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Abstract. In recent years, a number of finite element methods have been formulated for the
solution of partial differential equations on complex geometries based on nonmatching or overlapping
meshes. Examples of such methods are the fictitious domain method, the extended finite element
method, and Nitsche’s method. In all these methods, integrals must be computed over cut cells or
subsimplices, which is challenging to implement, especially in three space dimensions. In this note,
we address the main challenges of such an implementation and demonstrate good performance of a
fully general code for automatic detection of mesh intersections and integration over cut cells and
subsimplices. As a canonical example of an overlapping mesh method, we consider Nitsche’s method,
which we apply to Poisson’s equation and a linear elastic problem.
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1. Introduction. A fundamental problem in computational science is to develop
methods for the solution of partial differential equations on domains containing one
or several objects that may have complex or time-dependent geometry. One approach
to attacking this problem is to allow overlapping meshes, where a mesh representing
an object is allowed to overlap a background mesh representing the surroundings of
the object; see, for instance, Chesshire and Henshaw [22], Mayer et al. [50], Yu [60],
and Zhang et al. [61], for various applications.

In solid mechanics, overlapping meshes may be used to represent materials con-
sisting of elastic objects inserted into a surrounding elastic material of another type
[37], and in fluid-structure interaction, an overlapping mesh may be used to represent
an elastic body immersed in a fluid represented by a fixed background mesh [7, 49, 60].
Another common application [22, 25, 26] is found in mesh generation, where a com-
plicated geometry such as a pipe junction may be decomposed into simpler parts and
one unstructured tetrahedral mesh is created for each part. These components may
then be stored, reused, and recombined in applications by using an overlapping mesh
technique.

Overlapping mesh techniques are of particular interest in simulations that involve
moving objects. For such problems, overlapping mesh techniques are an attractive
alternative to arbitrary Lagrangian–Eulerian techniques. The main advantage is that
by using an overlapping mesh technique, one avoids deformation of the mesh that
may lead to deterioration of the mesh quality and ultimately force remeshing. This
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is of particular importance in the simulation of fluid-structure interaction where the
topology of the fluid domain may change due to deformation of the solid.

The main focus of this work is on the general algorithms and efficient implemen-
tation that is required to handle complex problems posed on overlapping meshes in
three space dimensions. Many of the presented algorithms and the tools developed are
of interest and use for the implementation of various overlapping mesh techniques. To
make the discussion concrete, we here focus mainly on Nitsche’s method. In Hansbo,
Hansbo, and Larson [33], a consistent finite element method (FEM) for overlapping
meshes based on Nitsche’s method was introduced and analyzed. The basic idea is to
construct a finite element space by taking the direct sum of the space of continuous
piecewise polynomial functions on the overlapping mesh and the restriction of the
space of continuous piecewise polynomial functions to the complement of the over-
lapping mesh, and then impose the interface conditions using Nitsche’s method. It
was shown that this approach leads to a stable method of optimal order for arbitrary
degree polynomial approximation.

The main challenge in the implementation is to compute the intersection between
the overlapping and the background mesh. The result is a set of cut cells which may
be arbitrarily complex polyhedra. These arise as the result of subtracting from the
tetrahedra of the background mesh a set of tetrahedra from the overlapping mesh.
By adopting algorithms and search structures from the field of computational geom-
etry, we show how these issues can be handled in an efficient manner. Furthermore,
one needs to compute integrals on the resulting polyhedra. This can be carried out
efficiently based on an application of the divergence theorem in combination with
potentials to represent an integral on the three-dimensional polyhedron as a sum of
one-dimensional integrals on its edges.

The presented algorithms and implementation are relevant for several other types
of related methods, including the extended FEM [31, 58], nonfitted sharp interface
methods [14, 32], and mesh-tying techniques [25].

1.1. Major contributions of this paper. Our work consists of several contri-
butions. We identify the major techniques used in the implementation of overlapping
mesh methods and related methods. We further identify useful data structures and
algorithms from the field of computational geometry. As part of our work, existing
computational geometry libraries such as CGAL [1] and GTS [2] have been wrapped
into the general purpose finite element library DOLFIN [43] and into an extension
library on top of it, thereby making these algorithms and data structures more eas-
ily accessible to the finite element community. Based on our implementation, we
demonstrate for the first time a highly efficient implementation of Nitsche’s method
on overlapping meshes for several problems posed in three spatial dimensions, thus
opening the possibility of employing Nitsche-based overlapping mesh methods for
challenging three-dimensional problems such as fluid-structure interaction or domain-
bridging problems.

1.2. Outline of this paper. In section 2, we review Nitsche’s overlapping mesh
method for a model problem and present in section 3 the techniques and algorithms
we have developed for efficient implementation of Nitsche’s method in three space
dimensions. The corresponding implementation and data structures are described in
section 4. Finally, we present in section 5 numerical examples that demonstrate the
convergence of the numerical solution as well as the scaling of the work required to
compute mesh intersections relative to standard finite element assembly on matching
meshes.
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Fig. 2.1. Two domains Ω1 and Ω2 separated by the common interface Γ = ∂Ω1 ∩ ∂Ω2.

2. Nitsche’s method on overlapping meshes. We here review Nitsche’s
method for a simple model problem posed on two overlapping meshes.

2.1. Model problem. Let Ω0 = (Ω1 ∪ Ω2)
◦ be a domain in R

3, with boundary
∂Ω0, consisting of two (open and bounded) subdomains Ω1 and Ω2 separated by the
interface Γ = ∂Ω1 ∩ ∂Ω2. We consider the following elliptic model problem: find
u : Ω0 → R such that

−Δui = fi in Ωi, i = 1, 2,(2.1)

[∇u · n] = 0 on Γ,(2.2)

[u] = 0 on Γ,(2.3)

u = 0 on ∂Ω0,D,(2.4)

∇u · n = g on ∂Ω0,N.(2.5)

We here use the notation vi = v|Ωi for the restriction of a function v to the subdomain
Ωi for i = 1, 2, n is the unit normal to Γ directed from Ω2 into Ω1, and [v] = v2 − v1
denotes the jump in a function over the interface Γ. In addition, the boundary ∂Ω0

is divided into two subdomains ∂Ω0,D and ∂Ω0,N, where Dirichlet and Neumann
boundary conditions are applied, respectively.

2.2. Finite element formulation. We consider a situation where a background
mesh T0 is given for Ω0 = (Ω1 ∪ Ω2)

◦ and another mesh T2 is given for the overlapping
domain Ω2 (see Figure 2.1). Both meshes are assumed to consist of shape-regular
tetrahedra T . The mesh T1 covering Ω1 = (Ω0 \ Ω2)

◦ is constructed by

(2.6) T1 = {T ∩Ω1 : T ∈ T0 ∧ |T ∩Ω1| > 0}.

Note that the T1 consists of both regular and cut elements since the mesh T0 is not a
conform tetrahedralization of the subdomain Ω1 in general. For a cut element T ∩Ω,
the degree of freedoms are defined to be the same as for the original uncut element
T . This is illustrated in Figure 2.2.

We let Vh,i denote the space of continuous piecewise fixed order polynomials on
Ti that vanish on ∂Ωi ∩ ∂Ω0,D for i = 0, 2. The space Vh,1 is constructed as the
restriction to Ω1 of functions in Vh,0; that is, Vh,1 = {v|Ω1 : v ∈ Vh,0}. We may then
define a finite element space for the whole domain Ω0 by

(2.7) Wh = Vh,1

⊕
Vh,2.
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Fig. 2.2. The mesh T1 for Ω1 = (Ω0\Ω2)◦ is constructed as the set of cells of T0 not completely
overlapped by the cells of T2.

Nitsche’s method proposed by Hansbo, Hansbo, and Larson [33] then takes the fol-
lowing form: find uh ∈ Wh such that

(2.8) a(uh, v) = l(v) ∀ v ∈ Wh,

where

a(u, v) =
∑
i=1,2

∫
Ωi

∇u · ∇v dx(2.9)

−
∫
Γ

〈∇u · n〉[v] dS︸ ︷︷ ︸
Consistency

−
∫
Γ

〈∇v · n〉[u] dS︸ ︷︷ ︸
Symmetrization

+ γ

∫
Γ

h−1[u] · [v] dS︸ ︷︷ ︸
Penalty/Stabilization

,

l(v) =

∫
Ω

fv dx+

∫
∂Ω0,N

gv ds.(2.10)

Here, γ is a positive penalty parameter and the average 〈∇v · n〉 is chosen to be the
one-sided derivative 〈∇v ·n〉 = ∇v2 ·n according to Hansbo, Hansbo, and Larson [33].
But as pointed out by the authors, any convex combination of the normal derivatives
leads to a consistent formulation.

2.3. Summary of theoretical results. When the penalty parameter γ in (2.9)
is chosen large enough, the form a(·, ·) is coercive on the discrete space Wh and one
can derive optimal order a priori error estimates in both the energy norm and the
L2-norm for polynomials of arbitrary degree p. The estimates take the form(

2∑
i=1

‖∇(u− uh)‖2Ωi
+ h−1‖[uh]‖2Γ

) 1
2

≤ Chp‖u‖Ω0,p+1,(2.11)

‖u− uh‖ ≤ Chp+1‖u‖Ω0,p+1.(2.12)

See Hansbo, Hansbo, and Larson [33] for details. Here, ‖ · ‖Ω0,s denotes the stan-
dard Sobolev norm of order s > 0 on Ω0. A posteriori error estimates and adaptive
algorithms are also presented in Hansbo, Hansbo, and Larson [33].

As observed by Areias and Belytschko [6], Nitsche’s method for an arbitrary
cutting interface as in Hansbo and Hansbo [32, 34] can be reinterpreted as a particular
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instance of an extended FEM. In contrast, the presented formulation on overlapping
meshes lacks such a reinterpretation since two unrelated meshes are involved and
therefore the discontinuity across the interface cannot be modeled by the enrichment
of degrees of freedom within a single cell. Nevertheless, both methods share some
features, especially with regard to their implementation.

3. Techniques and algorithms. The main challenges in the implementation of
Nitsche’s method on overlapping meshes arise from the geometric computations which
are necessary to assemble the discrete system associated with (2.8)–(2.10). Naturally,
these geometric computations are more involved in three than in two dimensions.
Similar challenges are encountered in related methods such as the extended FEM [31],
but also for the simulation of contact mechanics [59]. Different solutions have been
proposed; see, for example, Sukumar et al. [58] in the case of extended finite elements
methods and Yang and Laursen [59] for contact problems. Here, we take another
approach which efficiently solves the issues in the case of the Nitsche overlapping
mesh method. In the following, we will first discuss the challenges and their remedies
in general terms and then return to the specific details of our implementation in
section 4.

3.1. Assembly on overlapping meshes. The main implementation challenges
arise from the fact that the interface Γ can cross the overlapped mesh T0 in an arbitrary
manner, which has two consequences. First, the definition of the finite element space
(2.7) involves the restriction of the function space Vh,0, defined on the full background
mesh T0 of Ω0, to the domain Ω1. The restriction results in nonstandard element
geometries along the interface Γ as can be observed from the definition 2.6 of T1.
Second, the weak imposition of the interface conditions (2.2) and (2.3) by the interface
integrals in (2.9) involves finite element spaces defined on two unrelated meshes. Both
make the assembly challenging to implement, compared to a standard FEM.

To better understand what kinds of challenges the Nitsche overlapping mesh
method adds, we briefly recall the general theme of the assembly routine as it is
currently realized in many finite element frameworks; see, e.g., Bastian, Heimann,
and Marnach [12] and Logg [41]. Nitsche’s method is closely related to the classical
discontinuous Galerkin (DG) methods, which makes it natural to depart from the
assembly in the DG case. A detailed description of finite element assembly for DG
methods can be found in Ølgaard, Logg, and Wells [55]. We assume a variational
problem of the following form: find uh ∈ Vh such that

(3.1) a(uh, v) = l(v) ∀ v ∈ V̂h,

where a and l are bilinear and linear forms, respectively, and Vh and V̂h are the discrete
trial and test spaces, respectively. For simplicity, we here make the assumption Vh =
V̂h. The solution of the variational problem (3.1) may then be computed by solving
the linear system

(3.2) AU = b

for U ∈ R
N with stiffness matrix AIJ = a(φJ , φI) and load vector bI = l(φI). Here,

{φI}NI=1 denotes a basis for Vh. During assembly of the tensors A and b, one usually
iterates over all cells T ∈ T and computes the contributions from each cell as the cell
tensors AT

ij = a(φT
j , φ

T
i ) and bTi = l(φi), where {φT

i }ni=1 is the local finite element basis
on T (the shape functions). The element tensors are then scattered into the global
tensors A and b by adding the entries according to a given local-to-global mapping
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ιT : i 
→ I. One may similarly add contributions from each facet F of the set of
boundary facets ∂eT (the set of exterior facets) and, for the implementation of a DG
method, from each facet F of the set of interior facets ∂iT . Algorithm 1 summarizes
the parts of the standard assembly algorithm relevant to our discussion.

Algorithm 1. Standard finite element assembly of a bilinear form a(·, ·). The local
finite element spaces are denoted by Vh(T ), Vh(F ), etc.

A = 0
for each T ∈ T :

I(T ) = {1, . . . , dim(V̂h(T ))} × {1, . . . , dim(Vh(T ))}
for each (i, j) ∈ I(T ) :

AT
ij = a(φT

j , φ̂
T
i )

for each (i, j) ∈ I(T ) :
Aι̂T (i),ιT (j)+ = AT

ij

for each F ∈ ∂eT :

Ie(F ) = {1, . . . , dim(V̂ e
h (F ))} × {1, . . . , dim(V e

h (F ))}
for each (i, j) ∈ Ie(F ):

AT
ij = a(φF,e

j , φ̂F,e
i )

for each (i, j) ∈ Ie(F ):
Aι̂eF (i),ιeF (j)+ = AT

ij

for each F ∈ ∂iT :

Ii(F ) = {1, . . . , dim(V̂ i
h(F ))} × {1, . . . , dim(V i

h(F ))}
for each (i, j) ∈ Ii(F ):

AT
ij = a(φF,i

j , φ̂F,i
i )

for each (i, j) ∈ Ii(F ):
Aι̂iF (i),ιiF (j)+ = AT

ij

We now consider how the standard assembly algorithm must be modified in the
case of Nitsche’s method on overlapping meshes. We first note that the tessellation
T0 of the background domain Ω0 may be decomposed into three disjoint subsets:

(3.3) T0 = T0,1 ∪ T0,2 ∪ T0,Γ,

where T0,1 = {T ∈ T0 : T ⊂ Ω1}, T0,2 = {T ∈ T0 : T ⊂ Ω2}, and T0,Γ = {T ∈ T0 :
|T ∩ Ωi| > 0, i = 1, 2} denote the sets of not, completely, and partially overlapped
cells relative to Ω2, respectively.

Integrals over the cells of T0,1 can be assembled using a standard assembly al-
gorithm. Furthermore, integrals over the cells of T0,2 need not be assembled. (The
corresponding contributions will be assembled over T2.) However, assembly must be
carried out over T0,Γ, the partially overlapped cells of T0. For the model problem
(2.8)–(2.10), this requires the evaluation of integrals of the type

(3.4)

∫
P

∇φT
j · ∇φT

i dx and

∫
P

fφT
i dx

on cut elements (polyhedra) P = T ∩ Ω1, where T ∈ T0. Examining (2.8)–(2.10), we
further note that we must assemble the terms

(3.5) −
∫
Γ

〈∇φj · n〉[φi] dS −
∫
Γ

〈∇φi · n〉[φj ] dS + γ

∫
Γ

h−1[φj ] · [φi] dS.
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T 2
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P 0
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Fig. 3.1. The overlapping meshes in the intersection zone. The filled circles represent the
degrees of freedom on each element (here for a piecewise linear approximation on T2 and piecewise
quadratic on T0). The interface Γ is partitioned so that each part intersects exactly one cell T 2

k of
the overlapping mesh T2 and one cell T 0

l of the background mesh T0.

This poses an additional challenge, since the integrands involve products of trial and
test functions defined on different meshes. Furthermore, the interface Γ consists of a
subset of the boundary facets ∂eT2 of T2, but each such facet may intersect several
cells of T0. We therefore partition each facet on Γ into a set of polygons {Γkl} such
that each polygon Γkl intersects exactly one cell T 2

k of the overlapping mesh T2 and
one cell T 0

l of the background mesh T0. This is illustrated in Figure 3.1. Assembly
may then be carried out by summing the contributions from each polygon Γkl.

In summary, we identify the following main challenges in the implementation of
Nitsche’s method on overlapping meshes:

1. collision detection, to determine which cells are involved in the intersection
between the two meshes;

2. mesh intersection, to compute the cut cells of the background mesh T0 rep-
resented by the polyhedra {P 0

l } and the intersection interface represented by
the polygons {Γkl};

3. integration on complex polyhedra, to compute integrals on the polyhedra {P 0
l }

(and the polygons {Γkl}).
In the following, we discuss these challenges in some detail and introduce concepts,
data structures, and algorithms to handle them in an efficient manner. We emphasize
that the proposed solutions are not limited to the implementation of Nitsche-type
methods but may also be used for the implementation of related overlapping mesh
methods.

3.2. Collision detection. Topological relations between entities of a single
mesh can be described by concepts of connectivity or mesh incidence as presented
in Logg [42] and Bastian et al. [11]. To represent the topological relation between two
overlapping (colliding) meshes, we enrich the notation of Logg [42] by the concepts
of collision relations and collision maps. The collision relation T0 ↔ ∂T2 between T0
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C30 ANDRÉ MASSING, MATS G. LARSON, AND ANDERS LOGG

and ∂T2 is defined by

(3.6) T0 ↔ ∂T2 = {(i, j) : Ti ∩ Fj �= ∅ ∧ Ti ∈ T0 ∧ Fj ∈ ∂T2}.

The collision relation lists pairs of indices of all intersecting cells of the background
mesh T0 with boundary facets of the overlapping mesh T2. Furthermore, each index
of an intersected entity is mapped to the set of indices of intersecting entities via a
pair of collision maps:

(T0 → ∂T2)(i) = {j : (i, j) ∈ T0 ↔ ∂T2},(3.7)

(∂T2 → T0)(j) = {i : (i, j) ∈ T0 ↔ ∂T2}.(3.8)

We note that the collision maps T0 → ∂T2 and ∂T2 → T0 can be computed from the
collision relation T0 ↔ ∂T2.

A naive approach to computing the collision relation between two meshes T0 and
T2 would be to intersect each cell of T0 with each cell of T2, resulting in an O(|T0|·|T2|)-
complexity, which is not feasible for large meshes. However, efficient algorithms and
data structures which reduce the complexity dramatically have been developed in
the fields of computer science, computational geometry, and computer graphics. The
task of determining whether two objects collide arises naturally in the rendering of
a computer game and the objects in question are often represented by meshes. In
this paper, we limit the description to those techniques used in our work and refer
to the books of Ericson [27], Schneider and Eberly [57], and Akenine-Möller, Haines,
and Hoffman [3] for a broader overview. To efficiently find all pairs of the collision
relation T0 ↔ ∂T2, two important concepts are used: (i) fast intersection tests for pairs
of simple geometric objects and (ii) spatial data structures for large sets of objects to
accelerate collision queries.

3.2.1. Fast intersection detection. Fast intersection detection for simple ge-
ometric entities such as triangles and tetrahedra is based on so-called geometric predi-
cates. Geometric predicates are tests which determine whether two geometric entities
do intersect (collide) without computing the actual intersection. See Figure 3.2 for an
example. This saves work since the actual intersection does not need to be computed
when the geometric predicate is false.

Fig. 3.2. Left: A typical example of a geometric predicate is the incircle test, which tells whether
a given point d lies on the inside, on the outside, or on a circle defined by three points a, b, c. Right:
AABB of two triangles.
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Fig. 3.3. Bounding volume tree of gear mesh. Left: Root bounding box (blue) and the next two
generations (red and green). Right: Every fourth level of the complete bounding box tree. See online
article for color version of this figure.

3.2.2. Spatial data structures. Spatial data structures provide a hierarchical
ordering of geometric objects, which allows quick traversal of large sets of geometric
objects as part of a collision test. There exist two principal approaches based on either
space subdivisions or bounding volume hierarchies, which can both be realized as tree-
like data structures. As the name indicates, subdivision approaches rely on some sort
of geometric subdivision of the entire space embedding the structures of interest, in
our case a finite element mesh. Typical examples are binary space partitions trees,
quadtrees, and octrees. Since the embedding space is subdivided, the leaf of a tree will
usually not represent a single mesh entity and therefore further selection procedures
are required to determine the actual intersections.

In contrast, a bounding volume hierarchy is a tree which is built from bounding
volumes; that is, simple geometric shapes containing the objects to be tested. Exam-
ples of such data structures are axis aligned bounding boxes (AABB; see Figures 3.2
and 3.3), oriented bounding boxes, and so-called k-DOPs, discrete orientation poly-
topes described by k hyperplanes. The purpose of using bounding volumes is twofold:
(i) testing for collision of bounding volumes is cheaper than testing for collision of the
bounded objects, and (ii) the simple geometry of the bounding volumes means that
they can be stored efficiently in a hierarchical manner.

3.2.3. Building the collision map. Bounding volume trees accelerate asym-
metric collision queries between a tree embedding a large set of objects and a single
simple object like a tetrahedron. The concept becomes even more powerful when
intersection tests between two large sets of geometric primitives are desired, as in our
case of two meshes. Then a hierarchical traversal of both trees greatly improves the
O(|T0| · |T2|)-complexity of the naive approach. Algorithm 2 describes how to employ
a hierarchical traversal to compute the collision map.

After the completion of the traversal according to Algorithm 2, which identifies all
cells of T0 that intersect the boundary of T2, it remains to check whether the remaining
cells (which do not intersect the boundary of T2) are either completely overlapped or
not overlapped by T2. To check this, it is enough to take a single point contained in
each cell and check whether it is in Ω2. To avoid building a third AABB tree for the
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Algorithm 2. Traversal of two bounding volume trees. Starting from the root of
both trees, pairs of nodes are recursively tested for intersection. Only if the bounding
volumes A and B of two nodes overlap may the children possibly overlap. A so-
called descend rule is applied to decide with which of the two nodes to proceed.
A popular and effective rule is to choose the one with the larger volume [27] since
it gives the largest volume reduction for subsequent bounding volumes. If two leaf
bounding volumes are reached, then the mesh entities bounded by them are tested
for intersection.

compute collisions(A, B):
if A ∩B = ∅:

return
else if is leaf(A) ∧ is leaf(B):

if TA ∩ TB �= ∅:
(i, j) = (index(TA), index(FB))
T0 ↔ ∂T2 := T0 ↔ ∂T2 ∪ (i, j)

else if descend a(A, B):
for a ∈ children(A):

compute collisions(a, B)
else:

for b ∈ children(B):
compute collisions(A, b)

descend a(A, B):
return is leaf(B) ∨ (¬is leaf(A) ∧ |A| ≥ |B|)

entire mesh T2 and to take advantage of the already-built tree for ∂T2, one can use
a method known as ray-shooting ; see Akenine-Möller, Haines, and Hoffman [3]. The
idea is simple: counting how often a ray starting at the point in question intersects
the surface ∂T2 tells whether it is inside (odd number of intersections) or outside
(even number of intersections). To efficiently find all ray-surface intersections, one
may reuse the same AABB tree for ∂T2 that was used in Algorithm 2.

To summarize, the collision map and classification of cells according to the split-
ting (3.3) can be found efficiently by utilizing AABB trees, fast traversal of pairs of
AABB hierarchies, and ray-shooting techniques.

3.3. Mesh intersection. The next step is to compute the cut cells (polyhe-
dra) {P 0

l } and the interface decomposition {Γkl}; see Figure 3.1. This computation
may be phrased in terms of so-called boolean operations, which are widely used in
CAD systems to build complex geometries by performing boolean operations between
primitives from a finite set of geometries. Algorithm 3 summarizes the use of boolean
operations to compute {P 0

l } and {Γkl}. The resulting geometric objects are depicted
in Figure 3.4.

The boolean operations are completely delegated to the computational geometry
library GTS [2], which uses a so-called ear-clipping algorithm to compute the surface
tesselation of the intersection objects. The implemented ear-clipping algorithms (first
introduced in Fournier and Montuno [28]) are known to have O(n log(n)) complexity,
where n is the number of vertices of the three-dimensional polygon. This number in
turn (n) depends on the mesh quality parameters such as the smallest and widest
element angles and will in practice be bounded by a constant.
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Algorithm 3. Mesh intersection. Note that the surface S defined by the union of all
facets F intersecting the tetrahedron T divides T into two parts T+

S and T−
S according

to orientation of S.

for each T ∈ T0 intersected by Γ:
l = index(T )
P 0
l := T

S := ∅
for each F ∈ (T0 → ∂T2)(l):

S := S ∪ F
P 0
l := T+

S

for each F ∈ ∂T2:
j = index(F )
k = index(TF )
for each T ∈ (∂T2 → T0)(j):

l = index(T )
Γkl := F ∩ T

Fig. 3.4. Left top: A tetrahedron cell T 0
l from the background mesh T0 overlapped by a tetrahe-

dral mesh T2 of a cube. Bottom left: The resulting cut cell (polyhedron) P 0
l . Top right: An interface

facet F ∈ ∂T2 of the overlapping mesh T2 intersected by a number of tetrahedra from the background
mesh T0. Bottom left: The resulting facet decomposition (triangulation) {Γkl}.
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3.4. Integration on complex polyhedra. The last required step in imple-
menting the overlapping mesh method is to compute the integrals (3.4) and (3.5) on
the cut cells {P 0

l } and on the interface decomposition {Γkl}, respectively. A widely
used technique in the implementation of the extended FEM [15, 24, 52, 58] is to
decompose a cell into subcells which are aligned with the interface. The interface
is either approximated by a plane within the cell [29, 30] or completely recovered
[24, 58], even in the case of higher order interfaces [49]. Inside each tetrahedron of
the subtetrahedralization, one may then use a standard integration scheme. However,
subtetrahedralization of an arbitrary polyhedron is in general a quite challenging
problem [56], and its existence cannot even be guaranteed without adding additional
vertices [21], in contrast to the two-dimensional case.

Methods for integration over arbitrary polygonal domains without the use of a
subtriangulation have recently been presented in Natarajan, Bordas, and Mahapa-
tra [53] and incorporated into the extended FEM with discontinuous enrichments in
Natarajan et al. [54]. Using Schwarz–Christoffel conformal mappings as the funda-
mental tool, the technique is strongly bounded to two space dimensions and hard to
generalize to three space dimensions.

We here propose an alternative approach, which is based on a boundary repre-
sentation of the integrals. Despite the fact that this technique has been known for a
long time (see, for instance, [40]), it seems to be largely unknown within the finite el-
ement community. Our implementation is based on the efficient realization described
in Mirtich [51]. This technique may be easily generalized to the computation of the
general moment integral Iα(P ) over a polyhedron P , defined by

(3.9) Iα(P ) =

∫
P

xα dx =

∫
P

xα1
1 · · ·xαd

d dx,

where α = (α1, . . . , αd) denotes a multi-index of length d.
The integral Iα(P ) is computed in three steps. The first step is to interpret the

integrand as the divergence of a polynomial vector field and to rewrite (3.9) as a
surface integral:

(3.10)

∫
P

xα dx =

∫
P

∇ ·
d∑

i=1

xα+ei

d(αi + 1)
ei dx =

∑
F∈∂P

d∑
i=1

nF · ei
∫
F

xα+ei

d(αi + 1)
ds.

Here, ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the ith unit vector.
Second, the plane equation ax+ by+ cz = d for each facet F allows the construc-

tion of a projection map Z = h(X,Y ), where X,Y, Z is some positive, orientation-
preserving permutation of x, y, z. Using the parametrization h, one may rewrite the
integrals of type

∫
F
xβ ds in (3.10) as integrals in the XY -plane:

(3.11)

∫
F

xβ ds =
1

|nZ |

∫
h−1(F )

x(X,Y, h(X,Y ))β dX dY.

Here, nZ denotes the Z-component of the normal vector nF .
The third step consists of using a parametrization of ∂h−1(F ) and Green’s the-

orem in the plane to rewrite (3.11) as a sum of line integrals. Together, the three
steps reduce the evaluation of the moment integral (3.9) to the evaluation of a set
of one-dimensional integrals with polynomial integrands. We note that the algorithm
for the calculation of each moment integral has only an O(#F ) complexity.
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The moment integrals can be used in several ways to finally compute the inte-
grals (3.4) and (3.5). First, one may compute the volume and the barycenter as the
zeroth and first moments, respectively, which immediately provides a quadrature rule
for exact integration of polynomials of degree one. Unfortunately, higher order mo-
ments may not be directly reinterpreted as quadrature rules. Furthermore, as the
construction of quadrature rules for higher degree polynomials can be quite involved
[23], it can be advantageous to avoid run-time generation of quadrature rules. We
therefore propose to use the moment integrals Iα(P ) directly by first interpolating
the integrand onto a monomial basis and then summing the contributions:

(3.12)

∫
P

f dx =

∫
P

∑
α

fαx
α dx =

∑
α

fα

∫
P

xα dx =
∑
α

fαIα(P ).

Ill-conditioning may be avoided for higher order expansions by replacing the monomial
basis by Bernstein polynomials. In the present work, linear Lagrange elements have
been used throughout and so simple barycenter quadrature suffices.

4. Implementation and data structures. We now discuss some of the data
structures and classes which reflect the abstract concepts and algorithms described
in section 3. For some of these algorithms, we rely on existing implementations as
part of the computational geometry libraries CGAL [1] and GTS [2], while other
algorithms have been realized in the finite element library DOLFIN [43, 46] as part of
this work. Specialized algorithms for the Nitsche overlapping mesh method have been
implemented as part of the extension library DOLFIN-OLM, which is built on top of
DOLFIN. The code is free, open-source, licensed under the LGPLv3, and available at
http://launchpad.net/dolfin-olm.

4.1. The finite element library DOLFIN. Our implementation of Nitsche’s
method on overlapping meshes is based on the finite element library DOLFIN, which
is part of the FEniCS project [41, 44] for automated scientific computing. The main
feature of FEniCS is the automated treatment of finite element variational problems,
based on automated generation of highly efficient C++ code from abstract high-level
descriptions of finite element variational problems expressed in near-mathematical
notation [4, 39]. This is combined with built-in tools for working with efficient rep-
resentations of computational meshes [42] and wrappers for high-performance linear
algebra libraries like PETSc Balay et al. [8, 9, 10] and Trilinos [36].

For this work, we have integrated the computational geometry libraries CGAL [1]
and GTS [2] with DOLFIN. While CGAL and GTS provide a large part of the func-
tionality needed to compute intersections between tetrahedra, the integration scheme
was realized through an adapted version of Mirtich’s code [51]. Furthermore, the
assembly routine of DOLFIN was extended to handle integration over cut cells and
meshes. Currently, the code for computing local interface integrals has to be imple-
mented manually by the user, but we plan to extend FEniCS, in particular DOLFIN
and the form compiler FFC [39, 45], to provide a full automation of Nitsche’s method
where a user only needs to supply the abstract variational problem (2.8).

In the remaining subsections, we present the class abstractions of the algorithms
and data structures described in section 3. These new classes introduced in DOLFIN-
OLM allow the implementation of the Nitsche assembly algorithm in a descriptive
and concise manner, as illustrated in Figure 4.1.

4.2. The class AABBTree. The search data structure AABBTree has been added
to the DOLFIN library. The implementation is based on the computational geometry
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void NitscheAssembler::assemble_interface(GenericTensor& A,

const NitscheForm& a_nit,

UFC& ufc_0,

UFC& ufc_1)

{

...

for (CutFacetPartIterator cut_facet(overlapping_meshes);

!cut_facet.end(); ++cut_facet)

{

// Update quadrature cache to current facet part and return quadrature rule

const QuadratureRule& quadrature =

a_nit.interface_domain_quadrature_cache()[cut_facet->index()];

...

// Get cells incident with this part of the cut cell

std::pair<const Cell, const Cell> cells = cut_facet->adjacent_cells();

const Cell& cell0 = cells.first;

const Cell& cell1 = cells.second;

// Update ufc forms and update interface local dimensions

uint local_facet1 = cell1.index(cut_facet->entire_facet());

ufc_0.update(cell0);

ufc_1.update(cell1);

// Tabulate dofs for each dimension on interface facet part

...

// Tabulate interface tensor.

a_nit.tabulate_interface_tensor(a_nit.interface_A.get(),

ufc_0.cell,

ufc_1.cell,

local_facet1,

quadrature.size(),

quadrature.points(),

quadrature.weights());

// Insert matrix

A.add(a_nit.interface_A.get(), interface_dofs);

}

}

Fig. 4.1. C++ implementation of the assembly of the so-called interface tensor accounting for
the coupling between the two meshes T1 and T2. A CutFacetPartIterator provides iteration over
all interface facet parts, represented by CutFacetPart and stemming from the facet decomposition
{Γkl}. Each CutFacetPart is associated with exactly one cell in each mesh, which can be accessed
via the adjacent cells member function. The overall design stresses the similarities to the assembly
of facet contributions in the standard DG method.

library CGAL [1]. Basic search queries such as finding one or all cells intersecting a
given entity or distance computation are exposed via an IntersectionOperator class.
DOLFIN-OLM complements that functionality with providing a GTS-based AABB
tree [2] to allow traversal of two bounding box trees as described in Algorithm 2.

4.3. The class OverlappingMeshes. The class OverlappingMeshes, provided
as part of DOLFIN-OLM, is a key component in our realization of the overlapping
mesh method. It mainly computes additional topological and geometric information
to describe the overlap of the two meshes T0 and T2 and provides access to this
information, in particular the collision relation T0 ↔ ∂T2 and the collision maps
T0 → ∂T2 and ∂T2 → ∂T0 described in section 3.2.
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A MeshFunction, as introduced in Logg [42], describes the splitting (3.3) of the
mesh T0 by assigning different integer values to cells in the not-overlapped part T0,1,
the completely overlapped part T0,2, and the partially overlapped part T0,Γ, respec-
tively. In the same way, the boundary facets of the overlapping mesh T2 can be marked
if the overlapping domain Ω2 is not completely contained in background domain Ω0.

4.4. Mesh iterators for overlapping meshes. Mesh iterators have been ad-
vocated by Berti [16, 17] and Logg [42] and used by, among others, Bastian, Heimann,
and Marnach [12] and Botsch et al. [18] as an important abstraction concept in mesh
implementations and FEM frameworks [12, 43]. The iterator concept allows one to
access and iterate over mesh entities such as vertices, edges, facets, and cells with-
out knowing the details of the underlying mesh implementation. We have followed
the same ideas in the case of overlapping meshes. The two pairs of classes CutCell,
CutCellIterator and CutFacetPart, CutFacetPartIterator provide an interface
to the intersected cells in T0,Γ and the interface facet partition {Γkl}, respectively.
The FacetPart class and the corresponding iterator class mimic the original interface
in DOLFIN by giving access to the two adjacent cells in the overlapping and the
overlapped meshes, respectively. The interface assembly in Figure 4.1 presents an
important use case.

Similar iterator concepts have been used in Bastian, Buse, and Sander [13], where
a general infrastructure to couple grids interfaced by the DUNE grid framework is
presented. The CutFacetPartIterator corresponds to the RemoteIntersection-

Iterator described in Bastian, Buse, and Sander [13] specialized to our case of
Nitsche’s method on overlapping meshes. Moreover, the CutCellIterator intro-
duced here can be interpreted as an instance of DomainIntersectionIterator in
Bastian, Buse, and Sander [13].

4.5. The class Quadrature and QuadratureRuleCache. The DOLFIN class
Quadrature is a lightweight base class which only computes and stores quadrature
data such as quadrature points, weights, and order for a given polyhedron at run-
time. Since the integration order depends on the underlying finite element scheme,
the actual computation of the points and weights is meant to be implemented in
subclass constructors. The class BarycenterQuadrature is such an instance of a
subclass which computes a quadrature rule of order 2 for a given polyhedron based
on the algorithm outlined in section 3.4. For each intersected cell or facet part, a
QuadratureRule object can be stored in a QuadratureRuleCache instance to save
geometry and quadrature rule recomputation if several integrations have to be per-
formed on the same intersected entity, as is the case for the computation of the stiffness
matrix and load vector in the Nitsche overlapping mesh method.

4.6. Forms and assembly. The DOLFIN Form form class represents the math-
ematical concept of a finite element variational form. This class has been extended,
as part of DOLFIN-OLM, to reflect the domain decomposition character of the over-
lapping mesh method. A so-called NitscheForm class holds the description of the
variational problem on each part Ω1 and Ω2 of the domain. The coupling between the
two forms is accomplished through a member function tabulate interface tensor,
which computes the local interface tensor corresponding to (3.5). This is in addition
to the standard tabulate tensor functions defined in the UFC code generation in-
terface [5] for cell integrals, exterior facet integrals, and interior facet integrals (cf.
Algorithm 1). In addition, the NitscheForm class gives access to the two overlapping
meshes as well as a quadrature cache to avoid recomputation of quadrature rules.
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Degrees of freedom of the cells of T0 that are entirely covered by the overlapping
mesh T2 are inactive; that is, those degrees of freedom do not determine the solution
and can be assigned an arbitrary value. For practical reasons, inactive degrees of
freedom are included in the linear system but are set to zero by inserting “one” on
the diagonal of the corresponding rows and “zero” in the right-hand-side vector. This
is automatically handled by the DOLFIN function Matrix::ident zeros.

5. Numerical examples. To demonstrate the efficiency of our realization of
the overlapping mesh method, we study two test examples. The first example is
the Poisson equation. Here, an analytical solution for a suitable source function
allows us to verify the implementation by means of convergence studies. In addition,
timings for the computation of both a standard P1 FEM and its corresponding Nitsche
approximation are presented. A further breakdown of the timings in the Nitsche
case gives a clear picture of the additional costs associated with the geometry-related
computations and their effect on the overall computation time. From that perspective,
comparing Nitsche with a simple piecewise linear, continuous FEM represents the
most challenging test case, since then the extra work required for geometry-related
computations contributes the most to the overall assembly time.

As a second example, a linear elastic equation is solved with discontinuous mate-
rial parameters at the interface of two overlapping meshes.

5.1. Poisson equation. We consider the elliptic model problem (2.1)–(2.5) on
the domain Ω0 = (0, 1)3 ⊂ R

3. The overlapping domain Ω2 is a translation and

rotation of the cube Ω̃2 = [0.3331, 0.6669]3 according to Figure 5.1. The source
function f is given by

(5.1) f(x, y, z) = 3(2π)2 sin(2πx) sin(2πy) sin(2πz).

Homogeneous Dirichlet boundary conditions are used on the entire boundary. The

Fig. 5.1. Mesh configuration for the Poisson problem.
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// Function spaces and forms on the overlapped domain

Poisson3D_1::FunctionSpace V1(mesh1);

Poisson3D_1::BilinearForm a1(V1, V1);

Poisson3D_1::LinearForm L1(V1);

L1.f = f; // assign source

// Function spaces and forms on the overlapping domain

Poisson3D_2::FunctionSpace V2(mesh2);

Poisson3D_2::BilinearForm a2(V2, V2);

Poisson3D_2::LinearForm L2(V2);

L2.f = f; // assign source

// Build Nitsche forms

PoissonNitsche::BilinearForm a_nit(a1, a2);

PoissonNitsche::LinearForm b_nit(L1, L2,

a_nit.overlapping_meshes_ptr(),

a_nit.overlapped_domain_quadrature_cache_ptr(),

a_nit.interface_domain_quadrature_cache_ptr());

// Assemble

Matrix A;

Vector b;

NitscheAssembler::assemble(A, a_nit, 0, 0, 0);

NitscheAssembler::assemble(b, b_nit, 0, 0, 0);

// Apply boundary conditions

DirichletBC bc(V1, u0, boundary);

bc.apply(A, b);

// Solve linear system

Vector x;

solve(A, x, b, ‘‘cg’’, ‘‘amg_hypre’’);

// Split solution vector according to domains

Function u1(V1);

Function u2(V2);

a_nit.distribute_solution(x, u1, u2);

Fig. 5.2. Code example for the Poisson problem. The domain decomposition character of
Nitsche’s method is clearly reflected by defining forms on each mesh separately and “gluing” them
together via a NitscheForm. Since both forms are assembled into a single matrix, the solution has
to be split via the distribute solution function.

exact solution is given by

(5.2) u(x, y, z) = sin(2πx) sin(2πy) sin(2πz).

The penalty parameter γ in (2.9) is set to γ = 50. A code extract from the imple-
mentation of the solver based on DOLFIN-OLM is shown in Figure 5.2.

The Nitsche approximation was computed on a sequence of meshes with decreas-
ing mesh size hmax = 1/N for the tessellations T0 and T2, starting at N = 14 and
stopping atN = 104. For the integration over cut cells and interface facets, barycenter
quadrature was employed. The resulting linear systems were solved by the precon-
ditioned conjugate gradient method as implemented in PETSc in combination with
the algebraic multigrid solver from Hypre used as a preconditioner. For both the
standard FEM and the overlapping mesh method, a mesh-independent number of CG
iterations was observed (3–4 and 9–11, respectively). All computations were carried
out on a MacBook Pro equipped with a 2.66 GHz Intel Core i7 processor and 8 GB
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Fig. 5.3. Convergence of the Nitsche approximation in the L2- and H1-norms for the Poisson
problem.

Fig. 5.4. Two-dimensional cross section of the three-dimensional solution of the Poisson prob-
lem showing good agreement between solutions computed on the overlapped and the overlapping mesh.
Left: Both solution parts patched together. The solution on the overlapping mesh can be seen far to
the left. Right: A zoom revealing the small discontinuity between solutions at the common interface.

of RAM (1066 MHz DDR3). The benchmarks were repeated 10 times and averaged
to obtain the reported results.

Convergence. As the theoretical results recalled in (2.11)–(2.12) predict, an opti-
mal convergence rate in both H1- and L2-norms is observed; see Figure 5.3. Figure 5.4
clearly illustrates the smooth transition from the solution part u1 defined on the over-
lapped mesh T1 to the part u2 defined on the overlapping mesh T2.

Benchmarks. The comparison in Figure 5.5 shows that the Nitsche overlapping
mesh method is only twice as expensive as the standard FEM for the same mesh
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Fig. 5.5. Top: Overall computing time spent by the standard FEM and the Nitsche FEM. Bot-
tom: Breakdown of the assembly time spent by the Nitsche method compared to the overall assembly
time for the standard FEM. Note the expected slope of 1 for the standard (usual) assembly and of
2/3 for the interface related operations. The graph shows that, asymptotically, overall assembly time
will be dominated by standard assembly.
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size and approximately the same number of degrees of freedom. A breakdown of the
computing time shows that both the assembly and the solution of the linear system
become twice as expensive when the overlapping mesh method is used. The latter can
be attributed to the observed higher iteration numbers. The CPU time for the linear
solve displays a kink in the slope at ca 3 and 4.5 million cells for the standard and
Nitsche FEM, respectively, which may be attributed to the problem size increasing
beyond a hardware-specific threshold (cache or memory size) that induces overhead.

A further breakdown of the assembly time is shown at the bottom of Figure 5.5.
We note that while the number of cells scales likeO(h−3) on a regular grid, the number
of facets scales like O(h−2). Consequently, all purely interface related operations with
linear complexity should scale like N2/3, where N is the number of cells. This is also
the case for the interface decomposition, computation of the cut cells, and integration
over the interface and the cut cells. On the other hand, the initial collision detection
between the overlapped and the overlapping mesh is somewhat more expensive as it
involves the searching of tree-like data structures (adding a logarithmic factor to the
complexity). However, this extra cost is negligible compared to the total computing
time. In conclusion, the timings depicted in Figure 5.5 indicate that the cost of
assembly for the Nitsche overlapping mesh method is comparable to that of standard
finite element assembly, and its relative efficiency increases with increasing mesh size.

A note on ill-conditioned stiffness matrices. As analyzed in Burman [19] and illus-
trated by numerical experiments in [47], the stiffness matrix stemming from Nitsche’s
method on overlapping meshes and related schemes can be ill-conditioned if the in-
tersection gives very small elements, compared to the original element size. Different
approaches have been investigated to cure the schemes from ill-conditioned systems,
by choosing proper weights for the interface [38], by replacing basis functions on small
elements by extensions of basis functions on larger neighboring elements, or through
the use of a so-called ghost penalty [19, 20]. For the current work, the only precau-
tion was to skip all cut cells with a relative measure of size smaller that 10−15. In
our numerical experiments, we observed a mesh-independent iteration number which
indicates that ill-conditioning was not present. However, proper handling of small
cells by introducing ghost penalties has been studied recently for the Stokes problem
in Massing et al. [48].

5.2. Linear elasticity. As a second example, we consider a linear elastic body
occupying a domain Ω0 in R

3 consisting of two subdomains Ω1 and Ω2 with possibly
different material parameters. The displacement and the stresses are assumed to be
continuous across the interface Γ = ∂Ω1 ∩ ∂Ω2 between the subdomains. The corre-
sponding linear elasticity problem then takes the following form: find the displacement
u : Ω0 → R

3 such that

− div(σσσ(ui)) = fi in Ωi, i = 1, 2,(5.3)

[σσσ(u) · n] = 0 on Γ,(5.4)

[u] = 0 on Γ,(5.5)

u = 0 on ∂Ω0,D,(5.6)

σσσ(u) · n = g on ∂Ω0,N.(5.7)
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Here, the stress tensor σσσ is related to the displacement vector u by Hooke’s law,

(5.8) σσσ(ui) = 2μiεεε(ui) + λitr(εεε(ui))I in Ωi, i = 1, 2,

where λi and μi are the Lamé parameters in Ωi for i = 1, 2 and εεε(v) = (grad(v) +
grad(v)�)/2 is the strain tensor.

Nitsche’s method for the Poisson equation (2.1) proposed by Hansbo, Hansbo,
and Larson [33] can be adapted to the case of the linear elastic problem (5.3)–(5.7)
and takes the following form: find uh ∈ Wh such that

(5.9) a(uh,v) = l(v) ∀v ∈ Wh,

where

a(u, v) =
2∑

i=1

∫
Ωi

σσσ(ui) : grad(vi) dx(5.10)

−
∫
Γ

σσσ(u1) · n [v]︸ ︷︷ ︸
Stress balance

dS −
∫
Γ

σσσ(v1) · n [u]︸ ︷︷ ︸
Symmetrization

dS + γ

∫
Γ

h−1[u] · [v]︸ ︷︷ ︸
Penalty/Stabilization

dS,(5.11)

l(v) =

∫
Ω

f · v dx +

∫
∂Ω

g · v ds(5.12)

with γ a positive penalty parameter. Assuming that the elastic material is not nearly
incompressible (λ remains bounded), we may extend the analysis in Hansbo, Hansbo,
and Larson [33] and prove optimal order a priori error estimates. See Hansbo and
Larson [35] and Becker, Burman, and Hansbo [14] for details on DG methods for
elasticity problems.

Test configuration and numerical results. We consider the linear elasticity prob-
lem (5.3)–(5.7) with Ω0 = (−2, 2)3 ⊂ R

3 which is overlapped by a propeller-like do-
main Ω1 = (−1, 1)× P , where P = (−1, 1)× (−0.2, 0.2)∪ (−0.2, 0.2)× (−1, 1) ⊂ R

2;
see Figure 3.1. The right-hand side is zero and the boundary conditions on ∂Ω0 are
defined by

(5.13)

⎧⎪⎨⎪⎩
u = 0, on (−2, 2)2 × {−2},
σσσ(u) · n = 0, on ∂((−2, 2)2)× (−2, 2),

σσσ(u) · n = g on (−2, 2)2 × {2},

where g represents a combination of pure tangential, rotational force and a normal
pressure:

(5.14) g(x, y, z) =
(−y, x, 0)�

5
√
x2 + y2

− (0, 0, 2−
√
x2 + y2)�.

The Lamé parameters are given by μi = Ei/(2 + 2νi), λi = Ei · νi/((1 + νi)(1− 2νi))
in Ωi for i = 1, 2 with E1 = 10, E2 = 0.1 ·E1, ν1 = ν2 = 0.3.

The numerical results are shown in Figures 5.6 and 5.7. The results indicate
a “smooth” transition of the solution from the overlapped mesh to the overlapping
mesh.
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Fig. 5.6. Left: Undeformed, original domain consisting of a cube overlapped by a propeller-like
domain. Right: The deformed domain. The color bar corresponds to the norm of the displacement
u.

Fig. 5.7. Left: Magnitude of the displacement u in a cross section through the xy-plane of the
solution from Figure 5.6. Right: Magnitude of the displacement u in the cross section through the
xz-plane. Despite a very coarse resolution, both figures show a “smooth” transition of the solution
from the domain Ω1 to Ω2.

6. Conclusions and outlook. We have demonstrated that overlapping mesh
methods, in particular the Nitsche overlapping mesh method, may be implemented
efficiently in three space dimensions through the use of tree search data structures
and tools from computational geometry. Numerical tests show that optimal order
convergence is obtained, that the overhead of the overlapping mesh method compared
to a standard FEM is small (roughly factor two), and that the overhead is decreasing
as the size of the mesh is increased.
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In the future, we plan to extend our implementation and the techniques studied in
this work to handle fluid-structure interaction problems as well as contact problems.
Furthermore, we plan to fully automate the implementation of Nitsche formulations
on overlapping meshes by adding code generation capabilities for interface terms to
FEniCS.
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[24] C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko, Arbitrary branched and
intersecting cracks with the extended finite element method, Internat. J. Numer. Methods
Engrg., 48 (2000), pp. 1741–1760.

[25] D. Day and P. Bochev, Analysis and computation of a least-squares method for consistent
mesh tying, J. Comput. Appl. Math., 218 (2008), pp. 21–33.

[26] H. B. Dhia and G. Rateau, The Arlequin method as a flexible engineering design tool, Internat.
J. Numer. Methods Engrg., 62 (2005), pp. 1442–1462.

[27] C. Ericson, Real-Time Collision Detection, Morgan Kaufmann, Burlington, MA, 2005.
[28] A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,

ACM Trans. Graphics, 3 (1984), pp. 153–174.
[29] T. P. Fries, A corrected XFEM approximation without problems in blending elements, Inter-

nat. J. Numer. Methods Engrg., 75 (2008), pp. 503–532.
[30] T. P. Fries, The intrinsic XFEM for two-fluid flows, Internat. J. Numer. Methods Fluids, 60

(2009), pp. 437–471.
[31] T. P. Fries and T. Belytschko, The extended/generalized finite element method: An

overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84 (2010),
pp. 253–304.

[32] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for
elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5537–
5552.

[33] A. Hansbo, P. Hansbo, and M. G. Larson, A finite element method on composite grids based
on Nitsche’s method, ESAIM, Math. Model. Numer. Anal., 37 (2003), pp. 495–514.

[34] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak
discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., 193 (2004),
pp. 3523–3540.

[35] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly
incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191
(2002), pp. 1895–1908.

[36] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,

R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.

Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397–423.
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