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WSLD operators. A classof fourth order difference approximations for
space Riemann-Liouville derivative
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Because of the nonlocal properties of fractional operatogher order schemes play more important role
in discretizing fractional derivatives than classical@n€he striking feature is that higher order schemes
of fractional derivatives can keep the same computatiotweitis first-order schemes but greatly improve
the accuracy. Nowadays, there are already two types of demaier discretization schemes for space
fractional derivatives: the first type is given and discdsse[Sousa & Li, arXiv:1109.2345; Chen &
Deng, arXiv:1304.3788; Chen et al., Appl. Numer. Math., ZB:41]; and the second type is a class of
schemes presented in [Tian et al., arXiv:1201.5949]. The object of this paper is to derive a class
of fourth order approximations, called the weighted andtatiiLubich difference (WSLD) operators,
for space fractional derivatives. Then we use the derivedrses to solve the space fractional diffusion
equation with variable coefficients in one-dimensional amaldimensional cases. And the unconditional
stability and the convergence with the global truncatiamreg (12 4 h*) are theoretically proved and
numerically verified.

Keywords: Fractional diffusion equation; Weighted and shifted Lakbdifference operators; Numerical
stability; Convergence

1. Introduction

In recent decades, fractional operators have been playorg end more important roles [Diethelm
(2010)], e.g., in mechanics (theory of viscoelasticity amstoplasticity), (bio-)chemistry (modelling
of polymers and proteins), electrical engineering (trassion of ultrasound waves), medicine (mod-
elling of human tissue under mechanical loads), etc. Effttjesolving the fractional partial differential
equations (PDEs) naturally becomes an urgent topic. Becaiuthe nonlocal properties of fractional
operators, obtaining the analytical solutions of the foawtl PDESs is more challenge or sometimes even
impossible; or the obtained analytical solutions are ledsable (expressed by transcendental functions
or infinite series). Luckily, some important progress hasrbmade for numerically solving the frac-
tional PDEs by finite difference methods, e.g., see [Meersdt® Tadjeran (2004); Sousa & Li (2011);
Sun & Wu (2006); Tiaret al. (2012); Yuste|(2006); Zhuareg al) (2009)].

In solving space fractional PDEs, high order finite differerschemes display more striking ben-
efits because most of the time they can use the same compalatimst with first order scheme but
greatly improve the accuracy. For example, comparing witt érder difference scheme which may
have the matrix algebraic equatidh— A)u™"* = u"4-b"*1, the high order scheme has the matrix al-
gebraic equatiofl — A)u™! = (I + B)u" + b™1/2, The three matrices, A andB are all Toeplitz-like
and have completely same structure, and the computationalt dor matrix vector multiplication is
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O (NlogN), then the computational costs for solving the two matrixeblgic equations are almost the
samel[Chermt al| (2012)].

Nowadays, we notice that there exist two types of second digeretization schemes for space frac-
tional derivatives. The idea of the first type is to combiredkntered difference scheme of second clas-
sical derivative with piecewise linear polynomial approgition of the fractional integral. Sousa & Li
(2011) firstly use the idea to obtain the second order appraton in infinite domain. The paper
[Chen & Dengl(2011)] detailedly analyzes the effectivertddbe approximation in finite domain. And
this discretization is also effectively used to solve thegtispace Capuo-Riesz fractional diffusion equa-
tion [Chenet al/ (2013)]. The second type of second order approximation fagha class of second
order discretization, which are obtained by assembling@ti;nwald difference operators with differ-
ent weights and shifts. This class of approximations araildetly discussed and successfully applied
to solve space fractional diffusion equationslin [Tai@l! (2012)], and called WSGD operators there.
Both of the two types of the operators have completely saroetstre, and the real parts of the eigen-
values of the matrixes are less than 0, see [Deng & Chen |(2018) et all (2012)]. So they can be
efficiently used to solve space fractional PDEs.

Based on Lubich’s operator [Lubich (1986)], this paper wsia class of fourth order approxi-
mations for space fractional derivatives, termed the weigjland shifted Lubich difference operators
(WSLD operators). Using the fractional linear multistepthoels, Lubichl(1986) obtains theth or-
der (L < 6) approximations of ther-th derivative ¢ > 0) or integral ¢ < 0) by the corresponding
coefficients of the generating functiod8(¢), where

L 1 . a
5(3) = (;i—(l—w) . CEY

For a = 1, the scheme reduces to the classitak 1)-point backward difference formula [Henfrici
(1962)]. ForlL = 1, the schemé&{Tl.1) corresponds to the standard Griunvarktization ofx-th deriva-

tive with first order accuracy; unfortunately, for the timepgéndent equations the difference scheme is
unstable. But Meerschaert & Tadjeran (2004) successfultyimvent this difficulties by the so-called
shifted Griiwald formulae. Taking = 2,|Cuestat al| (2006) discuss the convolution quadrature time
discretization of fractional diffusion-wave equationdjem applying the discretization scheme to space
fractional operator wittor € (1,2) for time dependent problem, the obtained scheme is als@ablest
since the eigenvalues of the matrix corresponding to therelized operator are greater than one. If
using the shifted Lubich’s formula, it reduces to the firgtearaccuracy (detailed description is given in
Section 2). This paper weights and shifts Lubich’s operatabtain a class of fourth order discretiza-
tion schemes, which are effective for time dependent problehen we use the fourth order schemes to
solve the following two-dimensional fractional diffusiequation with variable coefficients,

au(x,y,t
UL _ g, (), DUk y) + - (63) DU Y1)
+ey (Xa y) Yo D)[,;U(X, yvt) +e (Xa y) VD)[/;RU(Xv yvt) +f (Xv yvt)a (12)
u(x,y,0) = uo(x,y), for (xy) € Q,
u(x,y,t) =0, for (x,y,t) €9Q x(0,T],

in the domainQ = (x_,Xr) x (YL,Yr), 0 <t < T, where the orders of the fractional derivatives are
1< a,B<2andf(xy,t) is a source term, and all the variable coefficients are naativeg The left
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and right Riemann-Liouville fractional derivatives of thenctionu(x) on [x_,Xg], —0 < X < Xg < ©
are, respectively, defined by [Podlubny (1999); Samtial. (1993)]

2 X
« DIU(X) = ﬁ%/m (x— &) u(E)dE, (1.3)

and L 2 o
DLl = F g 52 |7 u@as. (1.4)

The outline of this paper is as follows. In Section 2, we dem@vclass of fourth order approxi-
mations for space fractional Riemann-Liouville derivasybeing effective in solving space fractional
PDEs. In Section 3, the full discretization schemes of oineedsional case of (11.2) and (IL.2) itself are
presented. Section 4 does the detailed theoretical arsdiysthe stability and convergence of the given
schemes. To show the effectiveness of the algorithm, weparthe numerical experiments to verify

the theoretical results in Section 5. Finally, we concluaefdaper with some remarks in the last section.

2. Derivation of a class of fourth order discretizationsfor space fractional operators

In the following, we derive a class of fourth order approxiioas for Riemann-Liouville fractional
derivatives, and prove that they are effective in solvingcgpfractional PDE, i.e., all the eigenvalues of
the matrixes corresponding to the discretized operatass hegative real parts.

2.1 Derivation of the discretization scheme

TakingL - 2, for all | < 1, Eq. [I2) can be recast as
<§—2z+%zz>a - (2)0(1—0“(1—% %
-(3) 5 (e 5, (5) (e
(&) 2z () () (@)

=5 a4k,

(2.1)

with k=m+n, and
3\ k a a AL
@=0(3) S3m( %) ()= (3) 33 metet 22)
m=0 m=0

whereg? = (—1) <‘|Z) are the coefficients of the power series of the generatingtium(1— )¢, and

they can be calculated by the following recursively formula



4 of[24

If a <0, {q7}_o correspond to the coefficients of the 2nd order convolutigadgature for the approx-
imation of fractional integral operator [see, Cuesttal! (2006)].

LEMMA 2.1 The coefficients if(212) wittr € (1,2) satisfy the following properties

#-(3) -0 w(3) %o
o - (g)" a(a—l)(64c128—6 1760 + 123) S0
@ (g)a 20(a—1)(2— aé(gng_Zow—kl%) -0 kioqg o

Proof. Takingl =1, itis easy to check that

gQE: iqw: (§—ZZ+}ZZ)G—O.
k=0 k=0 2 2

O
We first introduce two lemmas, which will be used to prove tiet several classes of derived
discretization schemes are 2nd, 3rd, and 4th order corngmgspectively.

LEMMA 2.2 (Ervin & Roop(2006)) Letr > 0,ue C5(Q), Q C R, then
Z(—DU(X)) = (—iw)?l(w) and Z (xDIu(x)) = (iw)?0(w),
where.# denotes the Fourier transform operator (@) = % (u), i.e.,

0(w) = /]R JOu(X)dx.

LEMMA 2.3 Letu, —«DZ*u(x) (or —»DZ*2u(x)) with a € (1,2) and their Fourier transforms belong
to L1(R) whenp # 0 (or p = 0); and denote that

(AGUN = 7 5 Ul (k= P 2.4)

whereqy is defined by[(2]2) ang an integer. Then
—oDyu(X) = LAGU(X) + O(h), p#0,

and
—oDgu(x) = LAJU(X) + O(h?), p=0.
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Proof. From [Z2.2) andk = m+ n, we obtain
F (LApU)(w) =h™" Z)qw‘ (U(x— (k= p)h)) (w)
K=

. o . k
_ hfaeflwph qa e|wh Gl
> i (¢) a(w)

R (2) 5 (car(@)em 5 (_g)m (&) et

n=0 m=0

~ (—iw)" [eiwph (%)a (1-1-:—2L (1—ei‘*’h)>aﬁ(w)

= (—iw)"e™ (1_782)0 <1+% (1—ez)>aﬁ(w),

with z= —iwh. Itis easy to check that

ew(l_zez)a - [1+ (p—%)er (%pz— 2 |0+30{2+0’)z2

2 24

1, a, 3a°+a_ ad+a?
+(ép_2p+ 52 P~ 8 )z3+ﬁ(z4)},

and

a _ 2_
<1+%(1—e2)) _ [1+%z+ a(or8 3)22+a(a 49804—12)23—#@’(24)},

then we have

\a a v 3 —
epz<1 ze > <1+%(1—e2)> —1+pz 2P 62022+2p +(1(23 ®aro@). (@5

Therefore, from Lemmia2.1, we get

F (LA (W) = 7 (DY U(X)) + ¢(w),

J’_
whereg(w) = (—iw)® (pz+ 3 20,2, 20°+a(34p) 3 @’(24)) G(w). Then there exists
p
p

|@(w)| < Eiw]*a(w)| -,

|@(w)] < cliw]*2[a(w)| - WP,

)

#0,

0
Hence

DU~ AU = o] < 5 [ [B(@iox—{ ik P70

O
In the following, we present the approximation operatorsfiemann-Liouville derivative and prove
that they have 2nd, 3rd, and 4th order truncation errors.
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THEOREMZ2.1 (Second order approximations for left Riemann-Lidederivative) Leu, _.DZ2u(x)
with a € (1,2) and their Fourier transforms belongltg(R). Denote that

2LAG qU(X) = WpLAZU(X) +Wq LAZU(X), (2.6)
where AT, L A7 are defined by (214w, = qi W = q p # g, andp, q are integers. Then
_wDSUu(x) = ZLquu( X)+ O(h?).

Proof. From the proof of Lemmia2.3, we have

FAG) (@) = (~i0)? [1+pz+ 3p2g 205, 200+ 01(23_ )5 o)) u(w)
and
F(AGU)(®) = (~i00)7 |1+ 2+ 3 - 20 5 20+ 01(23_ )5 o] ()

Then there exists

F (A ) (@) = (~ie0) [1- 3pq6+ 2050 qu(pizq) —394, 0(2)] ().

and by the similar way to the proof of Lemmal2.3 we get

—wDJU(X) = 2. A% Ju(X) + O (h?).
O

THEOREM2.2 (Third order approximations for left Riemann-Liougillerivative) Leu, _.DZ*3u(x)
with o € (1,2) and their Fourier transforms belongltg(R). Denote that

aLApqrsU(X) =Wpg 2LA3,qU(X) +Wrs2L ArsU(x), (2.7)
where A%, anda A are defined by[(216)wp, q = rs pq> , Wrs = 3&%*?‘; rs# pg, andp, g, r, sare

integers. Then
—oDJU(X) = 3L A% 4 U(X) + O(h1).
Proof. By the proof of Theorem 211, we have

F (A% ) (@) = (—iw)“[l—3pq;r2“zz_ZDQ(pJ£;)_3“z3+ o)

U(w)

and

Faniu)(@) = (e [1- T2 ZAEII 5 5 (w),

Then there exists
j(3LAg,q,r,su)(w)

=(—iw)? |1+

6pars(r +s— p— q)+40’[( S)— pa(p+ )] +9a(rs—pa) 5 ﬁ(z“)} 0(w),
36(rs— paq)
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and by the similar way to the proof of Lemihal2.3 we get
—wDJU(X) = 3LA] 4 U(X) + O(h°).

O

THEOREM2.3 (Fourth order approximations for left Riemann-Liotevierivative) Leu, _.DZ+#u(x)
with o € (1,2) and their Fourier transforms belongltg(R). Denote that

aLAD qrsparsU(X) = WpqrsalAp g sU(X) +WparsaLApgr.su(X), (2.8)

Where3|_A‘£,”q’r’S and3,|_A%’(.H‘S are defined by[(2]7); and

apqrsbpars .
Wpqrs = Az qu ' ; (2.9)
ap,qrsPpars—aparsbpars
pqrsbpars
Wpars = Par==ra (2.10)

@parsbpars—aparsbpars’
with

Apqrs=TS— PG bpgrs=6pars(r+s—p—q)+4a[rs(r+s) — pa(p-+q)] + 9a(rs— pa);

8pqars=T5—P0, bpgrs=6par3(f+5—p—10)+4a[rS(f+3) —pq(p+a)] +9a(rs—pa);
andap qrsPpars # @parsbpars P G, S P, G, T, Sare integers. Then
,ngu(X) = 4LAg,q,r,gp,q,r,Su(X) + ﬁ(h4)'

Proof. According to the proof of Theoremn 2.2, we have

F (3LAD grsW) (W)
(i) {1+ 6pars(r +s—p—q) + 4a£r65((:sts;q—) pa(p-+a)] + 9a(rs— pa) 2 ﬁ(z“)] ()
and
F (3LA%,q,r,su)(w)
= (~iw)? [1+ SparsT+s-p-0) +4a£:(f_+_§_;q_)_pq(b+qﬂ 9a(TS P 5, ﬁ(z“)] 0(w).

Then there exists
F (@A rsparat) (@) = (-10)* (1+0(2)) U(w),
and by the similar way to the proof of Lemial2.3 we get

—oDJU(X) = s Al spgrsu(X) + O(h?).
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For the right Riemann-Liouville fractional derivative,riee that
1 [oe]
RARUX) = g 3 cikulxr (k= pIh, (2.12)

whereqy is defined by[(2]2) ang an integer. Using the same way as Theorem$ 211-2.3, we camobt
the following results. In particular, the coefficients n12) are completely the same as the ones in
(2.8); the coefficients il (2.13) the same as the onds ih;(ari¢) the coefficients il (2.114) the same as
the ones in[(Z18).

THEOREM2.4 (Second order approximations for right Riemann-Lidewderivative) Letu, xDZ2u(x)
with a € (1,2) and their Fourier transforms belongltg(R), and denote that

2RAR qU(X) = Wp RARU(X) +WqrAG U(X), (2.12)
then
xDEU(X) = 2rAS qu(X) + O'(hP).

THEOREM 2.5 (Third order approximations for right Riemann-Lioleitlerivative) Letu, yDZ3u(x)
with a € (1,2) and their Fourier transforms belongltg(R), and denote that

3RAp g sU(X) = Wp q2rRAR qU(X) + Wr s2RATSU(X), (2.13)
then
ngU(X) = 3RAg,q,r,su(X) + ﬁ(hg)'

THEOREM2.6 (Fourth order approximations for right Riemann-Lidlevilerivative) Letu, xD%t4u(x)
with o € (1,2) and their Fourier transforms belongltg(R), and denote that

4RAg,q,r,s,p,q,r,§U(X) = Wpﬁq,f,S3RAg,q,r,sU(X) + W‘QWS3RA%,q,r,§U(X)7 (2.14)

then
XDgU(X) = 4RAg,q,r,s,D,q,T',§u(X) + ﬁ(h4)

All the above schemes are applicable to bounded domain{&ar), after performing zero ex-
tensions to the functions considered. Lét) be the zero extended function from the bounded domain
(%, Xr), and satisfy the requirements of the above correspondeayéims (Theorenis 2[1-.6). Denot-
ing

X=X

. [Fpol+p
LApU(X) = na Z) Ok u(x— (k= p)h), (2.15)
K=
then
x DJu(x) = LAFU(X) + &'(h), p#0,

" (2.16)
x DYu(x) = LASu(x) + 0(h?), p=0;
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x DFU(x) = 20.A% u(x) + & (h?),  where 5 AS u(X) = Wp L AZU(X) +Wq LA U(X); (2.17)
x DFU(X) = 3L AS . u(X) + & (h?),  where 3 Al U(X) = Wpq2L AT qU(X) +Wrs2t AT qu(X); (2.18)
and B
x DX U(x) = 4LAg,q,r,ab,q,r,§u(X) + ﬁ(hA)a (2.19)
Where4LAp a,1,SPaT, SU(X) =Wpgrs 3L'&g,q,r,su(x) +Wpars 3L'E‘%,q,r,§u(x)
Denotingx; = x_+ih,i =-m,...,0,1,...,Nx— 1,Ny,...,Nx+m, andh = (xg — x_) /Ny being the
uniform space stepsize, it can be noted that
uix)=0, fori=-m-m+1...,0 and i=N,Nc+1,....Ne+m,
where
m = max(abs(p,q,r,s,B,q,T,5)). (2.20)
Then the approximation operator £f{2.15) can be described a
~ i+p R 1 i+m 1 i+m
LApU(X) = 3 kZ)qk U(Xi—ktp) = > s pomU(Xi—kim) =t ;qm mU(Xi—kim),  (2.21)
— k=m— p

whereqﬁ;pfm =0, whenk+ p—m< 0, andp is an integer. Then

- 1 i+m
XLDSU(Xi) = LAgu(Xi) +0(h) = ha Z qk+p mU(Xi—km) + o), p#0,
(2.22)

i+m

1
1 D U() = LAU(X) + O(h) = = Z O p-mU(i—kim) +O(h?),  p=0;

i+m

- 1
x DY u(x) = 20AS u(x) + O'(h?) = e %(qug+p7m+qugqufm)u(Xikarm)+ﬁ(hz); (2.23)

XLDQU( )— 3Lqurs ( )"’ ﬁ(hs)
i+m
:h_akzo(wp’ququrp’m+wp’qwqqg+q*m+wrv5Wrqgﬂfm+Wr,SWng+s—m)U(Xifk+m) (2.24)
+0(h%);

. 4 1 i+m 4

x DX U(X) = aLApgrsparsu(x) +(h") Z O U(Xi—km) + O(h%), (2.25)
where

O = Wp.r sWp,aWpOk - p—m ~+Wp.r,sWp,aWaClk s g—m + W,q,r,sWr.sWr G r—m

+ Wp,q.r W sWsi - m + Wp.ar sWp gWpl, p—m + Wp.ar sWp.aWalk . g—m (2.26)
+ Wp g sWrsWrOl r—m + Wpgr sWrsWsl s m-

TakingU = [u(xq),u(xz),---,u(xn,1)]", then [2Z.2IL) can be rewritten as the matrix form

1
LASU = AU, (2.27)
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where )
9 G145
SR I SUL I
Op+2 Yp42 9 o1 = Do
AY = . , 2.28
P qﬁiz .. qg+1 qg qgil qg ( )
qg+n73 qg+1 ap q%ﬁl
[Gpin—2 Opn-3 iz v Opiz Opea Op |
andpis an integer andy = 0, whenk < 0. From [2.2B){(2.25) we obtain
~ 1
2LAg’qU o Aa U Ap q= WpAg + Wqu; (2.29)
Ao 1 o o . 2.30
3LAp,q,r,sl-J ha Ap q, rsU Ap,q,r,s =Wpg Ap,q + WF,SAT-,S* (2.30)
~ 1
4LAg,q,r,s,p,q,r,§U ha Ag a,r.spar, Y. Ag,q,r,s,p,q,r,é = Wp,q,r,SAg,q,r,s + Wp,q;r,sAg,q,r,s- (2.31)

Similarly, for the right Riemann-Liouville derivative,kang
R ]+p

R/K‘SU(X) ~he kZO gk u(x+ (k= p)h),

then there exists

. 1Nx—i+p " 1Nx—i+m " 1Nx—i+m o
RApU(Xi)Zh—O, Z QKU(XiJrk—p):h—a Z qk+p7mu(xi+k7m):h_a Z qk+p7mu(xi+kfm)7
k=0 k=m—p k=0

whereqﬁﬂ)fm =0, whenk+ p—m< 0, andp is an integer. And the fourth order approximation is

_ 1 Ny—i+m
xDygU(%i) = 4rAG gr.spgrsu(Xi) + o) = % P Ui pk-m) + O(h*), (2.32)

where¢ is defined by[(2.26), and the matrices forms are

~ 1

a o a __ a\T.
RAJU = 17BJU.  Bf=(AD)T;
~ 1
2RAGU = 7BRU.  Bfq=WpBj +weB:
L (2.33)
Ap qyr, SU — ha Bg qyr, SU Bg,q,r,s - quBp‘q + WI',SBI',S;

1

AQ
wRA grsparsY = 1 BharsparsVs  Bparspars = WearsBpars T WearsBpars
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REMARK 2.1 Whenp = 0, thenAJ in (2.28) reduces to the lower triangular matrix, and it carebsily

checked that all the eigenvaluesAff are greater than one; in fact, from Lemmal 2.1, it can be noted

thatA (A7) = (%’)a with a € (1,2). This is the reason that the scheme for time dependent proble

is unstable when directly using the second order Lubich édanwith a € (1,2) to discretize space
fractional derivative.

2.2 Effective fourth order discretization for space fractional derivatives

This subsection focuses on how to choose the paramgtenss, p,q,7,s such that all the eigenvalues
of the matrixA‘F’;,q (orA‘F’,”q’r’S orAg’q’r’S’m,Tﬁ) h_ave negative real parts; this means that the chrespgndin
schemes work for space fractional derivatives. Sifg, By s, andBg < IS, respectively, the

! P.Gr.SPAT,
transpose oRj o, Aj s aNAAT ;| snqrs We don't need to discuss them separately.

DEFINITION 2.7 (Quarterongt all,[2007, p. 27) A matribd € R™" is positive definite irR" if (Ax,x) >
0,vxe R", x#£0.

LEMMA 2.4 (Quarteronét all, 12007, p. 28) A real matrii of ordern is positive definite if and only if

its symmetric parH = A+—2AT is positive definite. LeH € R™" be symmetric, thehl is positive definite

if and only if the eigenvalues df are positive.

LEMMA 2.5 (Quarteronét al!,[2007, p. 184) IiA € C™", letH = % be the hermitian part o4, then
for any eigenvalu@ of A, the real parfl (A (A)) satisfies

Anin(H) < O(A(A)) < Amax(H),

whereAmin(H) andAmax(H) are the minimum and maximum of the eigenvalueklpfespectively.

DEFINITION 2.8 (Chan & Jin, 2007, p. 13) Letx n Toeplitz matrixT, be of the following form:

to t1 - toon tion

o to ta - oo
Ta=]: t to o i

thoy - t_q

th-1 th2 -+ U to

i.e., tij =t_j andT, is constant along its diagonals. Assume that the diago{my'@\}gin+1 are the
Fourier coefficients of a functiof, i.e.,

_irym ik
tk_ﬁlnf(x)e dx,

then the functiorf is called the generating function of.

LEMMA 2.6 (Chan & Jin, 2007, p. 13-15) (Grenander-Szegd theoteti), be given by above matrix
with a generating functiorf, wheref is a 2r-periodic continuous real-valued functions defined on
[—m, 1. Let Amin(Tn) andAmax(Tn) denote the smallest and largest eigenvalus,aespectively. Then
we have

fm’n < Am’n(Tn) < /\nnx(Tn) < fmax,
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where frin and fyax is the minimum and maximum values 6fx), respectively. Moreover, ifyin <
fmax, then all eigenvalues af, satisfies
fn'in < A (Tn) < frnax,
for all n > 0; In particular, iffn > 0, thenT, is positive definite.

THEOREM2.9 (Effective second order schemes) B&f, be given in[[(2.2B) and & a < 2. Then any
eigenvaluel of A7 , satisfies

OA(ARg) <0 for (p,g)=(1,q), [q>2

moreover, the matrice& and(A‘r’,”q)T are negative definite.

Proof.
(1) For(p,q) = (1,4), g < —2, we haveAf s = 317 (9A — A7), and
o a
g E
Ag,q = . . ’
# o o
o o o @
with
qqy
o 7k1, O < k g _q7
W=1 %q L ks

The generating functions @ , and(Ag ;)" are
fiag z @t and fag 1 (x) = Y @le X,

W ag ‘X”;A%,qﬂ )

respectively. Takingl, q , thenfpq(a,x) = fbq is the generating function of
Hp,g. Sincefag  (x) andf (AZ )T (x) are mutually conjugated, thefg 4(a, X) is a 2rr-periodic continuous

real-valued functions defined da 1T, 7). Moreover, f, q(a,X) is an even function, so we just need to
consider its principal value g, 1. Next, we provef, 4(a,X) < 0. Rephrasing the generating function
leads to

fpq(a,x) = (;qq(ekl +quq<e kl)
(q 1< % ae|k>< |qxzqae|kx+qe|xzqe|kx éqxzqell«)

{qeix(l_ )’ (1+ %(1 - eix)) ’ +ge¥(1—e X (1+ %(1 _ eix)) a]

[eiqxa_ ) <1+ %(1_ éX)) " +d%(1—e ) <1+ %(1— eiX)> a} .

_ 1
2(q—1)
1
2(q-1)
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Because of
ety _ (9 X\ otia(3-F) 1, tix ‘ 2 X\ 7 ia(3-6)
(1-e™) ——(2302) et (15— __(1+3sn 2) et :
where

i X
Zsmz

cos3 + /14 3sin?3

6 = 2arctan €[0,m/2],

then, forq < —2, there exists

o) = g (20" (1 203) st -0 -) con{ae- §-0)-a)]

(2) For(p.a) = (1,0), q > 2, we haveA] ; = 521 (0A] — Af) and

[ @ o g 7
AN T
2 P2 H G o B
A= o : o o o o
P.q %72 ., (pq+l % q)qil % ’
(Pg+n—3 (05’+1 @? <P§71
(Oin 2 Bins 0 @ o W2 W @
with
i 0<k<q—2
o T o=-1° X \q_ )
o = g
7qqk*§ill k> q-—2.

The generating functions & and(Ag)q)T are

[ [

faa (X) = ()q?ei(qu)x and f g T(X): qq(crefi(qu)xv
Ba k;) (AZy) k;

respectively. Denoting

Al + (AZ )T
an—-JELjéfﬂln (2.34)

ngq(X)+f(Aa )T (X) . . . .
then fpq(a,x) = —21———"9—— is the generating function dfi, 4. By the similar way, forg > 2,

there exists

foqla,x) = q%l (25in)_2()" (1+ 35in2)_2() 5 [qcos(a(x— g— 0) —x) —COS(C!(X— g— 0) —qx)} .
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(P.a9)=(1-2) (P.a)=(1,2)

(e X)
(e X)

xe[0,7] 0 1 a2l xe[0,7] 0 1

FiG. 1. f(a,x) for (p,q) = (1,-2) FiG. 2. f(a,x) < 0for (p,q) = (1,2)

It can be noted thafp ¢(a,X) has the same form when< —2 andq > 2, p= 1. And we can check
that, for(p,q) = (1,q), |g| > 2, there exists (see Figs[1-2)

foq(a,x) = q%l (ZSin)—z()a (1+ 35in2)_2() 5

(2.35)
. [qcos(a(x— 7—2T— 6)—x) —cos(a(x— 7—2T— 6)—qx)} <0. o

Since fpq(a,x) is not identically zero for any givem € (1,2), from Lemma[2.b, it implies that
A(Hpg) <0 andHpq is negative definite. Then we gél(A (A7) < 0 from Lemma 2.b, and the
matricesA , and(Ag’q)T are negative definite by LemrhaP.4. O

THEOREM2.10 (Effective third order schemes) L&, . swith 1 < a < 2 be given in[(2.30). Then any
eigenvaluel of A7 | ¢ satisfies

D(A (Ag,q,r,s)) < O for (p7q7 r,S) = (17qulus)7 |q| > 27 |S| > 27 and qs< 01

moreover, the matrice&] ;| and(A‘F’,’yqyrys)T are negative definite.

Proof. Taking

Abqrst (Apars) !

Hp7q7r7s = 2 = Wp7q Hp7q + Wr7s Hr7s, (236)
whereHp  andH; s are defined by[(2.34), then
fpars(@;X) =Wpg fp.q(a,X) +wrs frs(a,x) (2.37)

is the generating function dfp s, wheref, 4(a,x) and f;s(a,x) are given by[(2.35). Sinclg| > 2,
30+2
s > 2, andgs < 0, we can check thatip g = Wi g = % >0, Ws=Wps= % > 0. Then from
(2.38) and[(Z.37), we gdbqrs(a,x) <O.
Again, from Lemmak 2]4-2.6, the desired results are ohdaine O
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THEOREM 2.11 (Effective fourth order schemes) LA o< With 1 < a < 2 be given in[(2.31),
where(p,q,r,s,p,0,7,5) = (1,2,1,-2,1,9,1,3), [4| > 2,|3 > 2, ( # (2,—2) andgs< 0. Then any
eigenvaluel of A7 ¢ Satisfies

O(A (Ag,q,r,s,p,q,r,s)) <0,

and the matricedf , - nqrsand(A%,  nq.o)T are negative definite.

Moreover, if(p,q,r,s,P,T,F,S) takes the following values

(p,q.r,8P.0,7.5) =(1,2,1,0,1,2,1,-2),

(p,q,r,s,P,0,7,35) = (1,2,1,0,1,-1,1,-2),

(p,q,r,s,P,0,7,3) = (1,2,1,-1,1,2,1,-2),

(p,q.r,sP.0,75) =(1,21,-11,-1,1,-2),
(p,q,r,s,p,0,7,5) =(1,0,1,-1,1,2,1 —2),

(p,q,r,s,P,0,7,35) = (1,0,1,—2,1,2,1,-2),

(p,q,r,s,P,0,7,3) = (1,—-1,1,-2,1,2,1,—-2),

thenT (A (A%, spars) < 0and the matricead . .o cand(Af, . . <)" are negative definite.

Proof. By the similar way to the proofs of Theoresl2.9 and .10, weaialihe desired results. O

3. Application to the space fractional diffusion equations: the one dimensional case of (1.2) and
@2 itsdlf

We use two subsections to derive the full discretizatiorfIoB), First, we present the scheme for the
one dimensional case ¢f (1.2). The second subsectioneld#ligfirovides the full discrete scheme of the
two-dimensional fractional diffusion equatidn (1.2) withriable coefficients.

3.1 Numerical schemefor 1D
In this subsection, we consider the one-dimensional caEZ)fwith variable coefficients, namely,

au(x,t)
ot

In the time direction, we use the Crank-Nicolson scheme.fdteh order left fractional approximation
operator[(2.25), and right fractional approximation opar{2.32) are respectively used to discretize the
left Riemann-Liouville fractional derivative, and rightdRnann-Liouville fractional derivative.

Let the mesh pointg; = x +ih, i =-m,...,0,1,..., Ny — 1,Ny,...,Ny + m, wherem is defined
by (220) and, = nt, 0 < n < N;, whereh = (xg — x)/Nx, T = T/N,, i.e., h is the uniform space
stepsize and the time steplength. Taking]' as the approximated value ofx;,t,) andd, j = d(x),

d_j=d_(x), fin“/2 = f(%i,thy1/2), wheret,, 1o = (th +1thi1)/2. Then, Eq.[(3]1) can be rewritten as

=d; (X)x DR u(xt) +d_(x)xDgu(x,t) + f(xt). (3.1)

(X, thi1) — U(X;, tn)
T

=3 [dﬂ aAGqrsparsi(Xithit) + deiaAg g rsparsi(X;th)

+d- 2RAG 4.5 pgrsU(sthi 1) + - ixqarAR g raparsU(X to) (3.2)

+ £ (%, tar1/2) + O (T2 + 0.
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Multiplying (8.2) by 7, we have the following equation

I - -
[1— 5 (dﬂ AR5 qrsparstd- 4RAg,q,r,s,D,q,r,s)} (% th+1)

(3.3)
T ~ ~
= [1—1- > (d+,i a A qrsparstdi 4RAg,q,r,gp,q,r,s)} u(Xi,tn) + TF (X, thi1/2) + RML
with
IR < et (r?+h?). (3.4)
Therefore, the full discretization df (3.3) has the follogiform
15 (0B ) | e
I ~ 1 2 '
= {14— > (d+,i 4|_Ag,q,r,s,p,q,r,s+ d; 4RAg,q,r,s,p,q,r,s)} o+ oY
and it can be rewritten as
n+1 d+l antl G- o an+l
Y Z‘pk |k+m Z ¢k i+k—m
i+m  Ne_iem (3.6)
d d X 1/2
n +I Z‘pk i— k+m+ Z ¢kul+k m +Tfn+/
For the convenience of implementation, we use the matrix fof the grid functions
u" = [u&ug’m’l‘ln,\l><7l]T7 Fnl/2 _ [fln+l/2 f2n+1/2 t,lZ\:rl{Z]T7
therefore, the finite difference scherhe13.6) can be resast a
- 2h0’ (DAa+D-AD) U =1+ W (D/Aa+D-AD)|UM+TF™ Y2 (3.7)
whereAq = A% ars is defined by[(2.31), and
d+’l df,l
d+’2 d*,z
D, = . , D= . . (3.8)
dy et d- N1

3.2 Numerical schemefor 2D

We now examine the full discretization scheme [0f(1.2). Féeatively performing the theoretical
analysis, we supposk (x) = d; (x,y), d-(x) =d_(x,y), ande; (y) = e (x,y), e_(y) =e_(Xy).
Analogously we still use the Crank-Nicolson scheme to dodiseretization in time direction.
Let the mesh pointg = x_ +ih, i =-m,...,0,1,...,Ny— 1, Ny,...,Nx+m, andy; =y + jAy, | =
) Ny —1,Ny,...,Ny+m, wheremis givenin [2.20)t, =nt, 0 < n< N, andAx = (Xg —
x0) /Ny, Ay = (Yr—YL)/Ny, T=T/N; andd, j = di(x,yj), d-i = d_(x,yj), ande; j = e, (%,Y;),
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e j=e_(x,yj). Takingu!; as the approximated value afx;,yj,tn) and 1‘['].“/2 = F(%,Yj;thi1/2)s

wherety 12 = (th+thy1)/ 2. Then, Eq.[(T]2) can be rewritten as

T ~ ~ ~ ~
{1— 5 (d+,i A qrsparstdoi B grspar st ahngrsparste ] 4RA€,q,r,ab,qIS)} U4, j tosa)

T ~ ~ ~ ~
= [:H‘é (d+,i 4LAg,q,r,s,p,q,T,§+d*,i 4RAg,q,r,s,b,q,T,§+e+,J' 4LAﬁ,q,r,s,p,q,r,s+eﬁJ 4RAﬁ,q,r,s,p,q,r,s)} u(xi,yj,tn)
+ Tf (Xl ay] 7tn+1/2) + Rir:}rl7
(3.9)
with
IR < et (174 (A%)* + (Ay)*). (3.10)
Then, the resulting discretization ¢f(B.9) has the follogvform

T i i B B 1
[1 — E (d+,i 4LAg,q,r,sﬁp,q,r3 + d,,i 4RAg,q,r,s,b,q,TS + €4 4LAp,q,r,s‘p,q,F,§+ € j 4RAp,q,r,s,‘p,q,?,§)} Uirjj

T Ao Aa AB B n
= [1 + > (d+,i aPpgrsparstd-iarApqrsparst er.] aRpqrsparst e 4RAp,q,r,&,qu-,T-SH Uij

+1/2
+ T
(3.11)
We further define
5a,x = d+,i 4Lﬂg,q,r,s,p,q,r,s + df,i 4Rﬂg,q,r,s’p’q’r,§;
Oy = €4 4'-Ag,q,r,s,b,q,rs+ € 4RAg,q,r,a,b,qrsv
thus Eq.[(3.11) can be rewritten as
T T 1 T T n+1/2
(1= 580x— 508y ) U = (1+ 5 8ax+ 580y ) Uy + 2 (3.12)
The perturbation equation df (3]12) is of the form
T T +1 T T n+1/2

Comparing[(3.13) witH(3.12), the splitting term is given by

T2 n+1 n
Zéaﬁxéﬁvy(Ui’j _ui,j)7

since(uﬂ}rl— u';) is and(t) term, it implies that this perturbation contributes@fr?) error compo-
nent. '

The system of equations defined by (3.13) can be solved bytlwsving schemes.

PR-ADI scheme [Peaceman & Rachiord (1955)]:
T
2

{2, (3.14)

(1— E50{,x) ui*,j = (1+ Eaﬁﬁy) uin-,J 50

2 2
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r 1_ T * T n+1/2
(1_ Eéﬁﬁy) uj = (H 550%) uij+ 5y (3.15)
D-ADI scheme|[Dougls (1955)]:
L - T 1/2.
(1= 00) iy = (2 G0t 18y oy 4 T (3.16)
T N T
(1_ §5g,y) ult = - 9By (3.17)
Take
UM = [ud U8 1, U0 U2 W s UR 1 20 UT 10 B N1 Uiy —1]
F" = [fﬁl’ f2n,1’ T fll\}rl,la f£2, f£2a ) fll\.llel,27 sy flr.],Ny*L ngy*la ey flil]xfl,Nyfl]Ta
and denote
— T TV T T
= 2(AX)@ [(1©D)(1®A:)+ (19D ) (1 ®Ay)] = W| ® (DyAq+D_Al), -
= T T - T T .
oAy = 2(dy)P [(E+®|)<Ap®|)+ (E-®1)(Ag® |)} = 5ayP (E+AB +E,AB) 21,

wherel denotes the unit matrix and the symbothe Kronecker product [see, Laub (2005)], akgd=

A Ag are defined by (2.31). The matrices andD_ are defined by(3]8), and

a _ AP -
p.a.1,S,p.ar.s p.a,r.SPar.S

€r1 €1
€12 €2
E, = , , E_= _ . (3.19)
€L N1 € N1
Therefore, the finite difference scherhe (3.13) has thevatig form
(I — ) (I — UL = (I + 24) (1 + 2%)U" + T2, (3.20)
REMARK 3.1 The scheme$ (3114)-(3115) and (3.16)-(8.17) are elguiyasince both of them come
from (3.13), see [Deng & Cheh (2013)].

4. Convergenceand Stability Analysis

In this section, we theoretically prove that the differeackeme is unconditionally stable and 4th order
convergentin space directions and 2nd order convergeinténdirection. In the following, the matrices
D.,D_ andE,, E_ are defined by[{318) anf (3]19), respectively.

LEMMA 4.1 (Laub| 2005, p. 140) L&t € R™", B c R™S, C € R™P, andD € R, Then
(A®B)(C®D)=AC®BD (cR™*P).

Moreover, for allA andB, (A® B)T = AT @ BT.
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LEMMA 4.2 (Laub| 2005, p. 141) Lét € R™" have eigenvalue§\;}! ; andB € R™™ have eigenval-
ues{y;}L,. Then themn eigenvalues oA B are
Al“la cee aAlIJma/\Zula tee 7/\2“”11 ce 7/\nIJl s ,Anllm-

THEOREM4.1 Letthe matrfq = A ;s pqrs Pe defined by[(2.31) arld = koD, wherek is any

given nonnegative constant. Then we havgA (D (Aq + KaAj))) < O.
Proof. Since
1 1 1 1
D ? [D4(Aq +KaAq)] D2 = DX (Aq +KaAq)DZ,

1 1
it means thaD., (Aq + KaAl) andD? (A + KqAl)D? are similar. From Theorem 2111, we kndw
andA], are negative definite, and thanks to Definifion 2.7, it imgptieat

1 1 1 1
(Di(Aa + KaAL)D2X, x) = ((Aa + KgAL)D2x, sz) <0, VxeR",x#0,

i.e., the matrixA := D%(Aa + KO,AE)D% is negative definite. From Lemrha RH4,= @ is negative
definite and\max(H) < 0; and according to Lemnia 2.5, we obtaifA (A)) < Amax(H) < 0. Therefore,
0 (A (D+(Aa +KaAY))) =O(A(A)) <O. 0
THEOREM4.2 Letak and.o be defined by[(3.18) arld - = k4D, E- = KkgE,, wherek, andkg are
any given nonnegative constants. Then we Hay# (<)) < 0 andd (A («%)) < 0.

Proof. From [3.I8), there exists

T T T T

aty = W' @ (D4Aq+D_Ay) = 2(Ax)°’| ® (D4 (Aa + KaAg)) »
__ T T _ T T

K= Sagp (EiAg+E-A}) 21 = Ay (Ev(Ag + kpAD) ) 1.

By Theoreni4ll, we gefl (A (D4 (Aq + KaAg))) < 0 andd ()\ (E+(A[; + K[;AE))) < 0. Then, ac-
cording to Lemm&412, it implies that (A («%)) < 0 andl (A (2%)) < 0.

REMARK 4.1 Iftakingkq = kg = 0, then Eq.[(1]2) becomes the one-sided fractional diffusguation;
andkq = kg = 1, Eq. [1.2) reduces to the space-Riesz fractional diffusiguation.

4.1 Sability and Convergencefor 1D

THEOREM 4.3 LetD_ = k4D, then the difference schenfe (3.7) withe (1,2) is unconditionally
stable.

Proof. Letl! (i=1,2,...,Nx—1;n=0,1,...,N) be the approximate solution af, which is the exact
solution of the difference schenie (8.7). Puttafig= U — u', and denoting” = [¢7, 3,..., &] 4], then
from (3.1) we obtain the following perturbation equation

(I =A™ = (1 + A",

el = (1 =AY +A)E,
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with .

2ha
DenotingA as an eigenvalue of the matu then from Theorern 411, we gel(A (A)) < 0. Note that
A is an eigenvalue of the matriif and only if 1— A is an eigenvalue of the matrix— A, if and only
if (1—A)"1(1+A) is an eigenvalue of the matrix — A)~1(I +A). Sincel(A (A)) < 0, it implies that
|(1-A)"(14+A)| < 1. Thus, the spectral radius of the matfix- A)~%(l +A) is less than 1, hence the
scheme[(3]7) is unconditionally stable.

A D, (Aq +KaAl). (4.1)

O

THEOREM4.4 Letu(x;,tn) be the exact solution of (3.1) with € (1,2), ul the solution of the finite
difference schemé&(3.7), aml. = k,D_, then there is a positive constadisuch that

[lu(Xi,tn) =] <C(T2+h%), i=1,2,...,.Ny\—1;n=0,1,...,N.

Proof. Denotinge = u(x;,tn) —u', ande” = (€], €, . .. ,eR,Xfl]T. Subtracting[(3]12) froni(317) and using
e’ = 0, we obtain
(I =A™ = (1 + A+ R,

whereAis defined by[(4]1), an®" = [R],R},...,Ry, _;]". The above equation can be rewritten as
=1 -A1+A+ (1 -A) R

Similar to the proof of Theorem 4.2 of [Deng & Chen (2013)], have that| (1 — A)~1(1 + A)||2 and
(1 —A)~2||2 are less than 1. Then, usifi|g'™| < ¢1(12 4 h*) in (3.34), we obtain

€12 < 11 =A) 1+ A)l2- [ Y2+ (1 = A) - R

n—-1
<€ i+ IR < 3 IR <o 1),
K=

4.2 Sability and Convergencefor 2D

THEOREM4.5 LetD_ = koD, andE_ = kgE, then the difference schenie (3.20) witkcla, 3 < 2
is unconditionally stable.

Proof. Let GI”J (i=12...,N\x\—1;j=1,2,...,Ny—1;n=0,1,...,N) be the approximate solution
of uf';, which Is the exact solution of the difference scheme (3.2aking&"; = tf'; — uf';, then from
@Zd) we obtain the following perturbation equation ' ' '

(1= k) (| = A)E™ = (1 + ) (| + A)E", 4.2)
where# and.< are given by[(3.18), and
€M = (611,800, BN 11 61208020 R 12+ ELN— 1 EBNy— 15> Ep— LNy -
Then Eq.[(4.R) can be rewritten as
€M = (1 — ) (1 — ) M1 + %) (1 + )€™ (4.3)
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According to Lemm@&4]1 anf (3118), it is easy to check ti#aind.c%, commute, i.e.,

2

_ _ T T T
iy = R = G (E+Ag+E-A}) @ (D+Aq+D-AL). (4.4)
Then Eq.[(4.B) has the following form
€M = (1 — ) M1+ ) (1 — ) L1 + )€, (4.5)

Form Theoreni 412, we have (A (%)) < 0 andd (A (%)) < 0. Similar to the proof of the Theorem
[4.3, the spectral radius of the matf(ix— %) ~1(1 + 2%) and(l — <%) (I + <%) are less than 1. Then
the difference schemg{3]20) is unconditionally stable.

(]

THEOREM4.6 Letu(x;,yj,tn) be the exact solution of (1.2) with< a, 8 < 2, ul’; the solution of the

P

finite difference schemé (3.20), ad = k4D, andE_ = kgE,, then there is a positive constaDt
such that

[1u(%,Yj,th) — 2 < C(T2 + (A%)* + (Ay)*),
withi=12,... . Ny—1;j=1,2,....Ny—1;n=0,1,...,N.
Proof. Taking€'; = u(x;,yj,ta) — uj, and subtracting (3.9) frord (3.20), we obtain
(I — k) (I = A = (1 + .2%) (I + H)e" + R, (4.6)
whereg and.e are given in[(3.18), and
& =[e]1,601, - Q11,6120 B 120 ve?,Nyflvég,Nyflv e 7eRlel,Ny71]T7
Rn = [Rg,la Rg,lv [ERE RRlel,lv RE,Z? Rg,Za ERRR} RRlel,Za (R} RE,Nyfla Rg,Nyflv [ERE RRlel,Nyfl]Ta

and R Y < TT(12 + (Ax)*+ (8y)*) is given in [310).
From [4.4) 2% and.<%, commute, then Eq[(4.6) can be rewritten as

&= (1= ) H1 + ) (1 — ) (1 + A+ (1 - ) (1 — o) TRML

Again, similar to the proof of Theorem 4.2 of [Deng & Chen (2§]1 we know that]|(I — .<7,)~ (I +
y)||2 and||(I — 27,) 1|2 are less than 1, where= x,y. Then there exists

n—1
|CHIPES Z)IR"“I <o(T?+ (A0 + (Ay)Y).
K=

5. Numerical results

In this section, we numerically verify the above theordtiesults including convergence rates and
numerical stability. And thé, norm is used to measure the numerical errors.
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5.1 Numerical results for 1D

Consider the one-dimensional fractional diffusion equaiB.1) in the domain & x < 2, 0<t < 1,
with the variable coefficientd; (x) = x?, d_(x) = 2x9, and the forcing function
r9

f(x,t) =cos(t + 1)x*(2— x)* — x%sin(t + 1) Fo_a) (&4 2(2-x8

(X +2(2-x)"") + 24— (r7(_7)a)

I(8)
r—a)
ool (';5@0() (X% 422-%)°>) + 16—~ (';)(f’)a) A4 22—x)* ),

and the initial conditioru(x,0) = sin(1)x*(2 — x)#, the boundary conditions(0,t) = u(1,t) = 0, and
the exact solution of the equationtiéx,t) = sin(t 4+ 1)x*(2 — x)*.

-8 (Xﬁfa +2(2_X)67a)

-32

Table 1. The maximum errors and convergent orders for thersef{3.7) of the one-dimensional fractional diffusion eiquma
(@) at t=1 andr = h2.

(p,q,r,s,p,0,T,3) h a=11 Rate a=19 Rate
1/10 4.7842e-03 5.8264e-03

(1,2,1,0,1,2,1,-2) 1/20 2.5436e-04 4.2333 5.9999%e-04 796.2
1/40 1.9662e-05 3.6934 4.6242e-05 3.6977
1/60 4.1748e-06 3.8218 9.7725e-06 3.8334
1/10 8.5475e-03 5.5003e-03

(1,2,1,-3,1,2,1,-2) 1/20 4.9722e-04 4.1035 5.7476e-04 258%
1/40 3.9559e-05 3.6518 4.4490e-05 3.6914
1/60 8.6604e-06 3.7464 9.4148e-06 3.8301

Table[d shows the maximum errors, at tilne 1 with T = h?, the numerical results confirm the
convergence with the global truncation er@fr? + h?).

5.2 Numerical results for 2D

Consider the two-dimensional fractional diffusion eqoat{1.2), where 6< x < 2, 0< y < 2, and

0 < t < 1, with the variable coefficients, (x,y) =x%, d_(x,y) = 2x%, ande, (x,y) =Y, e_(x,y) = 2y*,
and the initial conditionu(x,y,0) = sin(1)x*(2 — x)*y*(2 — y)* with the zero boundary conditions, and
the exact solution of the equation is

u(x,y,t) = sin(t + 1)x*(2— x) (2 — y)*.

From the above conditions, it is easy to get the forcing fimmct (X, y,t).
Table[2 displays the maximum errors of the schelme [3.20) cantirms the desired convergence
with the global truncation erraf (12 + (AX)* + (Ay)*).

6. Conclusions

Based on the Lubich’s operators, this work provides a new tdeobtain the high order discretization
schemes for space fractional derivative. We obtain thect¥ie difference operators with 2nd order,
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Table 2. The maximum errors and convergent orders for thensel{3.2D) of the two-dimensional fractional diffusion ation
(I2) att=1 and = (Ax)? = (Ay)>.

(p,q,r,s,p,q,F,5) AX a=p=11 Rate a=18(=19 Rate
1/10 8.6154e-03 6.5211e-03

1,2,1,0,1,2,1,-2) 1/20 5.4115e-04 3.9928 4.4802e-04 635.8
1/30 1.2626e-04 3.5894 8.8416e-05 4.0023
1/40 4.3328e-05 3.7177 2.7791e-05 4.0229
1/10 1.0110e-02 6.6368e-03

1,2,1,-3,1,2,1,-2) 1/20 6.3881e-04 3.9842 4.5471e-04 867%
1/30 1.4363e-04 3.6806 8.9704e-05 4.0032
1/40 4.8431e-05 3.7788 2.8199e-05 4.0226

3rd order, and 4th order accuracy, called WSLD operators.fltther checking the efficiency of the
high order schemes, we apply the 4th order scheme to solwptee fractional diffusion equation with
variable coefficients; and the detailed theoretical amslgad numerical verifications are presented.
Hopefully, the higher order (5th order, 6th order, etc.) esuks can be obtained by following the idea
given in this paper. In fact, for any fixed convergent ordee, dbtained difference operators are a class
of difference operators, not just one particular operator.
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