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Abstract

We consider a stochastic pressure equation with lognormal coefficient
with infinite dimensional noise. Using a White Noise framework, we study
spatial and stochastic regularity of solutions of the stochastic pressure
equation. We first establish that a particular class of weighted chaos
spaces can be characterized by Gaussian Sobolev type norms in the ran-
dom argument under the Gaussian measure. Then, we use these results
to prove that the solution of the stochastic pressure equation has the clas-
sical regularity in the spatial variable and a stochastic regularity on this
class of weighted chaos spaces.
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1 Introduction

Uncertainty quantification techniques have gained the attention of researches in
the last years. The theoretical and numerical treatments of stochastic partial
differential equations are important for uncertainty quantification because the
behavior of many interesting random quantities is described by partial differ-
ential equations. In particular, we study elliptic partial differential equations
which are important for the better understanding of many physical and engi-
neering systems. In this paper we study regularity results for the equation{

−∇x · (κ(x, ω)∇xu(x, ω)) = f(x, ω), for all x ∈ O
u(x, ω) = 0, for all x ∈ ∂O,

(1)

where log κ(x, ω) is a Gaussian field and f is a (possible random) forcing term.
Some important questions related to (1) are: existence and uniqueness of so-
lutions, design of efficient numerical methods, a priori and a posteriori error
estimates for suitable numerical strategies and regularity results in the ω vari-
able, among others. Regularity results in the spatial variable and the stochastic
variable are important in order to design and validate numerical methods for this
problem. In this paper we study spatial and stochastic regularity of solutions of
(1). The analysis presented here complement our previous paper [14] where we

2



address existence and uniqueness of solutions of (1) and general a priori error
estimates for finite element approximations. It is important to note that the
presence of the log-normal coefficient κ(x, ·) induces lack of uniform ellipticity
and boundedness, and therefore, the analysis become very challenging.

When studying existence of solutions, error estimates for, or regularity of (1),
another level of difficulty is the infinite dimensional behavior of the Gaussian
fields. The need for infinite dimensional analysis is motivated by applications as
explained below. We also note that the assumption of finite dimensional noise,
compared to the infinite dimensional noise case, in the coefficient κ and the forc-
ing term f simplify the analysis a great deal, however, it has serious practical
limitations. Indeed, the dimension of the finite dimensional noise is often asso-
ciated with truncated or finite dimensional approximations of Karhunen-Loève
(KL) expansions or chaos expansions. In some real-world applications the di-
mension of the noise may be very large, for instance, in applications related to
flow in heterogeneous porous media. In this case, the coefficient κ represents
the permeability of a porous medium that contain uncertainties at the fine res-
olution. Since permeability data are also collected at finest scales, such as core
scales, detailed geological models are constructed to contain such scales. At
these scales, we have to deal with large uncertainties associated with the fine
grid information. Modeling this detailed geological system may require large
dimensional set to parametrize the noise. Due to the high-computational cost,
it may not be possible to compute using the high noise dimension and lower
dimensional models need to be used. Hence, robust error estimates and analy-
sis, for lower dimensional stochastic discretizations, that take into account these
fine-scale uncertainties (not included in the discretized model), are needed. In
this case, it is more advantageous to work with infinite dimensional stochastic
space due to a large dimension of the stochastic space. The White Noise analy-
sis is a suitable framework to develop this infinite dimensional analysis. In this
paper, the case of infinite dimensional noise is considered.

We mention some related works and models. We refer to [1, 7, 30] and
references there in for the study of general elliptic equations with bounded
coefficients and finite dimensional noise assumption. In particular, in [7], the
author obtains regularity of solutions in the random argument (only) in general
Sobolev spaces. The results in [7] hold for general bounded coefficients with
bounded derivatives in the random arguments.

Regarding the existence of solutions and its numerical approximation, there
are few works addressing the difficulty of the lack of uniform ellipticity and
boundedness. We mention the works [14, 27] where the White Noise framework
analysis is carried out in the framework of Hilbert spaces which allows the use of
classical finite element methods. In particular, in [14] (2009), among other re-
sults, it is established the existence and uniqueness of solution in Hilbert spaces
with square norm given by

∫
∥u(x, ω)∥2

H1
0
γ(ω)dµ(ω) where µ is the standard

Gaussian measure and γ(ω) represent a weight properly chosen (that includes
the case γ = 1). The resulting measure γ(ω)dµ(ω) can be view as and infi-
nite product of one dimensional Gaussian measures with some given variances.
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See [14]. Studies of regularity of solutions are not considered in [14]. In the
work [15] (2010), among other results, the author obtain existence of solutions.
The author obtain existence of solutions using Hilbert norms with square given
by
∫
∥u(x, ω)∥2dγ̂(ω) where γ̂ is a infinite product of one dimensional Gaus-

sian measures. The measure γ̂ is different from the standard Gaussian measure
µ. The author also obtain existence of solutions using Banach norms of the
form (

∫
∥u(x, ω)∥pdµ(ω))1/p with p ̸= 2. This work does not study regularity

of the solutions. In a recent work, [9], the author obtain existence of solu-
tions using norms of the form (

∫
∥u(x, ω)∥pdγ̃(ω))1/p where p > 0 and γ̃ is the

measure XXXpreciso ajuda aqui, acho que vou escrever para a Julia

e perguntar que medida eh esta? O ve acha melhor nao dizer nada.
Some researchers have consider Wick product, instead of ordinary product,

in (1). In [2, 29] the authors consider a Wick product formulation, and in
[23, 33, 32] weighted Wiener chaos expansions and other modeling methodol-
ogy are proposed. Regularity results for Wick product pressure equations with
log-normal coefficient have been considered for several authors. We emphasize
that in (1) we use the ordinary product κ(x, ω)∇xu(x, ω) rather then the Wick
product, κ(x, ω) ⋄∇xu(x, ω). For regularity results of stochastic pressure equa-
tions of Wick type see [3] and references therein. We also mention [32] were new
ways of introducing the Wick calculus in the pressure equation are explored. In
[3], the authors find the chaos expansion of the solution of the Wick product
pressure equation, and calculate its stochastic regularity in the distributional
sense using Kondratiev type norms, see [20, 18]. One of the main properties
of the Wick product is that it simplifies the computation of chaos expansion of
the Wick product of two random functions when compared with the ordinary
product. Indeed, the n−th order coefficient of the Wick product of two random
functions is the product of the corresponding n−th order coefficient of the two
random functions involved. This simplification allows the computation of the
Chaos expansion of the solution of the Wick product pressure equation.

In this paper we study joint spatial and stochastic regularity for (1). The
results we present here complement and build up on our previous paper [14] that
we describe next. A more detailed review is presented in Section 4. In [14], it is
considered the Problem (1) where κ(x, ω) := eWϕ(x,ω) = e⟨ω,ϕx⟩, x ∈ O, ω ∈ S ′

and the exponent Wϕ(x, ω) is the smoothed White Noise process defined on
the White Noise probability space (S ′,B(S ′), µ) and well-posedness results were
established in tensor product of Hilbert spaces. Here S ′ is an appropriately
chosen space of distributions; see Section 2 below. The tensor product space
of the solution involves the usual H1

0 (O) space and the Hilbert space (L2)s
(a weighted L2 space in S ′ with a exponential type weight). The parameter
s is related to the stochastic exponential decay (or growth) of the functions
on the White Noise probability space. The (L2)s space has two fundamental
aspects, it circumvents the lack of uniform ellipticity and boundedness of the
problem, and due to its Hilbert space structure, its norm can be computed
easily using orthogonality relations; see Section 3.1 below. Furthermore, in the
resulting tensor product space we can use orthogonal projections to analyze
finite dimensional Galerkin type methods and to obtain a priori error estimates;
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see Section 4.3 below. For the a priori error estimates, as usual, some regularity
of the solution need to be assumed. It is assumed that the solution of (1) to
belong to a more regular tensor product space (in x and ω). The regular tensor
space used in [14] involves the spaces H2(O), for the regularity in the x variable,
and a weighted chaos space for the regularity in the ω variable. For different
weighted chaos norms we cite [3, 6, 10, 14, 16, 17, 18, 20, 22, 26] and references
therein. The weighted chaos spaces norms depend on the choice of a sequence
of weights. The corresponding norm measures the decay of the coefficients in
the chaos expansion of a random function. We recall that the chaos expansion
of a random function is its expansion in terms of Fourier-Hermite orthogonal
polynomials. The a priori error estimates in [14] are general and apply to
any weighted chaos space. In [14], no studies concerning regularity beyond
(L2)s ⊗H1(O) are obtained.

In this paper we study the joint spatial and stochastic regularity of solu-
tions of (1) assuming similar regularity for the right-hand side f(x, ω) and the
smoothed White Noise Wϕ(x, ω). A main issue is that the computation of the
weighted chaos norms turn out to be difficult when the chaos expansion of the
solution is not available. For solutions of (1), it is difficult to write a manageable
expression for the chaos expansion of the solution, either in terms of Fourier-
Hermite polynomials or in terms of multiple Itô integrals, see [16, 18, 26]. On
the other hand, Gaussian Sobolev spaces have been also used in the literature,
[11, 24, 28]. The Gaussian Sobolev norms involve (L2)s norms of (Gâteaux)
derivatives of random functions. We prove that a particular weighted chaos
(use in [14] to obtain a priori error estimates) can be characterized using Sobolev
type norms in the ω variable for the Gaussian measure as in [11, 28, 24]; see
Theorem 12. This equivalence of norms is useful to obtain regularity results for
this norms. It is easier to obtain bounds for partial derivatives (in the stochastic
variable ω) than obtaining bounds for the coefficients of the chaos expansions of
the solution of (1). Our main result is given in Theorem 30 where we prove that
the solution of (1) has regularity H2 in the spatial variable x, see Lemma 27,
and stochastic regularity given by a particular weighted chaos space, see Lemma
20. In particular, the weighted chaos spaces used in Theorem 30 require norms
of partial (or Gâteaux) derivatives in the ω variable up to certain order to be
bounded.

In Section 2 we introduce the White Noise framework to be used in the
paper. In Section 3 we present the study of smooth random functions. We
define the weighted chaos norms to be used in the paper. Sections 3.3 and 3.4
are dedicated to the use of (Gâteaux) derivatives in the ω variable to compute
weighted chaos norms. Section 4 is dedicated to apply the results from Section
3 to infinity-dimensional noise elliptic problem with log-normal coefficients. In
Sections 4.1, 4.2 and 4.3 review useful results from [14] to be used later and
introduce some notations for tensor product functions spaces. In Section 4.4 we
study the stochastic regularity of solutions and in Section 4.5 we obtain also the
spatial regularity results. Final remarks are presented in Section 5.
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2 Framework: White noise analysis

Let H be a real Hilbert space with inner product (·, ·)H and norm ∥ ·∥H , and let
A be an operator on H such that there exists an H-orthonormal basis {ηj}∞j=1

satisfying (see Examples 15 and 16 below):

1) Aηj = λjηj , j = 1, 2, . . . .

2) 1 < λ1 ≤ λ2 ≤ · · · .

3)
∑∞

j=1 λ
−2θ
j < ∞ for some constant θ > 0.

For p > 0 let Sp := {ξ ∈ H; ∥ξ∥p < ∞} where

∥ξ∥2p := ∥Apξ∥2H =
∞∑
j=0

λ2p
j (ξ, ηj)

2
H ,

and for p < 0 let Sp be defined as the dual space of S−p. It is easy to see that
for p < 0 we also have ∥ · ∥p = ∥Ap · ∥H and the duality pairing between Sp and
S−p is an extension of the H inner product. We also define

S = ∩p≥0Sp (with the projective limit topology)

and let S ′ be defined as the dual space of S, i.e., by considering the standard
countably Hilbert space constructed from (H,A); see [20, 26].

Let S ′ be the probability space with the sigma-field B(S ′) of Borel subsets
of S ′. The probability measure µ is given by the Bochner-Minlos theorem and
characterized by

Eµe
i⟨·,ξ⟩ :=

∫
S′

ei⟨ω,ξ⟩dµ(ω) = e−
1
2∥ξ∥

2
H , for all ξ ∈ S. (2)

Here, the pairing ⟨ω, ξ⟩ = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eµ denotes
the expectation with respect to the measure µ. See [5, 16, 17, 18, 20, 26] and
references therein for details on the Bochner-Minlos theorem, the measure µ and
(2). The measure µ is often called the (normalized) Gaussian measure on S ′.
We note that from (2) we have that for any function ξ ∈ H, the random variable
ω 7→ ⟨ω, ξ⟩ can be defined in the L2(µ) sense and it is normally distributed with
zero mean and variance ∥ξ∥2H ; see [18, 20, 26].

The following particular case of Fernique’s Theorem will be used throughout
this paper; see Lemma 2.2 in [14] for he proof and [11, 12, 19, 28] for the general
case.

Lemma 1. We have∫
S′

es∥ω∥2
−θdµ(ω) =


∏∞

j=1

(
1− 2s

λ2θ
j

)− 1
2

, s <
λ2θ
1

2

+∞, s ≥ λ2θ
1

2 .
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We note that Lemma 1 implies that
∫
S′ ∥ω∥2−θdµ < ∞ which in turn implies

that µ(S−θ) = 1. To see this, note that S ′ \ S−θ = {ω : ∥ω∥2−θ = ∞} and then
µ(S ′ \S−θ) > 0 would imply that

∫
S′ ∥ω∥2−θdµ = ∞ which gives a contradiction.

Without further comments, we use that µ(S−θ) = 1 throughout this paper.
In what follows we use the notation (L2) for the space L2(µ). We always

interpret properties in the “almost surely” sense (with respect to µ), therefore,
we will sometimes omit this interpretation to make notation and formula less
cumbersome.

3 Smooth random functions

We introduce the space

(L2)s := L2(S ′, es∥ω∥2
−θdµ(ω)) (3)

with norm ∥v∥2(L2)s
:=
∫
S′ |v(ω)|2es∥ω∥2

−θdµ. In [14] we established the existence

of solutions of (1) in the tensor product space H1
0 (O) ⊗ (L2)s. See Section 4

for a review of these results. In this section we introduce subspaces of (L2)s
consisting of smooth functions. These subspaces of smooth functions will be
used in Section 4 to obtain regularity results for problem (1).

3.1 Wiener-Chaos expansion

In the following we characterize the space (L2)s defined in (3). We need to
consider multi-index of arbitrary length. To simplify the notation, we regard
multi-indices as elements of the space (NN

0 )c of all sequences α = (α1, α2, . . .)
with elements αj ∈ N0 = N ∪ {0} and with compact support, i.e., with only
finitely many αj ̸= 0. We write J = (NN

0 )c. Given α ∈ J define the order and
length of α, denoted by d(α) and |α| respectively, by

d(α) = max {j : αj ̸= 0} and |α| = α1 + α2 + . . .+ αd(α).

We also introduce the σ-Hermite polynomials, hσ2,n, where σ > 0 and n =
0, 1, 2, . . . . These polynomials can be defined by the generating function identity

etx−
1
2σ

2t2 =
∞∑

n=0

tn

n!
hσ2,n(x). (4)

When σ2 = 1 we denote h1,n simply by hn. Note that hσ2,n(x) = σnhn(x/σ)
and h′

σ2,n(x) = nhσ2,n−1(x). The σ-Hermite polynomials are an orthogonal

basis for L2(R, e−
1

2σ2 x2

dx).

For s <
λ2θ
1

2 define σj = σj(s) =
(
1− 2s

λ2θ
j

)− 1
2

, j = 1, 2, . . . , and for α ∈ J

let σα = σα(s) :=
∏d(α)

j=1 σ
αj

j (s) and σ∗ = σ∗(s) :=
∫
S′ e

s∥ω∥2
−θdµ(ω). From

Lemma 1, σ∗ =
∏∞

j=1 σj < ∞ when s <
λ2θ
1

2 . Now we define the σ(s)-Fourier-
Hermite polynomials.
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Definition 2. Given s <
λ2θ
1

2 , α = (α1, α2, . . .) ∈ J and σ = σ(s) =
(σ1, σ2, . . .), define

Hσ2,α(ω) =
1

√
σ∗

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩); ω ∈ S ′.

We now state the Wiener-Chaos expansion theorem; see [11, 16, 18, 17, 26]
for the case s = 0.

Theorem 3. When s <
λ2θ
1

2 , the σ(s)-Fourier-Hermite polynomials are orthog-
onal in (L2)s. Moreover,

∥Hσ2(s),α∥2(L2)s
= α!σ(s)2α.

In addition, every polynomial in ω belongs to (L)s and every u ∈ (L2)s can be
represented as a Wiener-Chaos expansion

u =
∑
α∈J

uα,sHσ(s)2,α with ∥u∥2(L2)s
=
∑
α∈J

α!σ(s)2αu2
α,s.

3.2 Weighted chaos norms

Now we introduce weighted chaos norms that are used to define subspaces of
(L2)s consisting of smooth functions.

In (L2)s with s <
λ2θ
1

2 we introduce the system of Hilbert norms

||u||2p;ρ,s :=
∑
α∈J

ρ(α, p)2α!σ(s)2αu2
α,s, (5)

where u =
∑

α∈J uα,sHσ(s)2,α. We assume that ρ(α, q) ≥ ρ(α, p) > 0 for all
q > p ≥ 0 and that ρ(α, 0) = 1 for all α ∈ J . Usually, the weights ρ(α, p) are
the eigenvalues of some nonnegative operator in (L2)s with the σ(s)-Fourier-
Hermite polynomials as eigenfunctions; see [18, 17, 26, 20, 6, 10, 3] for the case
s = 0.

For p > 0 define the spaces Sp,ρ,s by

Sp;ρ,s = {v ∈ (L2)s : ∥v∥p;ρ,s < ∞}. (6)

For p < 0 define Sp,ρ,s as the dual space of S−p;ρ,s. We have S0;ρ,s = (L2)s and
the inclusion Sq;ρ,s ⊂ Sp;ρ,s holds for all q > p.

Given a multi-index α we denote ⟨α,λ⟩ :=
∑d(α)

j=1 αjλj . Note that we have
⟨α,λ⟩ ≥ 0. We consider the following weight (see [6, 11, 17, 24, 28])

ρ(α, p)2 = 1 + ⟨α,λ⟩2p, p > 0, and ρ(α, 0) = 1, α ∈ J . (7)

Alternatively, the equivalent weight ρ(α, p) = (1 + ⟨α, λ⟩)p can be used.
Some of the algebra is simpler using the weight in (7). See Section 3.3.1. For
examples of other weights ρ(α, p) we refer to [11, 6, 16, 18, 20, 26, 24, 28]. See
also Section 3.4.1 for a remark on Kondratiev type weights.
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3.3 Derivatives and weighted chaos norms

We showed in [14] that weighted chaos norms are appropriate in order to obtain
a priori error estimates for Finite Element approximations of (1). The error
estimates in [14] assume that weighted chaos norms of the solution of (1) are
bounded. This is one main motivation for regularity studies carried out in this
paper; see Section 4 below. It turns out that the weighted norms in (5) are,
in general, difficult to compute or estimate when the chaos expansion is not
explicitly available. In this section we prove that some chaos weighted norms
can be computed using (L2)s norms of partial derivatives; see Section 3.4. This
is a main step for our regularity studies since obtaining norms of derivative (with
respect to ω) of the solution of (1) is an easier task than obtaining bounds for
weighted chaos norms; see Lemma 20 in Section 4.

Next, in Section 3.3.1 we recall that the weighted norms can be written
as a square integral, in the White Noise measure, using an operator acting on
functions in (L2)s. In Section 3.3.2 we review the computation of (L2)s norms
of derivatives.

3.3.1 Chaos weighted norms and the operator Γ⊕(A)

We consider the weighted norm (5) with the particular weight in (7). We can
write

||u||2p;ρ,s =
∑
α∈J

(1 + ⟨α,λ⟩2p)α!σ(s)2αu2
α,s,

= ||u||2(L2)s
+ ||Γ⊕(A)pu||2(L2)s

=

∫
S′

(
|u(ω)|2 + |Γ⊕(A)

pu(ω)|2
)
es∥ω∥2

−θdµ(ω),

where Γ⊕(A) is the operator defined by

Γ⊕(A)Hσ2,α = ⟨α,λ⟩Hσ2,α. (8)

We point out that Γ⊕(A
p) ̸= Γ⊕(A)

p since Γ⊕(A)pHσ2,α = ⟨α,λ⟩pHσ2,α

and Γ⊕(A
p)Hσ2,α = ⟨α,λp⟩Hσ2,α. We observe that ||Γ⊕(A)

p · ||2(L2)s
is a norm

in the space of function in (L2)s with u0 = 0 in its σ(s)-Fourier-Hermite expan-
sion.

3.3.2 Derivatives and Gaussian Sobolev norms

Using partial derivative (as in the deterministic Sobolev spaces norms), we want
to be able to compute a norm equivalent to the norm (5) with the weights ρ
defined (7).

In this section we work with differential operators acting on (L2)s and define
Sobolev type norms for Gaussian measure; see [6, 11, 17, 20, 24, 28, 31, 34] and
references therein. Denote by ∂ℓu the (Gâteaux differential at ω in the direction
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of ηℓ or) directional derivative of u in the direction of the ℓ−th basis function
ηℓ ∈ S. Given u ∈ (L2)s we have

∂ℓu(ω) :=
d

dt
u(ω + tηℓ)

∣∣∣
t=0

.

For any Fourier-Hermite polynomial Hσ2,α with αℓ > 0 we have that

∂ℓHσ2,α(ω) = ∂ℓ

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩) = αℓHσ2,α−ξℓ
(ω) (9)

where ξℓ is the multi-index with one in the ℓ−entry and zero in the other
positions so that α − ξℓ = (α1, . . . , αℓ−1, αℓ − 1, αℓ+1, . . .). Here we have used
that h′

σ2,n = nhσ2,n−1, see (4). For αℓ = 0 define ∂ℓHσ2,α(ω) = 0. Then for

u =
∑

α∈J uαHσ2,α such that ∂ju ∈ (L2)s we have

∂ℓu(ω) =
∑
α∈J

αℓuαHσ2,α−ξℓ
(ω) (10)

and
||∂ℓu||2(L2)s

=
∑
α∈J

α2
ℓu

2
ασ

2α(α− ξℓ)! =
∑
α∈J

αℓu
2
ασ

2αα!, (11)

where we have used that αℓ(α − ξℓ)! = α!; see [11]. Analogously, for any
Fourier-Hermite polynomial the γ partial derivative ∂γ can be computed as

∂γHσ2,α(ω) =

d(γ)∏
ℓ=1

∂γℓ

ℓ

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩) (12)

=

d(α)∏
j=1

αj !

(αj − γj)!
hσ2

j ,αj−γj
(⟨ω, ηj⟩) =

α!

(α− γ)!
Hσ2,α−γ(13)

for every multi-indexes γ and α with γ ≤ α. Then for u =
∑

α∈J cαHσ2,α we
have

∂γu(ω) =
∑
α≥γ

α!

(α− γ)!
uαHσ2,α−γ(ω). (14)

This implies that the (L2)s norm of ∂γu is given by

∥∂γu∥2(L2)s
=

∑
α≥γ

α!2

(α− γ)!2
u2
ασ

2α(α− γ)!

=
∑
α≥γ

α!

(α− γ)!
u2
ασ

2αα!. (15)

Remark 4. Recall that when s = 0 we have ∥∂γu∥2(L2) =
∫
S′ |∂γu(ω)|2dµ(ω)

and we refer to norms defined in terms of (L2) norms of partial derivatives as
Gaussian Sobolev norms. We will use the same terminology for the case s ̸= 0.
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3.4 Equivalence of norms

This section is dedicated to prove that, using partial derivative, we can compute
the norm ∥ · ∥ k

2 ;ρ,s
, k ∈ N, defined in Section 3.2. We will prove in Theorem 12

that for every k ∈ N we have

||u||2k
2 ;ρ,s

= ||u||2(L2)s
+

k∑
i=1

∑
R∈Pk,i

∑
ℓ1,ℓ2,...,ℓi

λ2R1

ℓ1
. . . λ2Ri

ℓi
∥∂ℓ1 . . . ∂ℓiu∥2(L2)s

(16)

where P k,i is a finite subset (of indexes) of Ri that will be described below.
Here and below we will use the iterated summation notation∑

ℓ1,ℓ2,...,ℓk

:=
∑
ℓ1∈N

∑
ℓ2∈N

. . .
∑
ℓk∈N

.

Similar result for the case k = 1 and k = 2 (with s = 0) can be found in
[11] and the corresponding spaces are denoted by W 1,2(H,µ) and W 2,2(H,µ)
respectively. See Theorem 10.15 in page 147 and Equations (10.54)-(10.57) in
page 162. Here, we generalize this results in [11] to any k ∈ N and s < λ2θ

1 /2, see
Theorem 12. Additionally, we introduce several intermediate results for general
norms of derivatives which can be used for defining fractional derivatives. We
note that Theorem 12 is a key tool for establishing the regularity theory in
Section 4.4.

We define the k−th derivative as follows. See [11, 24, 28] and references
therein.

Definition 5. For k ∈ N and p ∈ R define

Dku(ω) :=
∑

ℓ1,ℓ2,...,ℓk

∂ℓ1 . . . ∂ℓku(ω)ηℓ1 ⊗ . . .⊗ ηℓk ∈ (S ′)⊗k

and with Γ⊕(A) defined in (8) we set

Γ⊕(A)
p
2Dku(ω) :=

∑
ℓ1,ℓ2,...,ℓk

Γ⊕(A)
p
2 ∂ℓ1 . . . ∂ℓku(ω)ηℓ1 ⊗ . . .⊗ ηℓk ∈ (S ′)⊗k.

We also use the convention D0u = u.

We will compute (L2)s-norms of derivatives according to the next definition.

Definition 6. For k ∈ N and q = (q1, . . . , qk) ∈ Rk define

∥Dku∥2q = ∥Aq1 ⊗ . . .⊗AqkDku∥2
L2(S′,(L2)⊗k

s )

=
∑

ℓ1,ℓ2,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2(L2)s
.

We also set ||D0u||2 = ||u||2(L2)s
.

11



Now we prove some basic relations between derivatives in the ω variable and
the operator Γ⊕(A) defined in in (8). See [28] for related results.

Lemma 7. For all p, q ∈ R we have the following relations

(Γ⊕(A
q) + λq

ℓ)
p
2 ∂ℓu = ∂ℓΓ⊕(A

q)
p
2 u, (17)(

Γ⊕(A
q) + λq

ℓ1
+ . . .+ λq

ℓk

) p
2 ∂ℓ1∂ℓ2 · · · ∂ℓku = ∂ℓ1∂ℓ2 · · · ∂ℓkΓ⊕(A

q)
p
2 u, (18)

and
(Γ⊕(A

q) + ⟨β,λq⟩)
p
2 ∂βu = ∂βΓ⊕(A

q)
p
2 u. (19)

Proof. Since ∂ℓu =
∑

α∈J αℓuαHσ(s)2,α−ξℓ
, then

(Γ⊕(A
q) + λq

ℓ)
p
2 ∂ℓu =

∑
α∈J

(⟨α− ξℓ,λ
q⟩+ λq

ℓ)
p
2 αℓuαHσ2,α−ξℓ

=
∑
α∈J

(⟨α,λq⟩ − λq
ℓ + λq

ℓ)
p
2 αℓuαHσ2,α−ξℓ

=
∑
α∈J

⟨α,λq⟩
p
2αℓuαHσ2,α−ξℓ

= ∂ℓΓ⊕(A
q)

1
2u,

which prove (17). Note that (18) follows easily from (17) and (19) is consequence

of (18) and the notation ⟨β,λq⟩ =
∑d(α)

j=1 βjλ
q
j .

Lemma 8. For k ∈ N and q ∈ Rk we have∑
ℓk

λ2qk
ℓk

∥Dk−1∂ℓku∥2(q1,...,qk−1)
= ∥Dku∥2(q1,...,qk), (20)

∥DΓ⊕(A
2q2)

1
2u∥2q1 = ∥Γ⊕(A

2q2)
1
2Du∥2q1 + ∥Du∥2q1+q2 (21)

and for q = (q1, . . . , qk) ∈ Rk and t ∈ R we have

∥DkΓ⊕(A
2t)

1
2u∥2q = ∥Γ⊕(A

2t)
1
2Dku∥2q +

k∑
i=1

∥Dku∥2q+tξi
(22)

where q + tξi = (q1, . . . , qi + t, . . . , qk).

Proof. Equation (20) follows directly from Definition 6. We prove (21). Using
Definitions 5 and 6 together with Equation (17),

∥DΓ⊕(A
2q2)

1
2u∥2q1 =

∑
ℓ=1

λ2q1
ℓ ∥∂ℓΓ⊕(A

2q2)
1
2u∥2(L2)s

=
∑
ℓ=1

λ2q1
ℓ ∥

(
Γ⊕(A

2q2) + λ2q2
ℓ

) 1
2

∂ℓu∥2(L2)s

=
∑
ℓ=1

λ2q1
ℓ

(
∥Γ⊕(A

2q2)
1
2 ∂ℓu∥2(L2)s

+ λ2q2
ℓ ∥∂ℓu∥2(L2)s

)
= ∥Γ⊕(A

2q2)
1
2Du∥2q1 + ∥Du∥2q2+q1 .

12



To prove (22) observe that using (18) we get

∥DkΓ⊕(A
2t)

1
2u∥2q =

∑
ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥∂ℓ1 · · · ∂ℓkΓ⊕(A
2t)

1
2u∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥
(
Γ⊕(A

2t) + λ2t
ℓ1 + · · ·+ λ2t

ℓk

) 1
2 ∂ℓ1 · · · ∂ℓku∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Γ⊕(A
2t)

1
2 ∂ℓ1 · · · ∂ℓku∥2(L2)s

+
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

(λ2t
ℓ1 + · · ·+ λ2t

ℓk
)∥∂ℓ1 · · · ∂ℓku∥2(L2)s

= ∥Γ⊕(A
2t)

1
2Dku∥2q +

k∑
i=1

∥Dku∥2q+tξi
.

The following result reveals the basic relation between norms of derivatives
and the norm ||u||2p;ρ,s defined in (5) with weights in (7) for the values p = 1/2
and p = 1. This result will be used as the initial induction step in the proof of
the equivalence of norms for any value of p half a positive integer; see Theorem
12.

Theorem 9. For any k ∈ N and q = (q1, . . . qk) ∈ Rk we have

∥Γ⊕(A
2q1)

1
2u∥2(L2)s

=

∞∑
ℓ=1

λ2q1
ℓ ||∂ℓu||2 = ∥Du∥2q1 , (23)

∥Γ⊕(A
2qk)

1
2Dk−1u∥2(q1,...,qk−1)

= ∥Dku∥2(q1,q2,...,qk) (24)

and we have the identities

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2u∥2(L2)s

= ∥D2u||2(q1,q2) + ∥Γ⊕(A
2(q1+q2))

1
2u∥2(L2)s

= ∥D2u||2(q1,q2) + ∥Du∥2q1+q2 . (25)

and

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2Γ⊕(A

2q3)
1
2u∥2(L2)s

= ∥D3u||2(q1,q2,q3)
+∥D2u||2(q1+q3,q2)

+ ∥D2u||2(q1,q2+q3)
+ ∥D2u||2(q1+q2,q3)

+∥Du||2(q1+q2+q3)
(26)

Proof. From Equations (10) and (11) we have that

∥Du∥2q1 =
∞∑
ℓ=1

λ2q1
ℓ ∥∂ℓu∥2(L2)s

=
∞∑
ℓ=1

∑
αℓ≥1

αℓλ
2q1
ℓ u2

ασ
2αα!
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=
∑
α∈J

d(α)∑
ℓ=1

αℓλ
2q1
ℓ

u2
ασ

2αα!

=
∑
α∈J

⟨α,λ2q1⟩u2
ασ

2αα! = ||Γ⊕(A
2q1)

1
2u||2(L2)s

,

and hence (23) holds. To prove (24) observe that from (23) and (20) we get

∥Γ⊕(A
2qk)

1
2Dk−1u∥2(q1,...,qk−1)

=
∑

ℓ1,...,ℓk−1

λ2q1
ℓ1

. . . λ
2qk−1

ℓk−1
∥Γ⊕(A

2qk)
1
2 ∂ℓ1 . . . ∂ℓk−1

u∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2(L2)s = ∥Dku∥2(q1,...,qk).

To prove (25) observe that from (23), (21) and (24) we have

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2u∥2(L2)s

= ∥DΓ⊕(A
2q2)

1
2u||2q1

= ∥Γ⊕(A
2q2)

1
2Du∥2q1 + ∥Du∥2q1+q2

= ∥D2u||2(q1,q2) + ∥Γ⊕(A
2(q1+q2))

1
2u∥2(L2)s

.

For the proof of (26), see Theorem 12 where we prove the general case.

In order to write down the general version of formula (25) we shall introduce
some notation. Consider the set of indexes {1, 2, . . . , k} and its set of parti-
tions P k; see Charalambides [8]. Recall that, given i ∈ N, an i−partition of
{1, 2, . . . , k} is a decomposition of this set into i nonempty and disjoint subsets.
We denote by P k,i the set of all i−partitions of {1, 2, . . . , k}. It is well known
that #(P k,i) = S(k, i), the Stirling number of the second kind (which is also the
number of distributions of k distinguishable balls into i indistinguishable urns).
Let each i-partition R = (R1, . . . , Ri) ∈ P k,i, be ordered in such a way that

minR1 < minR2 < . . . < minRi.

To each i-partition and q = (q1, . . . , qk) ∈ Rk we associate a multi-index R(q) =
(R1(q), . . . , Ri(q)) ∈ Ri defined by

Ri′(q) =
∑

i′′∈Ri′

qi′′ , i′ = 1, . . . , i.

Example 10. Let q = (q1, q2, q3) and consider the 2-partition R = {R1 =
{1}, R2 = {2, 3}}. Then R(q) = (q1, q2 + q3).

Example 11. Let q = (q, q, q, q) and consider the 3-partition R = {R1 =
{1}, R2 = {2, 3}, R3 = {4}}. Then R(q) = (q, 2q, q).
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The following result gives a closed formula that allows us to compute the
norm || · ||2p;ρ,s using ω-partial derivatives . It shows the equivalence between the
weighted chaos norms, using the weight (7), and the Gaussian Sobolev norms,
defined using (L2)s norms of derivatives.

Theorem 12. Let k ∈ N and q = (q1, q2, . . . , qk) ∈ Rk. We have

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk)
1
2u∥2(L2)s

=

k∑
i=1

∑
R∈Pk,i

∥Diu||2R(q). (27)

In particular, if we take q = 1
21k where 1k := (1, . . . , 1) ∈ Nk

∥Γ⊕(A)
pu∥2(L2)s

=
k∑

i=1

∑
R∈Pk,i

∥Diu||2R( 1
21k)

and

||u||2k
2 ;ρ,s

= ||u||2(L2)s
+ ||Γ⊕(A)

pu||2(L2)s
= ||u||2(L2)s

+

k∑
i=1

∑
R∈Pk,i

∥Diu||2R( 1
21k)

.

Proof. We proceed by induction on k. For k = 1 and k = 2 we already proved
the result, see (23) and (25) of Theorem 9.

Assume that (27) is valid for the first k ∈ N. Then we have

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk+1)
1
2u∥2(L2)s

=
k∑

i=1

∑
R∈P (i)

∥DiΓ⊕(A
2qk+1)

1
2u||2R(q)

=
k∑

i=1

∑
R∈P (i)

(
∥Γ⊕(A

2qk+1)
1
2Diu∥2R(q1,...,qk)

+
i∑

i′=1

∥Diu∥2R(q1,...,qk)+qk+1ξi′

)

where we have used formula (22). Then, from (24) we get

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk+1)
1
2u∥2(L2)s

=
k∑

i=1

∑
R∈Pk,i

(
∥Diu∥2(R(q1,...,qk),qk+1)

+
i∑

i′=1

∥Diu∥2R(q1,...,qk)+qk+1ξi′

)

=

k+1∑
i=1

∑
R∈Pk+1,i

∥Diu||2R(q1,...,qk+1)
.

To obtain the last equality we observe that the i-partitions P k+1,i of the set
{1, . . . , k+1} are of the form {R, {k+1}} where R ∈ P k,i−1 or R = (R1, . . . , Ri′∪
{k + 1}, . . . , Ri) for 1 ≤ i′ ≤ i and R ∈ P k,i.
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Remark 13. Note that, given r = (rℓ)
i
ℓ=1 ∈ Ni, (see [8])

#({R ∈ P k,i :
1

2
r = R(

1

2
1k)} =

i−1∏
j=1

(∑i
ℓ=j rℓ − 1

rj − 1

)
.

3.4.1 A remark on Kondratiev type norms

In this section we study another classical weighted norm. We select different
weights in the general norm defined in (5). Given a multi-index α we denote

λα :=
∏d(α)

j=1 λ
αj

j . Take ν ∈ [0, 1) and

ρ(α, p)2 = (α!)νλ2pα, α ∈ J (28)

in (5). See [18, 20, 26]. Let us denote by |||u|||2p;ρ,s the resulting weighted norm.
Note that we can write

|||u|||2p;ρ,s = ||Γ⊗,ν(A)
pu||2(L2)s

=

∫
S′

|Γ⊗,ν(A)pu(ω)|2es∥ω∥2
−θdµ(ω),

where Γ⊗,ν(A) is the operator defined by Γ⊗,ν(A)Hσ2,α = (α!)νλαHσ2,α. Note
also that Γ⊗,0(A

p) = Γ⊗,0(A)
p. In the case of ν = 0 and s = 0, Γ⊗,0(A) is called

the Second Quantization of A; see [17].
For a priori error estimates for Lemma 19 using ||| · |||2p;ρ,s, we refer to [14].

Now we show how to compute the norm ∥| · ∥|p;ρ,s defined above for the case

ν = 0. We use the notation (λp − 1)γ =
∏d(γ)

j=1 (λ
p
j − 1)γj . Recall that 1 < λ1 ≤

λ2 ≤ . . . . We have

λ2pα =

d(α)∏
j=1

(λ2p
j − 1 + 1)αj =

d(α)∏
j=1

 ∑
γj≤αj

(
αj

γj

)
(λ2p

j − 1)γj


=

∑
γ≤α

(
α

γ

)
(λ2p − 1)γ .

Then∑
γ∈J

(λ2p − 1)γ

γ!
∥∂γu∥2(L2)s

=
∑
γ∈J

(λ2p − 1)γ

γ!

∑
α≥γ

α!

(α− γ)!
u2
ασ

2αα!

=
∑
α∈J

∑
γ≤α

α!

γ!(α− γ)!
(λ2p − 1)γ

u2
ασ

2αα!

=
∑
α∈J

λ2pαu2
ασ

2αα! = |||u|||2p;ρ,s.

Summarizing we have |||u|||2p;ρ,s =
∑

γ∈J
(λ2p−1)γ

γ! ∥∂γu∥2(L2)s
. We conclude

that in order to have |||u|||p;ρ,s < ∞ we need all partial derivative of all orders
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being (L2)s functions with the series above being finite. Then, in oder to obtain
regularity results using partial derivative in the ω variable, we have to bound
all partial derivatives ∂γu of all orders of the solution of (30). Moreover, we

need a bound for the weighted sum
∑

γ∈J
(λ2p−1)γ

γ! ∥∂γu∥2(L2)s
. Due to this

technical difficulties, we consider only the norm ||u||2p;ρ,s (introduced in Section
3.2) to analyze and measure the stochastic regularity of the solution of the
stochastic pressure equation. We recall that, from Theorem 12, in order to
obtain regularity results in the norm ||u||2p;ρ,s (defined in Section 3.2) we only
need to bound a finite number of partial derivatives, see (16).

4 Application to elliptic equations with lognor-
mal coefficients

4.1 Examples and comments

In this section we show a way to deal with nonuniform ellipticity in the case of
one dimensional log-normal noise. In the next section we present a summary
of the extension of this argument to the case of infinity-dimensional log-normal
noise. We consider the following toy problem,

−(eξ1a1(x)ux)x = f(x), in (0, 1)

with u(0) = u(1) = 0. Here the right hand side is deterministic and ξ1 has
normal distribution with mean zero and variance 1. We observe that, for any
ϵ > 0 we have

e−
C1
2ϵ e−

ϵ
2 ξ

2
1 ≤ eξ1a1(x) ≤ e−

C1
2ϵ e

ϵ
2 ξ

2
1 (29)

where C1 = maxx∈O a1(x). Then we obtain ellipticity and boundedness of the
log-normal coefficient in terms of quantities involving random variables that are
easy to handle. The idea is then to use weights of the type esξ

2

into the norms
used for the analysis. The factor esξ

2

is it easy to handle in computations. Since
ξ is normal with unit variance, then

∫
G(ξ)esξ

2

dξ = 1√
2π

∫∞
−∞ G(r)esr

2− 1
2 r

2

dr.

Using the Lax-Milgram lemma for each ξ and integrating in ξ, we obtain (for s
and ϵ > 0 such that s+ ϵ < 1/2)∫

|ux(x, ξ)|2esξ
2

dξ =
1√
2π

∫ ∞

−∞

∫ 1

0

|ux(x, r)|2dxesr
2− 1

2 r
2

dr

≤ Ce
C1
2ϵ ∥f∥2H−1(0,1)

1√
2π

∫ ∞

−∞
e(s+ϵ)r2− 1

2 r
2

dr

= Ce
C1
2ϵ (1− 2(s+ ϵ))

− 1
2 ∥f∥2H−1(0,1).

Observe that, taking s = 0 and ϵ < 1/2, ux ∈ L2(O)⊗ L2(dξ). Moreover,

1√
2π

∫ ∞

−∞
|ux|2e−

1
2 r

2

dxdr ≤ Ce
C1
2ϵ (1− 2ϵ)

− 1
2 ∥f∥2H−1(0,1).
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Having solutions in tensor product (of Hilbert) spaces is convenient to device
approximation procedures, see [14]. The introduction of the Hilbert norms with

weight esξ
2

with s ̸= 0 is convenient in case the right hand side is random and has
extra (or lack some) decay in terms of ξ. In [14] we extended the argument above
to the case of infinite dimensional lognormal noise. In this work, we showed that
the White Noise Analysis is a very convenient framework for this task. The
results in [14] are independent of the White Noise Analysis framework and can
be stated using other convenient infinity dimensional calculus framework.

4.2 Dealing with non-uniform ellipticity using a white noise
approach

In this section we summarize the procedure introduced in [14] to deal with
non-uniform ellipticity in the case of infinity dimensional log-normal noise. For
further details we refer to [14]. Some of these ideas were extended to other
random coefficients in [25]. Some of the results presented here will be used in
the derivation of regularity results for problem (30). We use the notation and
White Noise Framework introduced in Section 2.

First, we summarize the model problem used in [14]. We need the following
definition.

Definition 14. The 1-dimensional smoothed White Noise associated to H and
A is the map w : S × S ′ −→ R given by w(ξ) = w(ξ, ω) = ⟨ω, ξ⟩ for ω ∈ S ′,
ξ ∈ S. Let O ⊂ Rd. Using the 1-dimensional smoothed White Noise w we
can construct a stochastic process, called the smoothed White Noise process
Wϕ(x, ω), as follows:

Wϕ(x, ω) := w(ϕx, ω) = ⟨ω, ϕx⟩, x ∈ O, ω ∈ S ′,

where ϕx ∈ H for all x ∈ O. For each x ∈ O, Wϕ(x, ·) is normally distributed
with zero mean and for x, x̂ ∈ O we can write

Wϕ(x, ω) =
∞∑
j=1

(ηj , ϕx)H⟨ω, ηj⟩

where the ⟨ω, ηj⟩ are independent and identically standard normal distributions
and it is easy to see that EµWϕ(x, ·)Wϕ(x̂, ·) = (ϕx, ϕx̂)H .

From now on we assume that O is an open connected subdomain of Rd with
Liptschitz boundary. Given ϕx ∈ Sθ for all x ∈ O we consider the following
problem: For all ω ∈ S ′, find u(x, ω;ϕ) such that{

−∇x · (κ(x, ω;ϕ)∇xu(x, ω;ϕ)) = f(x, ω), for all x ∈ O
u(x, ·;ϕ) = 0, for all x ∈ ∂O,

(30)

where
κ(x, ω;ϕ) := eWϕ(x,ω) = e⟨ω,ϕx⟩ (31)

18



and the exponent Wϕ(x, ω) is the 1-dimensional smoothed White Noise process
of Definition 14. Thus, κ is log-normal random process. Observe that for dif-
ferent maps x 7→ ϕx ∈ Sθ there exists a different permeability function κ(·, ·, ϕ)
associated to it. We will omit, whenever there is no danger of confusion, the
dependence of κ on the map x 7→ ϕx just to make the notation less cumbersome.

We have the following two important examples of construction of the map-
ping x 7→ ϕx. See Section 7 of [14] for more details.

Example 15. Let O ⊂ Rd and take H = L2(O) and A = Q−1, where Q :
L2(O) → L2(O) is the integral operator on (O×O) with kernel given by a covari-

ance C(x, x̂). In this case, for x, x̂ ∈ O we define ϕx(x̂) =
∑∞

j=1 λj
−1/2ηj(x)ηj(x̂),

where λj and ηj are the eigenvalues and eigenfunctions of A. It is easy to see
that Eµ(Wϕ(x, ·)Wϕ(x̂, ·)) = C(x, x̂).

Example 16. We can take H = L2(Rd) and A = A1 ⊗ · · · ⊗ Ad where Ai =

− d2

dx2
i
+ x2

i + 1. The eigenfunctions of Ai are the ℓ-th Hermite function with

associated eigenvalue 2ℓ, for all ℓ ∈ N. The ηj and λj are obtained by tensor
product operations. Let ϕx(x̂) = ϕ(x̂−x), x ∈ O and x̂ ∈ Rd, where the window
ϕ can be chosen such that the diameter of the support of ϕ is the maximum
distance which Wϕ(x, ·) and Wϕ(x̂, ·) might be correlated; see [18].

Following [14] we denote

Cθ = Cθ(ϕ) := sup
x∈O

∥ϕx∥θ. (32)

Then we have for all ϵ > 0 and almost sure all ω ∈ S ′

κmin(ω) := e−
C2
θ

2ϵ e−
ϵ
2∥ω∥2

−θ ≤ κ(x, ω) ≤ e
C2
θ

2ϵ e
ϵ
2∥ω∥2

−θ =: κmax(ω). (33)

Define Um
s as the space of functions u : O × S ′ → R such that∫

S′
∥u(·, ω)∥2Hm(O)e

s∥ω∥2
−θdµ(ω) < +∞ (34)

with norm

∥u∥2Um
s

:=

∫
S′

∥u(·, ω)∥2Hm(O)e
s∥ω∥2

−θdµ(ω)

and seminorm

|u|2Um
s

:=

∫
S′

|u(·, ω)|2Hm(O)e
s∥ω∥2

−θdµ(ω).

Here we used the notation Hm(O) to denote standard Sobolev spaces with semi-

norm |h|2Hm(O) =
∫
O
∑

|i|=m |∂i
xh(x)|2dx where i = (i1, . . . , id) and ∂i denotes

the partial derivative associated to the multiindex i. We also used the norm
∥h∥2Hm(O) = ∥h∥2L2(O) +

∑m
m′=1 |h|2Hm′ (O)

Note that U0
0 = L2(O) ⊗ (L2) and in general Um

s = Hm(O) ⊗ (L2)s where

(L2)s was defined in (3). We also define Û1
s = H1

0 (O) ⊗ (L2)s ⊂ U1
s , i.e., the
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functions in U1
s which vanish on ∂O almost sure in ω. By using a Poincaré

inequality, the seminorm | · |U1
s
is a norm equivalent to ∥ · ∥U1

s
in Û1

s . Since the
space (L2)s is the dual of (L2)−s and the H−1(O) is the dual of H1

0 (O), we can

identify the dual space of Û1
−s with U−1

s .
We note that κ(x, ω) > 0 is neither uniformly bounded nor uniformly bounded

away from zero, hence, the bilinear

a(u, v) =

∫
O×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ (35)

is neither continuous nor coercive on Û1
s × Û1

−s. According to [14], the coercive-
ness (the inf-sup condition) and boundedness of the bilinear form a(·, ·) can be

circumvent by enlarging the space of test functions for v from Û1
−s to Û1

−s−ϵ and

by reducing the solution space for u from Û1
s to D̂1

s where

D̂1
s := {u ∈ Û1

s : sup
v∈Û1

−s−ϵ\{0}

a(u, v)

|v|U1
−s−ϵ

< ∞}.

The weak formulation of problem (30) is then introduced as follows:{
Given f ∈ Us+ϵ, find u ∈ D̂1

s such that

a(u, v) = ⟨f, v⟩ for all v ∈ Û1
−s−ϵ

(36)

where the bilinear form a is defined in (35) and the duality pairing between

f ∈ U1
s+ϵ and v ∈ Û−s−ϵ is given by ⟨f, v⟩ =

∫
O×S′ f(x, ω)v(x, ω)dxdµ.

Lemma 17 ([14] Existence and uniqueness of solutions). Let ϵ > 0 and assume
that Cθ = supx∈O ∥ϕx∥θ < ∞. Then for f ∈ U−1

s+ϵ, there exists a unique solution

u ∈ D̂1
s ⊂ Û1

s of Problem (36) and

∥u∥U1
s
≤ Ce

C2
θ

2ϵ ∥f∥U−1
s+ϵ

, (37)

where C =
√

1 + Cpoin and Cpoin is the Poincaré inequality constant which is
independent of ϵ and θ.

Remark 18. From Lemma 17, when f ∈ U−1
0 then for every s < 0 (take

ϵ = −s) the solution u ∈ Û1
s . In order to have u ∈ Û1

0 we need f ∈ U−1
ϵ for

some ϵ > 0. When the right-hand side f is deterministic or is given by a finite
sum of Fourier-Hermite polynomials, we have the solution u ∈ Û1

s for every s

satisfying s <
λ2θ
1

2 ; see Definition 2 and Theorem 3.

4.3 Galerkin approximation and a priori error estimates
using Weighted norms

In this section we present an a priori error estimate obtained in [14]. The
regularity results assumed in this error estimates are a main motivation for the
studies developed in this paper.
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The corresponding tensor product norm for u ∈ Um
s with s <

λ2θ
1

2 is given
by

∥u∥2Um
s

=
∑
α∈J

α!σ(s)2α∥uα,s∥2Hm(O),

where u =
∑

α∈J uα,sHσ(s)2,α with uα,s ∈ Hm(O) for all α ∈ J .
Norms ∥ · ∥p;ρ,s defined in (5) can also be extended to tensor products. The

corresponding norms for the tensor product spaces Um
p;ρ,s := Hm(O)⊗Sp,ρ,s are

defined by

||u||2
Um
p;ρ,s

=
∑
α∈J

(
1 + ⟨α,λ⟩2p

)
α!σ(s)2α∥uα,s∥2Hm(O), (38)

and we also introduce the seminorms,

|u|2
Um
p;ρ,s

:=
∑
α∈J

(
1 + ⟨α,λ⟩2p

)
α!σ(s)2α|uα,s|2Hm(O). (39)

Let N,K ∈ N0 and define

JN,K = {α ∈ J : d(α) ≤ K, and, |α| ≤ N}

and

PN,K := span
{
Hσ(s)2,α : α ∈ JN,K

}
= span


d(α)∏
j=1

⟨ω, ηj⟩αj : α ∈ JN,K

 ,

i.e., PN,K consists of polynomials in ⟨ω, η1⟩, . . . , ⟨ω, ηK⟩ of total degree at most
N .

Note that when s <
λ2θ
1

2 , polynomials in ω belong to (L2)s. Let Xh
0 (O) ⊂

H1
0 (O) be the finite element space of piecewise linear and continuous functions

with respect to a quasi-uniform triangulation of O with mesh size h.
For N,K ∈ N0 and h > 0 define the following discrete spaces:

XN,K,h
s := Xh

0 (O)⊗ PN,K ⊂ Û1
s ⊂ U1

s

and

YN,K,h
s :=

{
v : v(x, ω) = ṽ(x, ω)e(s+

ϵ
2 )∥ΠKω∥2

−θ , ṽ ∈ XN,K,h
s

}
⊂ Û1

−(s+ϵ),

where ΠK is the (H-orthogonal) projection on the span{η1, . . . , ηK} is defined

by ΠKω :=
∑K

j=1⟨ω, ηj⟩ηj , for all ω ∈ S ′. The discrete version of problem (36)
is introduced as: {

Find uN,K,h
s ∈ XN,K,h

s such that
a(uN,K,h

s , v) = ⟨f, v⟩ for all v ∈ YN,K,h
s .

The corresponding discrete inf-sup condition, resulting linear system and one
spatial dimension numerical example are discussed in [14].

We have the following a priori error estimates. See [14].
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Lemma 19. Let s ∈ R and u ∈ Û1
s be the solution of (36) with ϵ > 0 and

f ∈ U−1
s+ϵ. Assume that s + ϵ̃ + ϵ <

λ2θ
1

2 and −s − ϵ <
λ2θ
K+1

2 for some ϵ̃ > 0.
Consider the weights ρ defined in (7). We have for all p > 0 and ℓ ≤ 2 that

|u− uN,K,h
s |U1

s
≤ C∗

{
max

{
1

1+(N+1)λ1
, 1
1+λK+1

}q

|u|U1
p;ρ,s+ϵ̃+ϵ

+ Ĉhℓ−1∥u∥Uℓ
s+ϵ̃+ϵ

}
,

where C∗ = C∗(s, ϵ, ϵ̃) = 1+e
C2
θ
ϵ e

C2
θ
ϵ̃

∏∞
j=K+1 σj(−s−ϵ) and Ĉ is is the Clement

finite element interpolation constant on the space Xh
0 (O).

In this a priori error estimate (as usual in finite element analysis) some
regularity is assumed. It is assumed that the norm |u|U1

p;ρ,s+ϵ̃+ϵ
is finite. In

the rest of the paper we study under what conditions this is true. The proof
of the a priori error estimate above can be found in [14]. The argument uses
the weighted chaos norm definition of the spaces |u|U1

p;ρ,s
. The weights are

defined in (7). Obtaining regularity results using this characterization of U1
p;ρ,s

is complicated since the chaos expansion of the solution is not available. Instead,
we will use the results presented in Section 3 that give a Gaussian-Sobolev
norm characterization of the space U1

p;ρ,s. We also mention that more general
a priori error estimates are obtained in [14] that hold for any weighted chaos
expansion. One important example is Given by Kondratiev type weighted chaos
spaces. Unfortunately, obtaining regularity results in Kondratiev spaces is more
complicated, see Section 3.4.1.

4.4 Stochastic regularity

We recall the definition of the tensor product space,

U1
p;ρ,s = H1(O)⊗ Sp;ρ,s.

For u(x, ω) =
∑

α∈J uα,s(x)Hσ(s)2,α(ω), (x, ω) ∈ O × S ′ we denote

||u||2Um
p;ρ,s

:=
∑
α∈J

α!ρ(α, p)2σ2α∥uα∥2Hm(O),

with ρ defined in (7). For k ∈ N and q ∈ Rk we also introduce (see Definition
5)

∥Dku∥2m,q;s =
∑

ℓ1,ℓ2,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2Hm(O)×(L2)s
.

From Theorem 12 and the definition of ∥ · ∥ k
2 ;ρ,s

in (5) with ρ defined in (7)

we have the equality

∥u∥2Um
k
2
;ρ,s

= ∥u∥2Um
s

+

k∑
i=1

∑
R∈Pk,i

∥Diu||2m,R( 1
21k);s

.

Now we study the behavior of the solution according to the regularity in the
ω variable of the right-hand side data f . In the following result we control the
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norm of a ω-partial derivative of the solution in terms of the norm of the ω-
partial derivatives of the forcing term. Before estating the result, we introduce
needed notation. We defined the set I(k, i) by

Ik,i =

τ = (τ1, . . . , τk);
such that ∪k

i=1{τi} = {1, . . . , k} and for some
i, 0 ≤ i ≤ k, we have τ1 < . . . < τi, and
τi+1 < . . . < τk.

 .

(40)

Lemma 20. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (36)

with right-hand side f ∈ U−1
s+2kϵ′+ϵ. Let us assume that for k ∈ N and q =

(q1, . . . qk) ∈ Rk and ϵ′ > 0

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ < ∞ for all 0 ≤ i ≤ k

and ϕ satisfies
πq(ϕ) := max

1≤i≤k
max
x∈O

∥ϕx∥qi < ∞.

Then,

∥Dk∇u∥20,q;s ≤ C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ

 (41)

where the constant C̃(ϵ, ϵ′, k, ϕ) is given by

C̃(ϵ, ϵ′, k, ϕ) = 2k(k+1)C2e
C2
θ
ϵ max{1, πq(ϕ)Ce

C2
θ

ϵ′ }2k, (42)

where C =
√
1 + Cpoin and Cpoin is the Poincaré inequality constant which

depends on O. The set Ik,i is defined in (40).

Proof. We first show the theorem holds for k = 1, then we proceed by induction
on the order of the derivatives k.

Assume that u is a solution of (36). For almost sure all ω we have for all
v ∈ H1

0 (O) ∫
O
e⟨ω,ϕx⟩∇u(x, ω)∇v(x)dx =

∫
O
fv. (43)

Note that ∂ℓe
⟨ω,ϕx⟩ = ⟨ϕx, ηℓ⟩e⟨ω,ϕx⟩. Taking partial derivative in (43) we

get∫
O
e⟨ω,ϕx⟩∇∂ℓu(x, ω)∇v(x)dxdµ =

∫
O
∂ℓf(x, ω)v(x)dxdµ (44)

−
∫
O
e⟨ω,ϕx⟩⟨ϕx, ηℓ⟩∇u(x, ω)∇v(x)dxdµ.

Define Φℓ(x, ω) = ⟨ϕx, ηℓ⟩∇u(x, ω) and by using similar arguments as in (48)
below, we have Φℓ ∈ U0

s+ϵ′+ϵ = (L2)s+ϵ′+ϵ. Integrating in S ′ we see that ∂ℓu is
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the solution of the weak problem{
Find ∂ℓu ∈ Û1

s such that

a(∂ℓu, v) = G(v) for all v ∈ Û1
−s−ϵ

(45)

where the right-hand side is defined by

G(v) =

∫
O×S′

∂ℓf(x, ω)v(x, ω)dxdµ−
∫
O
e⟨ω,ϕx⟩Φℓ(x, ω)∇v(x, ω)dxdµ.

To bound ∥∂ℓu∥U1
s
we need first to estimate ∥G∥U−1

s+ϵ
. Note that from (33) and

2⟨ω, ϕx⟩ ≤ ϵ′∥ω∥2−θ + C2
θ/ϵ

′ we obtain∫
O
e⟨ω,ϕx⟩Φℓ(x, ω)∇v(x, ω)dxdµ ≤

(∫
O
e2⟨ω,ϕx⟩+(s+ϵ)∥ω∥2

−θΦℓ(x, ω)
2dxdµ

) 1
2

(∫
O
e(−s−ϵ)∥ω∥2

−θ∇v(x, ω)2dxdµ

) 1
2

≤ e
C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ∥v∥U1
−s−ϵ

and then

∥G∥U−1
s+ϵ

≤ ∥∂ℓf∥U−1
s+ϵ

+ e
C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ.

Using this bound and Lemma 17 applied to the weak problem (45) we have that

∥∂ℓu∥U1
s
≤ Ce

C2
θ

2ϵ

(
∥∂ℓf∥U−1

s+ϵ
+ e

C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ

)
. (46)

We can now estimate ||D1u||21,q1;s in Definition (5) as follows:

||D1u||21,q1;s =

∞∑
ℓ=1

λ2q1
ℓ ||∂ℓ∇u||2(L2)s

≤ 2C2e
C2
θ
ϵ

( ∞∑
ℓ=1

λ2q1
ℓ ∥∂ℓf∥2U−1

s+ϵ

+ e
C2
θ

ϵ′

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ

)

= 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1,s+ϵ + e

C2
θ

ϵ′

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ

)
. (47)

To estimate the last term in (47) observe that

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ =

∫
S′×O

∞∑
ℓ=1

λ2q1
ℓ ⟨ϕx, ηℓ⟩2|∇u(x, ω)|2e(s+ϵ′+ϵ)∥ω∥2

−θdxdµ(ω)

=

∫
S′×O

∥ϕx∥2q1 |∇u(x, ω)|2e(s+ϵ′+ϵ)|ω|2−θdxdµ(ω)

≤ max
x∈O

∥ϕx∥2q1

∫
S′×O

|∇u(x, ω)|2e(s+ϵ′+ϵ)|ω|2−θdxdµ(ω)

= π2
q1∥u∥

2
U1

s+ϵ′+ϵ

. (48)
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Here and below, in order to simplify notation we have written πq1 = πq1(ϕ). By
inserting Equation (48) in (47) we obtain

||D1u||21,q1;s ≤ 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1;s+ϵ + π2

q1e
C2
θ

ϵ′ ∥u∥2U1
s+ϵ′+ϵ

)
.

Using the estimate ∥u∥2U1
s+ϵ′+ϵ

≤ C2eC
2
θ/ϵ

′∥f∥2U−1

s+2ϵ′+ϵ

, see Lemma 17, we obtain

||D1u||21,q1;s ≤ 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1;s+ϵ + π2

q1C
2e

2C2
θ

ϵ′ ∥f∥2U−1

s+2ϵ′+ϵ

)
≤ 2C2e

C2
θ
ϵ max{1, πq1Ce

C2
θ

ϵ′ }2
(
∥D1f∥2−1,q1;s+ϵ + ∥f∥U−1

s+2ϵ′+ϵ

)
which finish the proof for the case k = 1.

Now assume that the result holds valid for every 0 ≤ i < k. The main
induction step argument is similar to the case k = 1. We will:

1. Deduce a weak problem whose solution is a partial derivative of order k
of u; see (49).

2. Apply Lemma 17 to estimate the norm of each partial derivative of order
k of u, and use Definition 5 to estimate the norm of Dku in term of lower
order derivatives of u; see (51).

3. Use the induction argument; see (52).

Step 1. Using the Leibniz rule we have

∂ℓ1 . . . ∂ℓk

(
e⟨ω,ϕx⟩∇u(x, ω)

)
=

e⟨ω,ϕx⟩
k∑

i=0

∑
τ∈Ik,i

(
∇∂ℓτ1 · · · ∂ℓτiu(x, ω)

)
aℓτi+1

· · · aℓτk

= e⟨ω,ϕx⟩
(
∂ℓ1 . . . ∂ℓk∇u(x, ω) +

k−1∑
i=0

∑
τ∈Ik,i

Φ
(i),τ
ℓτ1 ···ℓτk

(x, ω)
)

where aℓ(x) = ⟨ϕx, ηℓ⟩ and the set Ik,i is defined in (40). We also have defined

Φ
(i),τ
ℓτ1 ···ℓτk

(x, ω) :=
(
∇∂ℓτ1 · · · ∂ℓτiu(x, ω)

)
aℓτi+1

· · · aℓτk .

From (43) we get∫
O
e⟨ω,ϕx⟩∂ℓ1 . . . ∂ℓk∇u(x, ω)∇v(x)dxdµ =

∫
O
∂ℓ1 . . . ∂ℓkf(x, ω)v(x)dxdµ

−
∫
O
e⟨ω,ϕx⟩

k−1∑
i=0

∑
τ∈Ik,i

Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x)dxdµ
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As above we have that ∂ℓ1 . . . ∂ℓku is the solution of of the weak problem{
Find ∂ℓ1 . . . ∂ℓku ∈ Ûs such that

a(∂ℓ1 . . . ∂ℓku, v) = G(v) for all v ∈ Û1
−s−ϵ

(49)

with a new right-hand side

G(v) =

∫
S′×O

∂ℓ1 . . . ∂ℓkf(x, ω)∇v(x, ω)dxdµ−

k−1∑
i=0

∑
τ∈Ik,i

∫
S′×O

e⟨ω,ϕx⟩Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x, ω)dxdµ. (50)

Step 2. In order to estimate ||G||s+ϵ we estimate each term in (50) above.
For each i and τ ∈ Ik,i we have∫
S′×O

e⟨ω,ϕx⟩Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x, ω)dxdµ ≤ e
C2
θ

2ϵ′ ∥Φ(i),τ
ℓτ1 ···ℓτk

∥s+ϵ′+ϵ∥v∥U1
−s−ϵ

.

Then from Lemma 17 applied to problem (49) with the right-hand side G in
(50) we get

∥∂ℓ1 . . . ∂ℓku∥U1
s

≤ Ce
C2
θ

2ϵ

∥∂ℓ1 . . . ∂ℓkf∥U−1
s+ϵ

+ e
C2
θ

2ϵ′

k−1∑
i=0

∑
τ∈Ik,i

∥Φ(i),τ
ℓτ1 ...ℓτk

∥s+ϵ′+ϵ


and using

∑k−1
i=0

∑
τ∈Ik,i 1 =

∑k−1
i=0

(
k
i

)
= 2k − 1, we obtain

||Dk∇u||20,q;s =
∑

ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

||∂ℓ1 . . . ∂ℓku||2U1
s

≤ 2kC2e
C2
θ
ϵ

( ∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓkf∥2U−1
s+ϵ

+

e
C2
θ

ϵ′
∑

ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

k−1∑
i=0

∑
τ∈Ik,i

∥Φ(i),τ
ℓτ1 ...ℓτk

∥2s+ϵ′+ϵ

)
≤ 2kC2e

C2
θ
ϵ

(
∥Dkf∥2−1,q;s+ϵ +

e
C2
θ

ϵ′

k−1∑
i=0

∑
τ∈Ik,i

∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ...ℓτk

∥2s+ϵ′+ϵ

)
.

Finally note that

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2(s+ϵ′+ϵ) = λ
2qτ1
ℓτ1

· · ·λ2qτk
ℓτk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2(s+ϵ′+ϵ)

=

∫
S′×O

(
λ
2qτ1
ℓτ1

· · ·λ2qτi
ℓτi

|∂ℓτ1 · · · ∂ℓτi∇u(x, ω)|2
)
·
(
λ
2qτi+1

ℓτi+1
· · ·

λ
2qτi+1

ℓτi+1
a2ℓτi+1

(x) · · · a2ℓτk (x)
)
e(s+ϵ′+ϵ)∥ω∥2

−θdµdx
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implies ∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2s+ϵ′+ϵ

= max
x∈O

∥ϕx∥2qτi+1
. . . ∥ϕx∥2qτk ∥D

i∇u∥20,(qτ1 ,...,qτi ),s+ϵ′+ϵ

≤ π2(k−i)
q ∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ.

Here and below, in order to simplify the notation we have written πq = πq(ϕ).
Summarizing

||Dk∇u||2q;s ≤ 2kC2e
C2
θ
ϵ

(
∥Dkf∥2−1,q;s+ϵ +

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ

)
.

(51)

Step 3. We have from the induction argument, i.e., (41) holds with k
replaced i, s replaced by s+ ϵ′ + ϵ and ϵ replaced by ϵ′,

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ

≤ e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q 2i(i+1)C2e

C2
θ

ϵ′ max{1, πqCe
C2
θ

ϵ′ }2i
(

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1
,...,qτ

τ′
j

);(s+ϵ′+ϵ)+(2(i−j)ϵ′+ϵ′)

)
(52)

Now we use the fact that the total number of terms in the sum
∑k−1

i=0

∑
τ∈Ik,i

is 2k − 1 to get

k−1∑
i=0

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1

,...,qτ
τ′
j

),s+2(i−j)ϵ′+ϵ ≤

k−1∑
i=0

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1

,...,qτ
τ′
j

),s+2(k−j)ϵ′+ϵ ≤

k−1∑
i=0

(2k − 1)
∑

τ∈Ik,j

∥Djf∥2−1,(qτ1 ,...,qτj ),s+2(k−j)ϵ′+ϵ.

(53)

Using that Ce
C2
θ

ϵ′ > 1, hence Ce
C2
θ

ϵ′ ≤ (Ce
C2
θ

ϵ′ )2(k−i) for 0 ≤ i ≤ k − 1, and
together with (52) yields

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ
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≤ (2k − 1)max{1, πqCe
C2
θ

ϵ′ }2k
(

k−1∑
i=0

2i(i+1)
∑

τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi ),s+2(k−i)ϵ′+ϵ

)
≤ 2(k−1)k(2k − 1)max{1, πqCe

C2
θ

ϵ′ }2k
(

∑
τ∈Ik,ℓ

∥Dif∥2−1,(qτ1 ,...,qτi ),s+2(k−i)ϵ′+ϵ

)
. (54)

Inserting (54) in (51) we get

||Dk∇u||2q;s ≤ 2k(1 + 2(k−1)k(2k − 1))C2e
C2
θ
ϵ max{1, πqCe

C2
θ

ϵ′ }2k
(

k∑
i=0

∑
τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ

)
(55)

and (41) follows by using 2k(1 + 2(k−1)k(2k − 1)) ≤ 2k(k+1).

Corollary 21. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (36)

with right-hand side f ∈ U−1
s+2kϵ′+ϵ. Let us assume that for k ∈ N and q =

(q1, . . . qk) ∈ Rk we have ∥ϕx∥qi < ∞ for 1 ≤ i ≤ k and ∥f∥U−1
|q|;ρ,t

< ∞ where

|q| =
∑k

i=1 qi, ρ is defined by (7), ϵ′ > 0 and t = s+ 2kϵ′ + ϵ. Then

∥Dk∇u∥20,q;s < C̃(ϵ, ϵ′, k, ϕ)∥f∥2U−1
|q|;ρ,t

(56)

where the constant C̃ is defined in (42).

Proof. From Lemma 20 and Lemma 17 we have

∥Dk∇u∥20,q;s ≤ C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
τ∈Ik,ℓ

∥Dif∥2−1,(qτ1 ,...,qτi );t


< C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
R∈Pk,i

∥Dif∥2−1,R(q);t


≤ C̃(ϵ, ϵ′, k, ϕ)∥f∥2U−1

|q|;ρ,t

The following result summarizes our stochastic regularity result.

Theorem 22. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (36) with

right-hand side f ∈ U−1
s+ϵ. Let us assume that for k ∈ N we have ∥ϕx∥ k

2
< ∞

where ρ is defined by (7), ϵ′ > 0 and t = s+ 2kϵ′ + ϵ. Then u ∈ Û1
k
2 ;ρ,s

and

|u|U1
k
2
;ρ,s

≤ C̃(ϵ, ϵ′, k, ϕ)B(k)∥f∥2U−1
k
2
;ρ,t
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where (the Bell number) B(k) is the total number of partitions of the set {1, 2, . . . , k}.

Proof. According to Corollary 21 we see that

∥∇u∥2U0
k
2
;ρ,s

=
k∑

i=1

∑
R∈Pk,i

∥Di∇u||20,R( 1
21k);ρ,s

<

p∑
i=1

∑
R∈Pk,i

C̃(ϵ′, i, ϕ,O)∥f∥2U−1

|R( 1
2
1k)|;ρ,t

≤ C̃(ϵ′, k, ϕ,O)B(k)∥f∥2U−1
k
2
;ρ,t

,

where we have used that |R( 121k)| = k
2 for all R partition of the set {1, 2, . . . , k}.

Remark 23. Bounds for the Bell numbers B(k) are know. It is know that

B(k) = 1
e

∑∞
i=1

ik

i! < ( 0.792k
ln(k+1) )

k. See [4] and references therein.

Remark 24. In the special case of f being a polynomial in ω, i.e., a finite sum
of Fourier-Hermite polynomials with coefficients in H−1(O) we can easily verify

that f ∈ U−1
p;ρ,s for all p and all s <

λ2θ
1

2 .

Next we present a result that can be directly applied to bound the first term
in the a priori error estimate in Lemma 19.

Corollary 25. Let the conditions of Theorem 22 hold with k = 2p and ϵ′ = ϵ̃
2p .

Then

|u|U1
p;ρ,s+ϵ̃+ϵ

≤ C̃(ϵ,
ϵ̃

2p
, 2p, ϕ)B(2p)∥f∥2U−1

p;ρ,s+ϵ̃+ϵ

,

where the constant C̃ is defined in (42).

4.5 Spatial regularity

In this section we will study the spatial regularity of the solution of (36).
Fix ω and take partial derivatives with respect to spatial coordinates xi. In

particular ∂⟨ω,ϕx⟩
∂xi

= ⟨ω, (∂ϕx

∂xi
)⟩, hence,

|∂⟨ω, ϕx⟩
∂xi

| ≤ max
x∈O

∥∂ϕx

∂xi
∥θ ∥ω∥−θ = ˜̃Cθ(ϕ) ∥ω∥−θ

where we have denoted

˜̃Cθ(ϕ) = max
1≤i≤d

max
x∈O

∥∂ϕx

∂xi
∥θ. (57)

Since ∂κ(x,ω)
∂xi

= ⟨ω, (∂ϕx

∂xi
)⟩e⟨ω,ϕx⟩, we obtain

| ∂κ
∂xi

(x, ω)| ≤ ˜̃Cθ(ϕ)∥ω∥−θ e
C2
θ

2ϵ e
ϵ
2∥ω∥2

−θ . (58)
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Remark 26. In general we have

∥∂ϕx

∂xi
∥2θ =

∞∑
j=1

λ2θ
j (

∂ϕx

∂xi
, ηj)

2
H .

For the particular case of Example 16 we have ϕx(·) = ϕ(· − x), hence, if we
consider for simplicity the uni-dimensional case H = L2(R), we have

(
∂ϕx

∂x
, ηj)H =

∫
R

∂ϕ

∂x
(x̂− x)ηj(x̂)dx̂ = −

∫
R

∂ϕ

∂x̂
(x̂− x)ηj(x̂)dx̂ =∫

R
ϕ(x̂− x)

∂

∂x̂
ηj(x̂)dx̂ =

√
j

2
(
∂ϕx

∂x
, ηj−1)H −

√
j + 1

2
(
∂ϕx

∂x
, ηj+1)H ,

where we have used a recursive relation of derivative of Hermite functions. Using

that λj = 2j, we obtain ˜̃Cθ(ϕ) ≤ ČCθ+ 1
2
. For the case of Example 15, we have

neither the recursive relation nor ηj vanishes on ∂O; see [13] for issues on the
regularity of the ηj and the decaying of the 1/λj.

The following result is a particular case of Theorem 9.1, page 184 of La-
dyzhenskaya and Ural′tseva [21].

Lemma 27. Consider the following elliptic problem{
−∇ · (µ(x)∇u(x)) = f(x), for x ∈ O

u(x) = 0, on ∂O.
(59)

Suppose that:

1. There is constants such that

0 < µmin ≤ µ(x) ≤ µmax for all x ∈ O and that ∂O

and

∥ ∂µ

∂xj
∥Lq(O) ≤ µmax with q > d

2. ∂O is piecewise smooth with curvature bounded below by a number K (See
[21] page 174 and 175).

3. The domain O is of class W 2
q or that O can be topologically mapped into

a parallelepiped by a function in W 2
q (Rd) with nonzero Jacobian.

Then the problem has unique solution in H2(O) ∩H1
0 (O) if f ∈ L2(O).

Corollary 28. Under the assumption of Lemma 27 for the Domain O we have
that for almost all ω ∈ Ω the weak solution u(·, ω) of Problem (30) is an element
of H2(O) if f(·, ω) ∈ L2(O)
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Now we only need to bound the H2 norm of u(·, ω) in terms of ω. We next
apply the second fundamental inequality, Lemma 8.1 in page 175 of [21] applied
to the class of coefficients we consider in this paper. In order to simplify the
presentation we assume that O is a nondegenerate d− 1 dimension polyhedron.

Lemma 29. Assume that O is a nondegenerate d− 1 dimensional polyhedron.
For every function v ∈ H2 ∩ H1

0 we have that for every ϵ̂ > 0 and almost all
ω ∈ S ′

|v|2H2(O) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
O
(∇ · κ∇v)2 +

8d

ϵ̂
˜̃Cθ(ϕ) e

4C2
θ

ϵ̂ e5ϵ̂∥ω∥2
−θ

∫
O
|∇v|2 (60)

where Cθ is defined in (32) and ˜̃Cθ in (57).

Proof. Note that it is enough prove the result for smooth functions v. Assume
v ∈ C2(O) and v = 0 on ∂O. We have

(∇ · κ∇v)2 = (∇κ · ∇v)2 + 2κ(∇κ · ∇v)(∆v) + κ2(∆v)2. (61)

Using two integration by parts and v = 0 on ∂O we have∫
O
(∆v)2 = |v|2H2(O) +

∫
∂O

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η = |v|2H2(O). (62)

To see the boundary integral vanish it is enough to compute this integral in
each face of O. Let F be a face of O. We can assume F ⊂ Rd−1 × {0}. Then
η = (0, . . . , 1) ∈ Rd. Then∫

F

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η =

∫
F

∆v∂dv −
d∑

i=1

∂iv∂
2
div (63)

Since v = 0 on F we have that ∂iv = 0 and ∂ijv = 0, on F , i = 1, . . . , d − 1.
Then ∫

F

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η =

∫
F

∂ddv∂dv − ∂dv∂
2
ddv = 0. (64)

Now, observe that∫
O
(∇κ · ∇v)2 ≤ d max

1≤i≤d
∥∂iκ∥2∞

∫
O
|∇v|2 (65)

and with δ =
κ2
min

2κmax
> 0 we have

2

∫
O
κ(∇κ · ∇v)(∆v) ≤ κmax

(
δ

∫
O
(∆v)2 +

1

δ

∫
O
(∇κ · ∇v)2

)
≤ δκmax|v|2H2(O) + d max

1≤i≤d
∥∂iκ∥2∞

κmax

δ

∫
O
|∇v|2

≤ κ2
min

2
|v|2H2(O) + 2d max

1≤i≤d
∥∂iκ∥2∞

κ2
max

κ2
min

∫
O
|∇v|2(66)
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By combining (62), (65) and (66) we get

|v|2H2(O) ≤ 1

κ2
min

∫
O
(∇ · κ∇v)2 +

+
1

2
|v|2H2(O) + 2d max

1≤i≤d
∥∂iκ∥2∞(

1

κ2
min

+
κ2
max

κ4
min

)

∫
O
|∇v|2

and then

|v|2H2(O) ≤
2

κ2
min

∫
O
(∇ · κ∇v)2 + 4d max

1≤i≤d
∥∂iκ∥2∞(

1

κmin
+

κ2
max

κ2
min

)

∫
O
|∇v|2.

Finally, using (33), we see that

|v|2H2(O) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
O
(∇ · κ∇v)2 +

4d max
1≤i≤d

∥∂iκ∥2∞(1 + e
3C2

θ
ϵ̂ e3ϵ̂∥ω∥2

−θ )

∫
O
|∇v|2

and using (58) we get

|v|2H2(O) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
O
(∇ · κ∇v)2 +

4d ˜̃Cθ(ϕ)∥ω∥2−θe
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ (1 + e
3C2

θ
ϵ̂ e3ϵ̂∥ω∥2

−θ )

∫
O
|∇v|2

and using that ϵ̂∥ω∥2−θ < eϵ̂|ω∥2
−θ , (60) follows.

We establish a bound for the second term in the a priori error estimate 19.

Theorem 30. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (36) with

right-hand side f ∈ U−1
s+ϵ. Assume that O is a nondegenerate d− 1 dimensional

polyhedron, f ∈ U0
s+ϵ̃+ϵ+ϵ̂ and f ∈ U−1

s+ϵ̃+2ϵ+5ϵ̂ for ϵ̃, ϵ, ϵ̂ positive. Then, u ∈
U2
s+ ˜ϵ+ϵ̂

and

|u|2U2
s+ϵ̃+ϵ+ϵ̂

≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ ||f ||2U0
s+ϵ̃+ϵ+ϵ̂

+

8d

ϵ̂
C2 ˜̃Cθ(ϕ) e

C2
θ (

4
ϵ̂+

1
ϵ )e(4ϵ̂+ϵ)∥ω∥2

−θ∥f∥2U−1
s+ϵ̃+2ϵ+5ϵ̂

.

where C =
√
1 + Cpoin and Cpoin is the Poincaré inequality constant which

depends on O, Cθ is defined in (32) and ˜̃Cθ in (57).

Proof. Corollary 28 and f ∈ U0
s+ϵ̃+ϵ+ϵ̂ imply that for almost all ω ∈ S ′, u(·, ω) ∈

H2(O). The bound (67) follows by first replacing v by u in (60), then multiply

(60) by e(s+ϵ̃+ϵ)∥ω∥2
−θ and integrate in S ′, then use ∇ · κ∇u = f to obtain the

first term of the right-hand side of (67), and use Lemma 17 to obtain the second
term.
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5 Final remarks

We presented regularity results for stochastic elliptic equations with lognormal
coefficient κ. We obtained joint spatial and stochastic regularity of solutions
of the ordinary product pressure equation assuming similar regularity for the
right-hand side f(x, ω) and stochastic process log(κ(x, ω)). Standard assump-
tions on the spatial domain O are also used. The main results in Theorem 22
and Theorem 30 which state that the solution of the pressure equation with
regular data has classical H1+r regularity in the spatial variable x and stochas-
tic regularity given by a particular weighted chaos space. To compute regular
norms of function in the stochastic variable we use the White Noise framework
and directional derivatives. This resulting norm require norms of partial deriva-
tives in the ω variable up to certain order to be bounded. The fact this norm is
equivalent to a weighted chaos space norm is proved in Theorem 12.
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Boston Inc., Boston, MA, 1996. A modeling, white noise functional ap-
proach.

[19] Hui-Hsiung Kuo. Gaussian measures in Banach spaces. Springer-Verlag,
Berlin, 1975. Lecture Notes in Mathematics, Vol. 463.

[20] Hui-Hsiung Kuo. White noise distribution theory. Probability and Stochas-
tics Series. CRC Press, Boca Raton, FL, 1996.

[21] Olga A. Ladyzhenskaya and Nina N. Ural′tseva. Linear and quasilinear
elliptic equations. Translated from the Russian by Scripta Technica, Inc.
Translation editor: Leon Ehrenpreis. Academic Press, New York, 1968.

34



[22] Sergey Lototsky and Boris Rozovskii. Stochastic differential equations:
a Wiener chaos approach. In From stochastic calculus to mathematical
finance, pages 433–506. Springer, Berlin, 2006.

[23] Sergey V. Lototsky, Boris L. Rozovskii, and Xiaoliang Wan. Elliptic
equations of higher stochastic order. M2AN Math. Model. Numer. Anal.,
44(5):1135–1153, 2010.

[24] Paul Malliavin. Integration and probability, volume 157 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1995. With the collaboration
of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from
the French by Kay, With a foreword by Mark Pinsky.

[25] A. Mugler and H.-J. Starkloff. On elliptic partial differential
equations with random coeffcients. available at http://www.dfg-
spp1324.de/download/preprints/preprint079.pdf.

[26] Nobuaki Obata. White noise calculus and Fock space, volume 1577 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.

[27] Luis J. Roman and Marcus Sarkis. Stochastic Galerkin method for ellip-
tic SPDEs: a white noise approach. Discrete Contin. Dyn. Syst. Ser. B,
6(4):941–955, 2006.

[28] Ichiro Shigekawa. Stochastic analysis, volume 224 of Translations of Math-
ematical Monographs. American Mathematical Society, Providence, RI,
2004. Translated from the 1998 Japanese original by the author, Iwanami
Series in Modern Mathematics.

[29] Thomas Gorm Theting. Solving Wick-stochastic boundary value problems
using a finite element method. Stochastics Stochastics Rep., 70(3-4):241–
270, 2000.

[30] Radu Alexandru Todor. Robust eigenvalue computation for smoothing
operators. SIAM J. Numer. Anal., 44(2):865–878, 2006.
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