that scaling with αk has a remarkable effect on
the convergence speed. An intuitive reasoning why this happens is that the additional scaling factor
can resolve the problematic cases where the contraction factor become small. These problematic
cases are those where both the smallest and the largest eigenvalues of M(Sk) become smaller (or
larger) than one, whereby the contraction factor (for G) becomes small, which may lead to a very slow
convergence. The scaling factor, however, makes the smallest eigenvalues of M(Sk) always smaller
and its largest eigenvalue larger than one. One way to avoid the search is to choose αk such that
trace(M(Sk+1)) = d—though with a small caveat: empirically this simple choice of αk works very well,
but our convergence proof does not hold anymore. Extending our convergence theory to incorporate
this specific choice of scaling αk is a part of our future work. In all simulations in the result section αk
is selected by ensuring trace(M(Sk+1)) = d.

5 Application to Elliptically Contoured Distributions

In this section we present details for a concrete application of conic geometric optimisation: mle for
ECDs [13, 21, 37]. We use ECDs as a platform for illustrating geometric optimisation because ECDs
are widely important (see e.g., the survey [42]), and are instructive in illustrating our theory.

First, some basics. If an ECD has density on Rd, it assumes the form3

∀ x ∈ Rd, Eϕ(x;S) ∝ det(S)−1/2ϕ(xTS−1x), (46)

where S ∈ Pd is the scatter matrix and ϕ : R→ R++ is the density generating function (dgf). If the
ECD has finite covariance, then the scatter matrix is proportional to the covariance matrix [13].

Example 40. Let ϕ(t) = e−t/2; then, (46) reduces to the multivariate Gaussian density. For

ϕ(t) = tα−d/2 exp
(
−(t/b)β

)
, (47)

where α, b, β > 0 are fixed, density (46) yields the rich class called Kotz-type distributions that have
powerful modelling abilities [26, §3.2]; they include as special cases multivariate power exponentials,
elliptical gamma, multivariate W-distributions, for instance. Other examples include multivariate
student-t, multivariate logistic, and Weibull dgfs (see §5.2).

3For simplicity we describe only mean zero families; the extension to the general case is easy.
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5.1 Maximum likelihood parameter estimation

Let (x1, . . . , xn) be i.i.d. samples from an ECD Eϕ(S). Ignoring constants, the log-likelihood is

L(x1, . . . , xn;S) = − 1
2n log detS +

∑n

i=1
logϕ(xTi S

−1xi). (48)

To compute a mle we equivalently consider the minimisation problem (42), which we restate here for
convenience

minS�0 Φ(S) := 1
2n log det(S)−

∑
i
logϕ(xTi S

−1xi). (49)

Unfortunately, (49) is in general very difficult: Φ may be nonconvex and may have multiple local
minima (observe that log det(S) is concave in S and we are minimising). Since statistical estimation
relies on having access to globally optimal estimates, it is important to be able to solve (49) globally.
These difficulties notwithstanding, using our theory we identify a rich class of ECDs for which we can
solve (49) globally. Some examples are already known [27, 42, 51], but our techniques yield results
strictly more general: they subsume previous examples while advancing the broader idea of geometric
optimisation over HPD matrices.

Building on §2 and §4, we divide our study into the following three classes of dgfs:

(i) Geodesically convex (g-convex): This class contains functions for which the negative log-likelihood
Φ(S) is g-convex. Some members of this class have been previously studied (though sometimes
without recognising or directly exploiting g-convexity);

(ii) Log-Nonexpansive (LN): This is a new class introduced in this paper. It exploits the “non-positive
curvature” property of the HPD manifold. To our knowledge, this class of ECDs was beyond the
grasp of previous methods [27, 49, 51]. The iterative algorithm for finding the global minimum
of the objective is similar to that of the class LC.

(iii) Log-Convex (LC): We cover this class for completeness; it covers the case of log-convex ϕ, but
leads to nonconvex Φ (due to the − logϕ term). However, the structure of the problem is such
that one can derive an efficient algorithm for finding a local minumum of the objective function.

As illustrated in Figure 1, these three classes can overlap. When a function is in the overlap between
classes LC and g-convex, one can be sure that the iterative algorithm derived for the class LN will
converge to a unique minimum. Table 1 summerizes the applicability of fixed-point or manifold
optimization methods on different classes of dgfs.

ϕ ↓

ϕ ∈ C1

GC

LN

LC

Figure 1: Overview of dgf functions classes for nonincreasing ϕ.

5.2 MLE for distributions in class g-convex

If the log-likelihood is strictly g-convex then (49) cannot have multiple solutions. Moreover, for any
local optimisation method that ensures a local solution to (49), g-convexity ensures that this solution
is globally optimal.
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Problem Class Manifold Opt. Fixed-Point

GC Yes Can?

LN Can Yes
LC Can Yes

Table 1: Applicability of the different algorithms: ‘Yes’ means a preferred algorithm; ‘Can?’ denotes
applicability on a case-by-case basis; ‘Can’ signifies possible applicability of method.

First we state a corollary of Theorem 15 that helps recognise g-convexity of ECDs. We remark that
a result equivalent to Corollary 41 was also recently discovered in [51]. Theorem 15 is more general
and uses a completely different argument founded on matrix-theoretic results.

Corollary 41. Let h : R++ → R be g-convex (i.e., h(x1−λyλ) ≤ (1 − λ)h(x) + λh(y)). If h is
nondecreasing, then for r ∈ {±1}, φ : Pd → R : S 7→ ∑

i h(xTi S
rxi) ± log det(S) is g-convex.

Furthermore if h is strictly g-convex, then φ is also strictly g-convex.

Proof. Immediate from Theorem 15 since xTi S
rxi is a positive linear map.

For reference, we summarise several examples of strictly g-convex ECDs in Corollary 42.

Corollary 42. The negative log-likelihood (49) is strictly g-convex for the following distributions:
(i) Kotz with α ≤ d

2 (its special cases include Gaussian, multivariate power exponential, multivariate

W-distribution with shape parameter smaller than one, elliptical gamma with shape parameter ν ≤ d
2 );

(ii) Multivariate-t; (iii) Multivariate Pearson type II with positive shape parameter; (iv) Elliptical
multivariate logistic distribution. 4

Even though g-convexity ensures that every local solution will be globally optimal, we must first
ensure that there exists a solution at all, that is, does (49) have a solution? Answering this question
is nontrivial even in special cases [27, 51]. We provide below a fairly general result that helps establish
existence.

Theorem 43. Let Φ(S) satisfy the following: (i) − logϕ(t) is lower semi-continuous (lsc) for t > 0,
and (ii) Φ(S)→∞ as ‖S‖ → ∞ or ‖S−1‖ → ∞, then Φ(S) attains its minimum.

Proof. Consider the metric space (Pd, dR), where dR is the Riemannian distance,

dR(A,B) = ‖log(A−1/2BA−1/2)‖F A,B ∈ Pd. (50)

If Φ(S)→∞ as ‖S‖ → ∞ or as ‖S−1‖ → ∞, then Φ(S) has bounded lower-level sets in (Pd, dR). It
is a well-known result in variational analysis that an lsc function which has bounded lower-level sets in
a metric space attains its minimum [47]. Since − logϕ(t) is lsc and log det(S−1) is continuous, Φ(S) is
lsc on (Pd, dR). Therefore it attains its minimum.

A key consequence of this theorem is its utility is in showing existence of solutions to (49) for a
variety of different ECDs. We show an example application to Kotz-type distributions [26, 28] below.
For these distributions, the function Φ(S) assumes the form

K(S) = n
2 log det(S) + (d2 − α)

∑n

i=1
log xTi S

−1xi +
∑n

i=1

(
xTi S

−1xi
b

)β
. (51)

Lemma 44 shows that K(S)→∞ whenever ‖S−1‖ → ∞ or ‖S‖ → ∞.

4The dgfs of different distributions are brought here for the reader’s convenience. Multivariate power exponential:
φ(t) = exp(−tν/b), ν > 0; Multivariate W-distribution: φ(t) = tν−1 exp(−tν/b), ν > 0; Elliptical gamma: φ(t) =
tν−d/2 exp(−t/b), ν > 0; Multivariate t: φ(t) = (1 + t/ν)−(ν+d)/2, ν > 0; Multivariate Pearson type II: φ(t) =
(1− t)ν , ν > −1, 0 ≤ t ≤ 1; Elliptical multivariate logistic: φ(t) = exp(−

√
t)/(1 + exp(−

√
t))2.
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Lemma 44. Let the data X = {x1, . . . , xn} span the whole space and for α < d
2 satisfy

|X ∩ L|
|X | <

dL
d− 2α

, (52)

where L is an arbitrary subspace with dimension dL < d and |X ∩ L| is the number of datapoints that
lie in the subspace L. If ‖S−1‖ → ∞ or ‖S‖ → ∞, then K(S)→∞.

Proof. If ‖S−1‖ → ∞ and since the data span the whole space, it is possible to find a datum x1 such
that t1 = xT1 S

−1x1 →∞. Since

lim
t→∞

c1 log(t) + tc2 + c3 →∞

for constants c1,c3 and c2 > 0, it follows that K(S)→∞ whenever ‖S−1‖ → ∞.
If ‖S‖ → ∞ and ‖S−1‖ is bounded, then the third term in expression of K(S) is bounded. Assume

that dL is the number of eigenvalues of S that go to ∞ and |X ∩ L| is the number of data that lie
in the subspace span by these eigenvalues. Then in the limit when eigenvalues of S go to ∞, K(S)
converges to the following limit

lim
λ→∞

n
2 dL log λ+ (d2 − α)|X ∩ L| log λ−1 + c

Apparently if n
2 dL + (d2 − α)|X ∩ L| > 0, then K(S)→∞ and the proof is complete.

It is important to note that overlap condition (52) can be fulfilled easily by assuming that the
number of data points is larger than their dimensionality and that they are noisy. Using Lemma 44
with Theorem 43 we obtain the following key result for Kotz-type distributions.

Theorem 45 (MLE existence). If the data samples satisfy condition (52), then log-likelihood of
Kotz-type distribution has a maximiser (i.e., there exists an mle).

5.2.1 Optimisation algorithm

Once existence is ensured, one may use any local optimisation method to minimise (49) to obtain the
desired mle. For members of the class g-convex that do not lie in class LN or class LC, we recommend
invoking the manifold optimisation techniques summarised in §3.

5.3 MLE for distributions in class LN

For negative log-likelihoods (49) in class LN, we can circumvent the heavy machinery of manifold
optimisation, and obtain simple fixed-point algorithms by appealing to the contraction results developed
in §4. We note that some members of class g-convex may also turn out to lie in class LN, so the
discussion below also applies to them.

As an illustrative example of these results, consider the problem of finding the minimum of negative
log-likelihood solution of Kotz-type distribution (51). If the corresponding nonlinear equation (44)
with corresponding h(.) = (d2 −α)(.)−1 + β

bβ
(.)β−1 has a positive definite solution, then it is a candidate

mle; if it is unique, then it is the desired solution to (51).
But how should we solve (44)? This is where the theory developed in §4 comes into play. Convergence

of the iteration (26) as applied to (44) can be obtained from Theorem 39. But in the Kotz case we can
actually show a stronger result that helps ensure better geometric convergence rates for the fixed-point
iteration.

Lemma 46. If c ≥ 0 and −1 < τ < 1, then g(x) = cx+ xτ is log-contractive.
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Proof. Without loss of generality assume t = ks with k ≥ 1. Assume that g(t) ≥ g(s):

log g(t) = log(ct+ tτ )

= log(kcs+ kτsτ )

= log(k(cs+ sτ ) + kτsτ − ksτ )

= log k(cs+ sτ )
(

1 +
kτsτ − ksτ
k(cs+ sτ )

)
= log k + log g(s) + log

(
1 +

sτ (kτ−1 − 1)

(cs+ sτ )

)
| log g(t)− log g(s)| = | log t− log s|+ log

(
1 +

sτ (kτ−1 − 1)

(cs+ sτ )

)
Since the second term is negative, therefore g is log-contractive. Consider the other case g(t) ≥ g(s),
that could happen only when τ ≤ 0.

log g(s) = log(cs+ sτ )

= log(ct/k + k|τ |tτ )

= log(k(ct+ tτ ) + k|τ |tτ + ct/k − ckt− ktτ )

= log k(ct+ tτ )
(

1 +
k|τ |tτ + ct/k − ckt− ktτ

k(ct+ tτ )

)
= log k + log g(t) + log

(
1 +

ct
(
k−2 − 1

)
+ tτ (k|τ |−1 − 1)

(ct+ tτ )

)
| log g(t)− log g(s)| = | log t− log s|+ log

(
1 +

ct
(

1
k2 − 1

)
+ tτ (k|τ |−1 − 1)

(ct+ tτ )

)
.

In this case, the second term is also negative. Therefore h is log-contractive.

Assume τ = β − 1, c = bβ(d/2−α)
β and knowing that h(.) = g(βb−β(.)) has the same contraction

factor as g(.), Lemma 46 implies that h in the iteration (44) for the Kotz-type distributions with
0 < β < 2 and α ≤ d

2 is log-contractive. Based on Theorem 45, K(S) has at least one minimum. Thus
using Theorem 37, we have the following main convergence result.

Theorem 47. If the data samples satisfy (52), then iteration (44) for Kotz-type distributions with
0 < β < 2 and α ≤ d

2 converges to a unique fixed point.

5.4 MLE for distributions in class LC

For completeness, we briefly mention class LC here, which is perhaps one of the most studied classes
of ECDs, at least from an algorithmic point-of-view [27]. Therefore, we only discuss it summarily, and
present our new results.

For the class LC, we assume that the dgf ϕ is log-convex. Without assumptions that are typically
made in the literature, it can be that neither the GC nor the LN analysis applies to class LC. However,
the optimisation problem still has structure that allows simple and efficient algorithms. Specifically,
here the objective function Φ(S) can be written as a a difference of two convex functions by introducing
the variable P = S−1, wherewith we have Φ(P ) = −an log det(P )−∑i logϕ(xTi Pxi).

To this representation of Φ we may now apply the CCCP procedure [50] to search for a locally
optimal point. The method operates as follows

P k+1 ← argmin
P�0

−n2 log det(P ) + tr
(
P
∑

i
h(xTi P

kxi)xix
T
i

)
,
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which yields the update

P k+1 =
(

2
n

∑
i
h(xTi P

kxi)xix
T
i

)−1
. (53)

Because P k+1 is constructed using the CCCP procedure, it can be shown that the sequence{
Φ(P k)

}
is monotonically decreasing. Furthermore, since we assumed h to be nonnegative, therefore

the iteration stays within positive semidefinite cone. If the cost function goes to infinity whenever the
covariance matrix is singular, then using Theorem 43 we can conclude that iteration converges to a
positive definite matrix. Thus, we can state the following key result for class LC.

Theorem 48 (Convergence). Assume that Φ(P ) goes to infinity whenever P reaches the boundary
of Pd, i.e. ‖P‖ → ∞ ∨ ‖P−1‖ → ∞ =⇒ Φ(P ) → ∞. Furthermore if − logϕ is concave and h is
non-negative, then each step of the iterative algorithm given in (53) decreases the cost function and
furthermore it converges to a positive definite solution.

A similar theorem but under more strict conditions was established in Kent and Tyler [27]. Knowing
that the iterative algorithm in (53) is the same as (44) and using Theorem 48 with the existence
result of Theorem 45 and the uniqueness result of Corollary 42, we can state the following theorem for
Kotz-type distributions (cf. Theorem 47).

Theorem 49. If the data samples satisfy condition (52), then iteration (44) for Kotz-type distributions
with β ≥ 1 and α ≤ d

2 converges to a unique fixed point.

Theorem 49 and Theorem 47 together show that the iteration (44) for Kotz-type distributions with
α ≤ d

2 and regardless of the value of β always converges to the unique mle estimate whenever it exists.

6 Numerical results

We briefly illustrate the numerical performance of our fixed-point iteration. The key message here is
that our fixed-point iterations solve nonconvex problems that are further complicated by a positive
definiteness constraint. But by construction the fixed-point iterations satisfy the constraint, so no extra
eigenvalue computation is needed, which can provide substantial computational savings. In contrast, a
general nonlinear solver must perform constrained optimisation, which may be unduly expensive.

We show two experiments (Figs. 2 and 3) to demonstrate scalability of the fixed-point iteration
with increasing dimensionality of the input matrix and for varying β parameter of the Kotz distribution
which influences convergence rate of our fixed-point iteration. For all simulations, we sampled 10,000
datapoints from the Kotz-type distribution with given α and β parameters and a random covariance
matrix.

We note that the problems are nonconvex with an open set as a constraint—this precludes direct
application of semidefinite programming or approaches such as gradient-projection (projection requires
closed sets). We also tried interior-point methods but we did not include them in the comparisons
because of their extremely slow convergence speed on this problem. So we choose to show the result of
(Riemannian) manifold optimisation techniques [1].

We compare our fixed-point iteration against four different manifold optimisation methods: (i)
steepest descent (SD); (ii) conjugate gradients (CG); (iii) trust-region (TR); and (iv) LBFGS, which
implements Algorithm 1. All methods are implemented in Matlab (including the fixed-point iteration);
for manifold optimisation we extend the Manopt toolbox [10] to support the HPD manifold5 as well
as Algorithm 1.

From Figure 2 we see that the basic fixed-point algorithm (FP) does not perform better than SD,
the simplest manifold optimisation method. Moreover, even when FP performs better than CG, TR, or
LBFGS (Figure 3), it seems to closely follow SD. However, the scaling idea introduced in §4.2 leads to

5The newest version of the Manopt toolbox ships with an implementation of the HPD manifold, but we use our own
implementation as it includes some utilities specific to LBFGS.
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a fixed-point method (FP2) that outperforms all other methods, both with increasing dimensionality
and varying β. The scale is chosen by ensuring trace(M(Sk+1)) = d.

These results merely indicate that the fixed-point approach can be competitive. A more thorough
experimental study to assess our algorithms remains to be undertaken.
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Figure 2: Running times comparison of the fixed-point iterations compared with four different manifold
optimization techniques to maximise a Kotz-likelihood with β = 0.5 and α = 1 (see text for details). FP denoted
normal fixed-point iteration and FP2 is the fixed-point iteration with scaling factor. Manifold optimization
methods are steepest descent (SD), conjugate gradient (CG), limited-memory RBFGS (LBFGS) and trust-region
(TR) . The plots show (from left to right), running times for estimating S ∈ Pd, for d ∈ {4, 16, 64}.
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Figure 3: In the Kotz-type distribution, when β gets close to zero or 2 or when α gets close to zero, the
contraction factor becomes smaller which can impact the convergence rate. This figure shows running time
variance for Kotz-type distributions with d = 16 and α = 2β for different values of β ∈ {0.1, 1, 1.7}.

7 Conclusion

We studied geometric optimisation for minimising certain nonconvex functions over the set of positive
definite matrices. We showed key results that help recognise geodesic convexity; we also introduced a
new class of log-nonexpansive functions which contains functions that need not be geodesically convex,
but can still be optimised efficiently. Key to our ideas was a construction of fixed-point iterations in a
suitable metric space on positive definite matrices.

Additionally, we developed and applied our results in the context of maximum likelihood estimation
for elliptically contoured distributions, covering instances substantially beyond the state-of-the-art.
We believe that the general geometric optimisation techniques that we developed in this paper will
prove to be of wider use and interest beyond our motivating examples and applications. Moreover,
developing a more extensive geometric optimisation numerical package is an ongoing project.
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