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Abstract

Motivated by the work of Musiela and Zariphopoulou [24], we study the Itô random fields

which are utility functions U(t, x) for any (ω, t). The main tool is the marginal utility Ux(t, x) and

its inverse expressed as the opposite of the derivative of the Fenchel conjuguate Ũ(t, y). Under

regularity assumptions, we associate a SDE(µ, σ) and its adjoint SPDE(µ, σ) in divergence form

whose Ux(t, x) and its inverse −Ũy(t, y) are monotonic solutions. More generally, special attention

is paid to rigorous justification of the dynamics of inverse flow of SDE. So that, we are able to

extend to the solution of similar SPDEs the decomposition based on the solutions of two SDEs

and their inverses.

The second part is concerned with forward utilities, consistent with a given incomplete financial

market, that can be observed but given exogenously to the investor. As in [24], market dynam-

ics are considered in an equilibrium state, so that the investor becomes indifferent to any action

she can take in such a market. After having made explicit the constraints induced on the local

characteristics of consistent utility and its conjugate, we focus on the marginal utility SPDE by

showing that it belongs to the previous family of SPDEs. The associated two SDE’s are related

to the optimal wealth and the optimal state price density, given a pathwise explicit representa-

tion of the marginal utility. This new approach addresses several issues with a new perspective:

dynamic programming principle, risk tolerance properties, inverse problems. Some examples and

applications are given in the last section

Introduction

The concept of forward dynamic utility has been introduced by M. Musiela and T. Zariphopoulou

(2003-2008 [24, 25, 27, 29]), to model possible changes over the time of individual preferences
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of an agent. The economic agent will adjust its preferences in uncertain universe based on the

information that is revealed over time and represented by a filtration F = (Ft)t≥0, defined on

the probability space (Ω,P,A). In contrast to the classical literature, there is no pre-specified

trading horizon at the end of which the utility datum is assigned. Rather, the agent starts with

today’s specification of its utility, U(0, x) = u(x), and then builds the process U(t, x) for t > 0 in

relation to the information given by (Ft)t≥0. This, together with the choice of an initial utility,

distinguishes forward dynamic utility from recursive utility first introduced by Duffie and Epstein,

[4], (see also [7]) for which the aggregator can be specified exogenously and the value function is

recovered backward in time. Dynamic utility may be also defined in relation with a exogenous

investment universe X , described as an incomplete market whose the parameters are known by

the investor. Following [24], market dynamics are considered in an equilibrium state, so that the

investor becomes indifferent to any action she can take in such a market. She is forced to embed

into his dynamic utility, structure information describing the equilibrium market dynamics. Such

X - consistent utilities will be studied in the second part of the paper.

Such concept has also been studied by Berrier, Tehranchi and Rogers (2009) [1] and Zitkovic

[41]. Further works related to this problem are Choulli, Stricker and Jia (2007) [36], Henderson

and Hobson (2007) [11].

We start by introducing the general notion of progressive utility and its Fenchel transform.

However, we restrict our study to positive progressive utility which is a collection of Itô’s semi-

martingales with respect to a d-dimensional Brownian motionW , depending on a spatial parameter

x ∈ R
+, also called the wealth. As usual, they are specified through their local (drift, volatility)

characteristics (β, γ) and their initial condition, a deterministic concave function u, by

dU(t, x) = β(t, x)dt + γ(t, x).dWt, U(0, x) = u(x). (0.1)

Apart regularity issues, the first question to be solved is to give conditions on the local charac-

teristics (β, γ), insuring the properties of monotonicity and concavity of the progressive utility U

defined by the forward equation (1.1). The problem is equivalent to show that the progressive

marginal utility Ux is strictly decreasing and strictly positive, with range (0,∞). At this stage,

it is convenient to introduce the Fenchel conjugate random field Ũ of U whose the opposite of

the derivative Ũy is the inverse flow of Ux. Following Kunita [19], we introduce sufficient condi-

tions implying that Ux is also an Itô progressive random field, with local characteristics (βx, γx).

(Theorem 2.2. All regularity issues are presented in details in Section 2.)

Then we show that the random field Ux is a monotonic with respect to its initial condition,

strong solution of a one dimensional stochastic differential equation. The random coefficients of

the SDE(µ, σ) are expressed in terms of the local characteristics βx and γx, and −Ũy. We give in

particular, under some Lipschitz assumptions on SDE’s coefficients, a clear answer to the existence,

monotonicity, regularity and concavity of random fields defined from (0.1) satisfying the Inada’s

conditions, which until now remained an open question.

Additional regularity are need to show that the conjugate random field Ũ and its derivative Ũy

are also families of Itô’s semimartingales, and to identify its local characteristics. The Itô-Ventzel

formula enables us to carry out computations in a stochastically modulated dynamic framework.

Applied to the random field U and the semimartingale Ũy(t, y), Itô-Ventzel’s formula provides us
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two complementary results: the dynamics of Ũ , and the characterization of Ũy(t, y) as monotonic

solution of the SPDE generated by the adjoint elliptic operator in divergence form associated with

the SDE(µ, σ) satisfied by Ux. A first connection between SDE and SPDE is then established.

Section 2 is more technical. Based on the reference book of Kunita [19], we provide additional

results in both regularity of random fields, and behavior of SDE with local Lipschitz property. The

aim is to provide conditions under which the inverse of a monotonic solution of SDE(µ, σ) (for

instance the process −Ũy(t, y)) is an Itô semimartingale, solution of the second-order SPDE(µ, σ)

(Theorem 2.5). Conversely, a regular monotonic solution of SPDE(µ, σ) is identified with the

inverse of the monotonic solution of SDE(µ, σ). The link between SDE and second order SPDE is

extended to more complex SPDE in the main result of this section, Theorem 2.7.

In the second part of the paper, we turn to consistent stochastic utilities, where the preferences

are no more defined in isolation with a financial market. The dynamics of the market can be

observed but are exogenously given to the investor, modulo estimation of the relevant parameters

by the equilibrium considerations or other procedures. Following [24], market dynamics are con-

sidered in an equilibrium state, so that the investor becomes indifferent to any action she can take

in such a market. But, once characterized, the criterion may be used to solve classical optimization

problems as optimal allocation, indifference pricing [33].

Working with positive wealth processesXκ in an incomplete market, we define a consistent stochas-

tic utility as a progressive non-negative stochastic utility U(t, x), for which U(t,Xκ
t ) is a super-

martingale, and a (local) martingale for a certain portfolio called optimal wealth, or optimal

benchmark. Section 3 is dedicated to set-up the financial market, and to identify the constraints

induced on the local characteristics (β, γ) of U by the consistency property, using once again the

Itô-Ventzel formula. As in the classical Hamilton-Jacobi-Bellman framework, we proceed by ver-

ification to establish the dynamics of consistent utilities. Assuming a sufficient constraint on the

drift β of HJB type, we get the utility SPDE that we investigate in this paper. In particular, we

study the role of the utility risk premium defined by ηU (t, x) = γx(t, x)/Ux(t, x). Simultaneously,

we go into details on the duality questions and give a characterization of the nonlinear SPDE

satisfied by the progressive convex conjugate Ũ of U , and its optimal coefficients.

Our most original contribution is provided in Section 4, using a characterization of X -consistent

dynamic utility from its marginal utility. Based on ideas developed in Section 2, we show that,

under regularity assumptions on the random field U, Ux is solution of a SPDE(2.9) associated

with the optimal coefficients for the wealth and state price density processes. Then, a first result

shows that under natural assumptions yielding to the existence of strong optimal solution of the

conjugate problem Y ∗
t (y), the only locally Lipschitz SDE(µ∗, σ∗) has a monotonic non-explosive

solution X∗
t (x). A simple application of Theorem 2.7 yields to the closed form of the marginal

utility as Ux(t, x) = Y ∗
t (ux((X

∗
t )

−1(x))).

Then, we consider the converse problem of recovering a dynamic utility coherent with a given

optimal portfolio. In the classical case, this problem is known in the financial literature as the

“inverse“ Merton problem; it has been considered by many authors in particular by H.He and

C.Huang (1992), [10]. Since the class of dynamic utilities is larger than the class of Markovian

utilities considered in [10], our problem is easier to solve. Given a monotonic admissible portfo-

lio X, for any regular state price density process Yt(y) and any initial condition ux such that

V (t, x) = Y ∗
t (ux((Xt)

−1(x))) is integrable near to 0, is the marginal utility of some consistent dy-
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namic utility. So, we are able to generate all the consistent utilities with a given optimal portfolio.

In Section 4, Theorem 4.1, we establish the most original contribution of this paper. Indeed,

from Theorem 2.7, focusing on the dynamics of the marginal utility Ux, we can read directly and

without difficulties that the process Ux

(
t,X∗

t (x)
)

is equal to the optimal dual state price density

process Y ∗(t, ux(x)) with u is the initial utility function. From this dual identity, the idea is very

simple and natural: Suppose that the optimal portfolio denoted by
(
X∗

t (x)
)
t

is strictly increasing

with respect to the initial capital, and denote by
(
X (t, x)

)
t
the adapted inverse process, defined by

X∗
t

(
X (t, x)

)
= x then, we can find Ux(t, x) from Ux(t, x) = Y ∗

t

(
ux(X (t, x))

)
. Finally we get U by

integration. So, we are able to generate all the consistent utilities with a given optimal portfolio.

We recover easily the martingale property of the risk tolerance established in [10], in a complete

market. Finally, in Section 5, we close the paper by some openness to other topics and works;

we show the stability of the notion of consistent utility by change of numeraire and then, without

loss of generality, we can consider the martingale market where the portfolios are simple local

martingales and the stochastic PDE’s are easier to deal with. We also apply our method to the

specific example of decreasing consistent utilities (see [1] and [28]) where the volatility vector γ is

given equal to zero, given a new interpretation of the optimal wealth as solution of sup-convolution

problems in random power utilities.

To the best of our knowledge, the characterization of strictly concave increasing random fields,

satisfying Inada’s conditions, from SDEs have neither studied in details nor established in the

literature. Moreover, the fully nonlinear utility stochastic PDE’s established in this paper and

satisfied by forward utilities and their dual have not been established in a general way. Further-

more, there is no general consistent utilities construction proposed in the literature, expect the

case of power or exponential type, or decreasing utilities. Another main contribution of this paper

is a connection between two solvable SDEs and the utility SPDE early established. In particular,

given a volatility vector γ such that γx(t, x) = −xUxxκ
∗
t (x) − Ux(t, x)η

R
t + Ux(t, x)ν

∗
t (Ux(t, x))

(where ηR is the market risk prime), we show the existence and uniqueness of a solution to the

fully nonlinear second order SPDE from that of a pair of SDE’s. In any case this, represents an

interesting result in the theory of stochastic partial differential equations.

The paper is organized as follows, in the next section we give the definition of the Itô pro-

gressive dynamic utilities and focus on the characterization of these concave Itô’s random fields

by establishing a link with SDEs. A special attention is paid to the dynamics of the Fenchel

conjuguate utility random field. In the following section, we give sufficient conditions ensuring

concavity, monotonicity, differentiability both for random fields or for solution of SDE. The dy-

namics of the inverse of regular solution of SDE(µ, σ) is the first step in the links of SDE and

SPDE. More complex situations are then studied.

Next, we introduce the consistent utilities, the market model and the framework of the paper.

In Section 3, we provide, simultaneously, the dynamics of consistent utilities and their convex

conjugate. We establish a closed form for the optimal policies. Thereafter, in Section 4, we

establish a fully characterization of the marginal utility. We end by reverse engineering problem

and some openness to other topics.
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1 Progressive Utility

In a dynamic and stochastic environment, the classical notion of utility is not flexible enough to help

us to make good choices in the long run. M.Musiela and T.Zariphopoulou were the first to suggest

to use instead of the classical criterion the concept of progressive dynamic utility, consistent with

respect to a given investment universe in a sense specified in Section 3. The concept of progressive

utility gives an adaptative way to include new information on environment evolution available to

economic agents. Recently, Fritelli [8] introduced very closed notion called stochastic dynamic

utility, in view of study certainty equivalent. Since these utility functions are stochastic, time

dependent and moving forward, we consider them as a family of (Itô) semimartingales depending

on a parameter, the wealth of the agent in the economic context.

1.1 Definition and Properties of Progressive Dynamic Utility

All stochastic processes are defined on a standard filtered probability space (Ω,F,P), where the

filtration F = (Ft)t≥0 is assumed to be right continuous and complete. We first recall some notions

relative to stochastic processes depending of a parameter.

Generality on progressive random fields Stochastic processes in consideration are de-

pending on a parameter, often called spatial parameter. For us, because of economic motivation,

this parameter is the wealth of an investor, taking non negative values in R
∗
+ = {x > 0}. Some-

times, we will use the vocabulary of random field theory, and refer to such processes as progressive

random fields. As all random fields considered in the sequel are progressive, we will often omit the

mention " progressive".

(i) A progressive random field X = {X(t, x); t ≥ 0, x > 0} is a random variable measurable with

respect to F∞ ⊗ B(R+)⊗ B(R∗
+), which is a collection of progressive processes t 7→ X(t, x).

(ii) A random field X is said to satisfy a property P with respect to x, if there exists N ∈ F∞

with P(N) = 0, such that for any ω ∈ N c, and any t ≥ 0, x 7→ X(t, x)(ω) satisfies the property P .

For example, X is said to be concave, (resp. increasing) if there exists N ∈ F∞ with P(N) = 0,

such that for any ω ∈ N c, and any t ≥ 0 x 7→ X(t, x)(ω) is concave (resp. increasing).

(iii) A random field X is said to be continuous if there exists N ∈ F∞ with P(N) = 0, such that for

any ω ∈ N c, and any t ≥ 0 x 7→ X(t, x)(ω) is continuous. In general, the existence of continuous

modification is based of the Kolmogorov’s criterion, that we recall in Section 2.

A random field X is said to be differentiable if there exists N ∈ F∞ with P(N) = 0, such that for

any ω ∈ N c, and any t ≥ 0 x 7→ X(t, x)(ω) is differentiable ; the derivative denoted Xx(t, x)(ω)

generates the so-called derivative random field Xx. When Xx has a continuous version, X is said

to be C1-regular.

(iv) A d-dimensional random field X is said to be Lk- locally bounded if for any compact K ⊂]0,∞[,

there exists N ∈ F∞ with P(N) = 0, such that for any ω ∈ N c,
∫ T

0 supx∈K ‖X(t, x)‖k(ω)dt < ∞

for any T > 0.

In the sequel, we are concerned with differentiable random fields said to be Km
loc-regular (K for

Kunita) in the following sense.
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Definition 1.1. A d-dimensional random field X is said to be Km
loc(resp. K

m

loc)-regular if X is

a Cm-regular random field such that X/x, ∂kxX, k ≤ m are L1(resp. L2)-locally bounded. Such

random fields are also called of class Km
loc(resp. K

m

loc).

At this stage, we content ourselves with this definition to carry out calculations in this section;

more details are given in the next section.

Progressive utility and its Fenchel conjugate We start with the definition of a pro-

gressive utility as progressive random field with concavity property.

Definition 1.2 (Progressive Utility). A progressive utility is a continuous progressive random

field on R
∗
+, U = {U(t, x); t ≥ 0, x > 0} such that,

(i) Utility property: U is strictly concave, strictly increasing, and non negative.

(ii) Regularity property: U is a C2-random field, with continuous first and second deriva-

tives random fields Ux and Uxx.

(iii) Inada conditions: U goes to 0 when x goes to 0 and the derivative Ux goes to ∞ when

x goes to 0, and to 0 when x goes to ∞.

Given its importance in convex analysis, we introduce together with any progressive utility

U, its convex conjugate Ũ (also called conjugate progressive utility (CPU)), that is the Fenchel

Legendre transform of the convex random field −U(,−.).

Definition 1.3 (Progressive conjugate utility). The convex conjugate of the progressive utility U

is the progressive random field Ũ defined on R
∗
+ by Ũ = {Ũ(t, y); t ≥ 0, y > 0}, where Ũ(t, y)

def
=

maxx>0,x∈Q+

(
U(t, x)− x y

)
.

(i) Under Inada condition, Ũ is twice continuously differentiable, strictly convex, strictly

decreasing, with Ũ(., 0+) = U(+∞), Ũ(.,+∞) = U(0+), a.s.

(ii) The marginal utility Ux is the inverse of the opposite of the marginal conjugate utility Ũy,

that is Ux(t, .)
−1(y) = −Ũy(t, y), with Inada conditions Ũy(., 0

+) = −∞, Ũy(.,+∞) = 0

(iii) The bi-dual relation holds true U(t, x) = infy>0,y∈Q+

(
Ũ(t, y) + x y

)
.

Moreover Ũ(t, y) = U
(
t,−Ũ(t, y)

)
+ Ũy(t, y) y, and U(t, x) = Ũ

(
t, Ux(t, x)

)
+ xUx(t, x).

1.2 Itô Progressive Utility and SDE

In this paper, we focus on continuous progressive utilities U which are a collection of Itô semi-

martingales: for any x, U(., x) is a continuous Itô semimartingale, driven by a n-dimensional

Brownian motion W = (W 1, ..,Wn) defined on the probability space (Ω,F,P). In general, the σ-

field F0 is assumed to be trivial and F0- random variables are a.s. constant. We refer to the book

of H.Kunita [19] and to the next section for all technical results concerning the theory of semi-

martingale random fields.The assumption of finite dimensional Brownian motion greatly simplifies

the theory.

As usual, an Itô random field F defined on R
+ is specified through its decomposition F =

F0 + B
F + M

F into two random fields, where B
F is a finite variation random field BF (t, x) =∫ t

0 ϕ
F (s, x)ds and M

F is a martingale random field MF (t, x) =
∫ t

0 ψ
F (s, x)dWs, where (ϕF , ψF ) =

{(ϕF (t, x), ψF (t, x)); t ≥ 0, x > 0} are the local characteristics of F assumed to be progressive ran-

dom fields, with values in R and R
n respectively. ϕF is called the drift characteristic, and ψF the
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diffusion characteristic. For simplicity, we often omit the index F . By convention, an Itô random

field F is said to be a Km
loc-semimartingale, whenever B

F is of class Km
loc, and M

F is of class

K
m

loc. The reference to Km recall that F is a random field.

Let us consider an Itô progressive utility U with initial condition u(x) = U(0, x), and local

characteristics (β, γ), so that

dU(t, x) = β(t, x)dt + γ(t, x).dWt, U(0, x) = u(x) (1.1)

Apart regularity issues, the first question before going further is the following:

How to express by conditions on the local characteristics (β, γ) random fields, the properties of

monotonicity and concavity of the progressive utility U defined by (1.1)?

The problem is equivalent to show that the progressive marginal utility Ux is strictly decreasing

and strictly positive, with range (0,∞). Following Kunita [19], this can be done by assuming that,

(i) U is of class K2
loc, which implies in particular (Theorem 2.2 below) that Ux is also an Itô

progressive random field, with local characteristics (βx, γx).

(ii) The random field Ux is a strong solution of a one dimensional stochastic differential equation

(SDE), with random coefficient, monotonic with respect to its initial condition.

We summarize these ideas in the following theorem.

Theorem 1.1. Let U be an Itô random field with dynamics

dU(t, x) = β(t, x)dt + γ(t, x).dWt, U(0, x) = u(x) (1.2)

(i) Necessary condition Let U be a progressive utility with conjugate utility Ũ, and marginal

utilities Ux(t, .) and −Ũy(t, .). If U is a K2
loc-semimartingale, the random field Z.(z) = Ux(.,−ũy(z))

is a strictly increasing (in z) solution of the SDE(µ, σ),





dZt = µ(t, Zt)dt+ σ(t, Zt) dWt, Z0 = z

µ(t, z) = βx
(
t,−Ũy(t, z)

)
, µ(t, 0) = 0

σ(t, z) := γx
(
t,−Ũy(t, z)

)
, σ(t, 0) = 0

(1.3)

(ii) Characterization as primitive of SDE Let consider a SDE(µ̂, σ̂), dZt = µ̂(t, Zt)dt +

σ̂(t, Zt) dWt, Z0 = z and assume the existence of a strong solution Z.(z), increasing and differen-

tiable in z with range (0,∞). Then, for any utility function u such that Z.(ux(x)) is integrable in a

neighborhood of x = 0, the primitive U = {U(t, x) =
∫ x

0
Zt(ux(z))dz, t ≥ 0, x > 0} is a progressive

utility.

Proof. By assumption, from Theorem 2.2 below, U is a K2
loc-semimartingale implies that Ux is an

Itô semimartingale with local characteristics (βx, γx), i.e., dUx(t, x) = βx(t, x)dt + γx(t, x).dWt.

Since x 7→ U(t, x) is strictly concave and increasing, the marginal utility Ux(t, .) is strictly positive

and decreasing from ∞ to 0. Consequently x 7→ Ux(t, x) has an inverse which is the opposite

of the marginal conjugate utility −Ũy(t, .). By denoting µ(t, .) := βx
(
t,−Ũy(t, .)

)
and σ(t, .) :=

γx
(
t,−Ũy(t, .)

)
, it follows that Ux satisfies the following SDE, with initial condition Ux(0, x) =

ux(x)

dUx(t, x) = µ
(
t, Ux(t, x)

)
dt+ σ

(
t, Ux(t, x)

)
.dWt

7



The change of initial condition from ux(x) into z yields to the definition of the process Zt(z) =

Ux(t,−ũy(z)). The converse implication is obvious.

It remains to give sufficient conditions on the random coefficients (µ, σ) ensuring the existence

of a strong, monotonic solution of SDE (1.3). We briefly recall some classical results on SDEs,

useful for our study; more details and additional results are provided in Section 2. An easy to

read presentation of SDEs with stochastic coefficients is given in Protter [32]; for more exhaustive

study, see Kunita [19].

Theorem 1.2. Let us consider the one-dimensional stochastic differential equation, SDE(µ, σ)

dZt = µ(t, Zt)dt+ σ(t, Zt)dWt, (1.4)

We assume that the R-valued drift coefficient µ = {µ(t, x); t ≥ 0, x ≥ 0} and the R
d- valued

diffusion coefficent σ = {σ(t, x); t ≥ 0, x ≥ 0} are Lipschitz random fields, with random Lipschitz

bounds Ct and Kt, such that a.s
∫ T

0 Ctdt < +∞ and
∫ T

0 K2
t dt < +∞ for any T . In other words,

for any ω outside of a negligible set N , for any t, x, y,
{

|µ(t, x, ω)− µ(t, y, ω)| ≤ Ct(ω)|x− y|, µ(t, 0) ≡ 0,

‖σ(t, x, ω)− σ(t, y, ω)‖ ≤ Kt(ω)|x− y|, σ(t, 0) ≡ 0.
(1.5)

(i) Then, for any z ∈ R+ there exists a unique strong solution Z
z, also called global solution, of

the SDE(µ, σ) (1.4) (Zz
0 = z). Moreover, almost surely, the family of maps z 7→ Zz

t (ω), t ≥ 0 is

continuous and strictly increasing.

(ii) The range of the map z 7→ Z(., z) is ]0,+∞[ and Z(., z) is integrable near to 0 and to ∞.

More precisely,

a) When z goes to ∞, almost surely, for any ε ∈ (0, 1), uniformly on [0, T ] ,

lim
z→+∞

(
sup

0≤t≤T

Z(t, z)

z1+ε

)
= 0 and lim

z→+∞

(
sup

0≤t≤T

Z(t, z)

zε

)
= +∞, for any T (1.6)

b) When z goes to 0, for any ε ∈ (0, 1),

lim
z→0

(
sup

0≤t≤T

Z(t, z)

zε

)
= 0 and lim

z→0

(
sup

0≤t≤T

Z(t, z)

z1+ε

)
= +∞, for all T (1.7)

Comment: (i) A constant Lipschitz bound C corresponds to the classical framework of Lipschitz

SDE, and the assertion (i) is well-known.

(ii) The asymptotic behavior (ii) a) (near to infinity) is less known except in the domain of

stochastic flows, where several works and improvements are dealing with this behavior near of

infinity, but unlike Kunita [19] and Salah-Eldin & al [23], Imkeller & al [13] and Zongxia [21]

consider only the case of SDEs with deterministic coefficients .

(iii) The notion of "global solution" expresses that the solution (Zz
t ) exists for all t ≥ 0. Under

weaker assumptions, the solution may be defined only up to a finite lifetime ζ(z). More details

will be given in the next section.

Sufficient conditions on local characteristics of an Itô random field to be a progressive utility may

be exhibited.
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Corollary 1.3. Assume the framework of Theorem 1.1.

(i) If there exist random Lipschitz bounds Ct and Kt with
∫ T

0 Ctdt < +∞ and
∫ T

0 K2
t dt < +∞ for

any T , such that a.s, for any x, x′ > 0

{
|βx(t, x)− βx(t, x

′)| ≤ Ct|Ux(t, x) − Ux(t, x
′)|, limx→∞ βx(t, x) ≡ 0,

|γx(t, x) − γx(t, x
′)‖ ≤ Kt|Ux(t, x)− Ux(t, x

′)|, limx→∞ γx(t, x) ≡ 0.
(1.8)

then U is a progressive utility.

(ii) Moreover if (β, γ) are C2-regular random fields, Condition (1.8) is equivalent to

{
|βx(t, x) ≤ Ct |Ux(t, x)|, ‖γx(t, x)‖ ≤ Kt |Ux(t, x)|

|βxx(t, x)| ≤ C1
t |Uxx(t, x)|, ‖γxx(t, x)‖ ≤ K1

t |Uxx(t, x)|
(1.9)

Then µ(t, x) and σ(t, x) have linear growth with random bounds Ct and Kt respectively, and µx

and σx are spatially bounded by C1
t and K1

t

Proof. The condition (1.8) is equivalent to the Lipschitz condition in Theorem 1.2 applied to the

coefficients µ and σ in Equation (1.3).

Remark: In the following, we call stochastic flow any continuous and strictly monotonic solution Z

of SDEs. Contrary to the classical theory, herein we are interested only in the process Zt
def
= Zs=0,t

starting at time 0, and its inverse (Zt)
−1(y) = Z−1

s=0,t(y) := Zt,s=0, both considered in the forward

point of view. We don’t use the general flow associated with the SDE, defined as the family Zs,t(z),

solution of the equation starting from z at time s, and the flow stability, that is for r < s < t,

Zs,t(Zr,s(z)) = Zr,t(z), except in the paragraph concerning a pathwise dynamic programming

principle (p.32).

From Theorem 1.1, a large part of our study returns to study strictly monotonic one dimensional

random fields and their inverses. The inverse flow of Ux, (−Ũy) plays also a major role in the

study of the conjugate Ũ of a progressive utility U.

1.3 Dynamics of Convex Conjugate Progressive Utility

The study of the convex conjugate Ũ of a progressive utility U is based on the well-known identity

(Definition 1.3) Ũ(t, y) = U(t,−Ũy(t, y)) + yŨy(t, y), and request to know the dynamics of the

C2-random field U(t, x) along the random process −Ũy(t, y). For this, an extension of the classical

Itô’s formula, known as Itô-Ventzel’s formula is needed. We refer to Ventzel [37] and Kunita [19]

(Theorem 3.3.1) for different variants of this formula and theirs proofs.

Theorem 1.4 (Itô-Ventzel’s Formula Weak). Consider a K2
loc-Itô semimartingale F with local

characteristics (φ, ψ). For any continuous Itô semimartingale X, F (., X.) is a continuous Itô

semimartingale,

F (t,Xt) = F (0, X0) +

∫ t

0

φ(s,Xs)ds+

∫ t

0

ψ(s,Xs).dWs (1.10)

+

∫ t

0

Fx(s,Xs)dXs +
1

2

∫ t

0

Fxx(s,Xs)〈dXs〉+

∫ t

0

〈dFx(s, x), dXs〉|x=Xs

9



Comment The first line of the right hand side of the equation corresponds to the dynamics of the

process (F (t, x))t≥0 taken on (Xt)t≥0, when in the second line, the first two terms come from the

classical Itô’s formula. The last term represents the quadratic covariation between dFx(t, x) and

dXt, at x = Xt, which can be written as ψx(t,Xt).σ
X
t dt when the diffusion coefficient of X is the

vector σX
t .

Itô-Ventzel’s formula and monotonic change of variable will help us to establish the relationship

between local characteristics of U and U.

Theorem 1.5. Let U a progressive utility and Ũ its progressive convex conjugate utility assumed

to be K2
loc-Itô semimartingales with local characteristics (β, γ) and (β̃, γ̃).

(i) The dynamics of Ũ is driven by the non linear second order SPDE,

dŨ(t, y) = γ(t,−Ũy(t, y)).dWt + β(t,−Ũy(t, y))dt+
1

2
Ũyy(t, y)‖γx

(
t,−Ũy(t, y)

)
‖2 dt (1.11)

(ii) The local characteristics of the random field Ũy are given by,




γ̃y(t, y) = −γx(t,−Ũy(t, y))Ũyy(t, y)

β̃y(t, y) = −βx(t,−Ũy(t, y))Ũyy(t, y) +
1

2
∂y(

‖γ̃y(t, y)‖
2

Ũyy(t, y)
)

(1.12)

(iii) Let (µ, σ) be the random coefficients of the SDE associated with Ux and L̂σ,µ(f)(t, y) =
1
2∂y(‖σ(t, y)‖

2∂yf(t, y))−µ(t, y)∂yf(t, y) the adjoint elliptic operator in divergence form associated

with (µ, σ). Then the marginal conjugate utility Ũy is a monotonic solution of the Stochastic

Partial Differential Equation with initial condition ũy(y),

dŨy(t, y) = −∂y(Ũy)(t, y)σ(t, y).dWt + L̂σ,µ
t,y (Ũy)dt (1.13)

Observe that the derivability of the local characteristics (β̃, γ̃) of Ũ requires the existence of a

third derivative for U.

Proof. At first, the assumption "U and Ũ are K2
loc-semimartingales" implies, from Kunita [19]

Theorem 2.2 below, that (β, γ) and (β̃, γ̃) belong to the class ∈ K1
loc × K̃1

loc. Moreover Ux and Ũy

are Itô semimartingales with local characteristics (βx, γx) and (β̃, γ̃).

Let now apply the Itô-Ventzel formula to the regular random field F (t, x) = U(t, x) − y x and to

the semimartingale Xt = −Ũy(t, y). The following identities related to the change of variable will

be useful, F (t,−Ũy(t, y)) = Ũ(t, y), Uxx(t,−Ũy(t, y)) = −1/Ũyy(t, y).

(i) a) Observe that Fx(t,−Ũy(t, y)) = Ux(−Ũy(t, y))− y ≡ 0, so that the term in dX disappears.

Therefore, by Itô-Ventzel’s formula, the volatility random field γ̃ of Ũ is γ̃(t, y) = γ(t,−Ũy(t, y)),

and its derivative γ̃y(t, y) = −γx(t,−Ũy(t, y))Ũyy(t, y) is by assumption the volatility characteristic

of Ũy. Hence the covariation term is driven by 〈dFx(t, x),−dŨy(t, y)〉 = −〈γx(t, x).γ̃y(t, y)〉dt.

(i) b) The Itô-Ventzel formula is then reduced to,

dŨ(t, y) − β(t,−Ũy(t, y))dt− γ(t,−Ũy(t, y)).dWt

=
1

2
Uxx

(
t,−Ũy(t, y)

)
〈dŨy(t, y)〉 − 〈γx(t,−Ũy(t, y)).γ̃y(t, y)〉dt

=
1

2
Uxx(t,−Ũy(t, y))‖γ̃y(t, y)‖

2dt− Uxx(t,−Ũy(t, y))‖γ̃y(t, y)‖
2dt

= −
1

2
Uxx(t,−Ũy(t, y))‖γ̃y(t, y)‖

2dt =
1

2
Ũyy(t, y)‖γx

(
t,−Ũy(t, y)

)
‖2
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(ii) The dynamics of Ũy is obtained (by assumption and Theorem 2.2) by differentiating term

by term in the previous equation. The use of coefficients σ(t, y) = γx
(
t,−Ũy(t, y)

)
and µ(t, y) =

βx
(
t,−Ũy(t, y)

)
of the SDE associated with Ux allows us to express Ũy as the solution of a SPDE

driven by the adjoint second order operator in y, L̂σ,µ
t,y = 1

2∂y(‖σ(t, y)‖
2∂y)− µ(t, y)∂y .

dŨy(t, y) = −Ũyy(t, y)[µ(t, y)dt+ σ(t, y).dWt] + ∂y(
1

2
Ũyy(t, y)‖σ(t, y)‖

2)dt

= −∂yŨy(t, y)σ(t, y).dWt + L̂σ,µ(Ũy)(t, y)dt

The proof is achieved.

Remark Obviously, we are interested in the properties of the SDE(µ̃, σ̃) associated with the

monotonic random field Ũy when (β, γ) are C2-regular random fields. Given that σ̃(t,−z) =
γx(t, z)

Uxx(t, z)
and µ̃(t,−z) = 1

Uxx(t,z)

(
βx(t, z)−

1
2∂x

(‖γx(t,z)‖
2

Uxx(t,z)

))
, it is clear that these coefficients are

not globally Lipschitz and the previous results (Theorem 1.2) cannot be applied directly. So, we

report the study of this SDE in Section 2, Theorem 2.5, after introducing some additional tools.

2 Regular Random Fields and Stochastic Differential Equa-

tions

There are several difficulties in the definition of semimartingales F (t, x) depending on a parameter,

as explained in the books of Kunita [19] and Carmona & Nualart. [2], and their local characteristics

(φF , ψF ) (in short (φ, ψ) if there is no possible confusion).

(i) The first one is relative to the existence of continuous version of the random field F; according

to Kunita [19] (Theorem 3.1.2 p.75), this property is true when the local characteristics (φ, ψ) are

locally δ-Hölder for some δ > 0 by Kolmogorov’s criterion.

(ii) The second one is relative to differential properties: even if the random field F and its local

characteristics (φ, ψ) are differentiable, it is not enough (as is shown in H. Kunita [19]), to get that

the local characteristics of the derivative random field Fx are (φx, ψx).

(iii) Based on the study of Section 1, we also need under which assumptions on the coefficients of

a SDE, the solution is a regular monotonic random field with respect to its initial condition.

We start with a more precise definition of regular random field spaces than in Section 1 by

introducing Hölder properties. The motivation is find in the Kolmogorov’s continuity criterion

([19]Theorem 1.4.1).

Theorem 2.1. Let X(x), x ∈ D a random field with values in a Banach space B, where D is a

domain in R
d. Assume that there exist positive constants γ, C and αi, i = 1...d with

∑d
i=1 α

−1
i < 1,

satisfying,

E[‖X(x)−X(y)‖γ ] ≤ C
( d∑

i=1

‖xi − yi‖
αi
)
, for any x, y ∈ D (2.1)

(i) Then X(x) has a continuous modification X̃(x).

(ii) Let 0 < βi ≤ Aαi, i = 1...d arbitrary positive numbers where A = (α0 − d)/γα0), and

α−1
0 d =

∑d
i=1 α

−1
i . Then, for any hypercube H there exists a positive random variable K(ω) with

E[Kγ ] <∞ such that ‖X(x)−X(y)‖(ω) ≤ K(ω)
(∑d

i=1 ‖xi − yi‖
βi
)

for any x, y ∈ H, a.s..
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Recently, new criteria based on different norms, or chaining methods have been developed to

weaken the criterion. A interesting survey may be find in Scheutzow [35].

2.1 Regular Random Fields Spaces

We introduce a family of Sobolev type random semi-norms to control locally or globally the growth

of the random field and its derivatives.

Norms definition Let φ be a continuous R
k-valued progressive random field and let m be a

non-negative integer, and δ a number in (0, 1] . We need to control the asymptotic behavior in 0

and ∞ of φ, and the regularity of its Hölder derivatives when there exist. More precisely, let φ be

in the class Cm,δ(]0,+∞[), i.e. (m, δ)-times continuously differentiable in x for any t, a.s.

(i) For any subset K ⊂]0,+∞[, we define the family of random (Hölder) K-semi-norms





‖φ‖m:K(t, ω) = supx∈K
‖φ(t,x,ω)‖

x +
∑

1≤j≤m supx∈K ‖∂jxφ(t, x, ω)‖

‖φ‖m,δ:K(t, ω) = ‖φ‖m:K(t, ω) + sup
x,y∈K

‖∂mx φ(t, x, ω)− ∂mx φ(t, y, ω)‖

|x− y|δ
.

(2.2)

The case (m = 0, δ = 1) corresponds to the local version of the Lipschitz case used in Section 1.

When K is all the domain ]0,+∞[, we simply write ‖.‖m(t, ω), or ‖.‖m,δ(t, ω).

(ii) The first term of these random semi-norms differs slightly from the definition of Kunita semi-

norms (Equations (1) and (2) p.72) because instead of dividing by 1 + |x| we divide by x on the

first terms. This does not change Kunita’s results, but allows us to obtain reasonable behavior in

the neighborhood of x = 0 (Equation (1.7), Theorem 1.2) in addition to the traditional results in

the neighborhood of x = ∞.

Different spaces of regular random fields The previous semi-norms are related to the

spatial parameter. As in Definition 1.1, we add the temporal dimension in assuming these semi-

norms (or the square of the semi-norm) to be integrable in time with respect to the Lebesgue

measure on [0, T ] for all T . Then, as in Lebesgue’s Theorem, we can differentiate, pass to the

limit, commute limit and integral for the random fields. Calligraphic notation recalls that these

semi-norms are random.

(i) Km,δ
loc (resp. K

m,δ

loc ) denotes the set of all Cm,δ-random fields such that for any compact

K ⊂]0,+∞[, and any T ,
∫ T

0
‖φ‖m,δ:K(t, ω) <∞, (resp.

∫ T

0
‖ψ‖2m,δ:K(t, ω)dt <∞ ).

(ii) When these different norms are well-defined on the whole space ]0,+∞[, the derivatives (up

to a certain order) are bounded in the spatial parameter, with integrable (resp.square integrable)

in time random bound. In this case, we use the notations Km
b ,K

m

b or Km,δ
b ,K

m,δ

b .

2.2 Differentiability of Itô random fields

We shall discuss the regularity of a Itô semimartingale random field

F(t,x) = F(0,x) +

∫ t

0

φ(s,x)ds +

∫ t

0

ψ(s,x).dWs

in connection with the regularity of its local characteristics (φ, ψ). As in Section 1, by convention,

an Itô random field F is said to be a Km,δ
loc -semimartingale, whenever F (0, x) is of class Cm,δ,
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BF (t, x) =
∫ t

0 φ(s, x)ds is of class Km,δ
loc , and MF (t, x) =

∫ t

0 ψ(s, x).dWs is of class K
m,δ

loc . The

reference to Km,δ recall that F is a random field. 1 As in Kunita [19], we are concerned both by

the regularity of F from the regularity of its local characteristics (φ, ψ) (Theorem 3.1.2 ) and by

the regularity of (φ, ψ) from that of F(t,x) (Theorem 3.1.3). To be concise, we also give a sufficient

conditions ([19] Theorem 3.3.3) under which we can differentiate term by term the dynamics of an

Itô random field. This property is used in order to apply Itô-Ventzel’s formula.

Theorem 2.2 (Differential Rules). Let F be an Itô semimartingale random field with local char-

acteristics (φ, ψ), F (t, x) = F (0, x) +
∫ t

0 φ(s, x)ds +
∫ t

0 ψ(s, x).dWs

(i) If F is a Km,δ
loc -semimartingale for some m ≥ 0, δ ∈ (0, 1], its local characteristics (φ, ψ) are

of class Km,ε
loc ×K

m,ε

loc for any ε < δ.

(ii) Conversely, if the local characteristics (φ, ψ) are of class Km,δ
loc × K

m,δ

loc , then F is a Km,ε
loc -

semimartingale for any ε < δ.

(iii) In any cases, for m ≥ 1, δ ∈ (0, 1], the derivative random field Fx is an Itô random field with

local characteristics (φx, ψx).

(iv) Moreover, if F is a K1,δ
loc ∩ C2-semimartingale, for any Itô process X, F (., X.) is a continuous

Itô semimartingale satisfying the Itô-Ventzel formula (1.10).

As previously mentioned, we also need results on the existence and the regularity of one di-

mensional random fields which are also solutions of stochastic differential equations (SDE). The

spatial parameter in this case corresponds to the initial condition. Such random fields are also

called stochastic flows and are the main subject (in the multidimensional case) of the Kunita’s

book [19].

The question is now to make assumptions on the coefficients in place of local characteristics. An

example was given in Section 1, Theorem 1.2, where the global Lipschitz regularity of coefficients

is used in proving the existence of monotonic solution. Next proposition, ([19] Theorem 4.6.5),

frequently used in the sequel, extends these results to differentiability properties.

Proposition 2.3. Let µ be a real valued process and σ be a d-dimensional process of the the class

Km,δ
b and K

m,δ

b for some m ≥ 1, δ ∈ (0, 1]. Consider the following SDE(µ, σ),

dXt = µ(t,Xt)dt+ σ(t,Xt).dWt, X0 = x (2.3)

Then, in addition to the results of Theorem 1.2
(
(µ, σ) ∈ K0,1

b × K
0,1

b

)
on the existence and

uniqueness of global monotonic solution, we have:

(i) The unique solution X = (Xx
t , x > 0) is a Km,ε

loc semimartingale for any ε < δ. The inverse

X
−1 of X is also of class Cm.

(ii) X is strictly increasing in x, and its derivative Xx is solution of a linear equation, with

1 Note, in the case of general semimartingales F studied by Kunita, the notion of local characteristics makes reference

to the triplet (φ(t, x), a(t, x, y), At) for x, y > 0, where the joint quadratic variation of F (t, x), F (t, y) satisfy the relation

< F (t, x), F (t, y) >=
∫

t

0
a(s, x, y)dAs with the process A is F−adapted increasing and continuous. Here, as there is a

finite number of Brownian motions, At = t and a(t, x, y) := ψ(t, x).ψ(t, y) where, as before, the "." denote the inner

scalar product. From this, all assumptions on the matrix ”a” (in Kunita) are adapted to the present framework and

replaced by our equivalent hypothesis on the diffusion characteristic vector ψ.
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spatially bounded stochastic parameters (µx(t,X
x
t ), σx(t,X

x
t )) given by

dXx(t, x) = Xx(t, x)
[
µx(t,X

x
t )dt+ σx(t,X

x
t ).dWt

]
, Xx(0, x) = 1 (2.4)

1/Xx is solution of the same kind of linear equation

dZt = Zt

[
(−µx(t,X

x
t ) + ||σx(t,X

x
t )||

2)dt− σx(t,X
x
t ).dWt

]
(2.5)

Then, Xx and 1/Xx are Km−1,ε
loc -semimartingales.

(iii) The local characteristics of X, λX(t, x) = µ(t,Xx
t ) and θX(t, x) = σ(t,Xx

t ) have only local

properties and belong to Km,ε
loc ×K

m,ε

loc for any ε < δ.

Remark . This technical result shows clearly the interest of using Hölder property: the solution

is fractionally less regular than the coefficients (going from δ in ε < δ). Otherwise, if we are only

interested with processes of class Km (m integer) without worrying about the Hölder’s dimension,

then we will lose a hole order in the regularity: instead of solution of class Km,ε
loc , we will only

obtain solution of class Km−1
loc .

In the last proposition, we have made global regularity assumptions on the coefficients (µ, σ)

in order to prove that the SDE (2.3) has a regular, non-exploding (global), strictly monotonic

solution X . Observe that the solution itself as random field is only in Km,ε
loc in general. In Section

1, Paragraph 1.3, we have shown that even if the progressive marginal utility satisfies a SDE(µ, σ)

with global regularity, the SDE(µ̃, σ̃) satisfied by the inverse −Ũy of Ux, assumed to be an Itô

process, has only local regularity. So, we are also concerned with SDE whose the coefficients are of

class K0,1
loc×K

0,1

loc or Km,δ
loc ×K

m,δ

loc , m ≥ 1, δ ∈]0, 1]. Then, the SDE can not have global solution and

explosion can occur at finite time ζ(x). Nevertheless, several properties are maintained as shown

in [19] Theorems 4.7.1 and 4.7.2.

Theorem 2.4 (Local assumptions). Let us consider a SDE with only locally Lipschitz coefficients(
(µ, σ) ∈ K0,1

loc ×K
0,1

loc

)
.

(i) For any initial condition x, the SDE has a unique maximal solution (Xx
t ) up to an explosion

time ζ(x), that is on [0, ζ(x)),

dXx
t = 1{t<ζ(x)}µ(t,X

x
t )dt+ 1{t<ζ(x)}σ(t,X

x
t )dWt, a.s. (2.6)

(ii) For given t, as function of x, Xx
t is defined on its domain Dt = {x : ζ(x) > t}, with finite

values on its range Rt(ω) = {Xx
t (ω);x ∈ Dt(ω)}. Furthermore, x 7→ Xx

t : Dt → Rt is a continuous

strictly monotonic random field with continuous inverse X−1
t : Rt → Dt.

(iii) (Xx
t ) is a global solution (Theorem 1.2) if and only if the explosion time ζ(x) is equal to ∞

for all x ∈ R
+ = [0,∞) a.s., (or equivalently if for any time t, the domain Dt is the whole space

R
+ a.s.). Hence the range Rt is also the whole space R

+ for any t.

(iv) Moreover, if (µ, σ) ∈ Km,δ
loc ×K

m,δ

loc (m ≥ 1, δ ∈ (0, 1]) Xt(.) is of class Cm,ε, ε < δ on Dt.

(v) If (Xx
t ) is a global solution, then all assertions of Proposition 2.3 hold true.

We recall the proof of Kunita to present the truncation method which is the base of many proofs

when only local properties hold true.
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Proof. (i) Following Kunita, we shall apply the method of truncation on R
+. For each positive

integer N , take a C∞-function ψN (x), x ∈ R
+ such that ψN (x) = 1 if x ≤ N , 0 ≤ ψN (x) ≤ 1

if N ≤ x ≤ N + 1 and ψN (x) = 0 if x > N . Define µN(t, x) = µ(t, x)ψN (x) and σN (t, x) =

σ(t, x)ψN (x) which belong to Lm,δ
b and K

m,δ

b . Therefore, the SDE(µN , σN ) has a unique solution

XN of class Km,ǫ (ǫ < δ) satisfying assertions of Proposition 2.3. Let us introduce the family

of stopping times for each x, ζN (x) := inf{t : XN(t, x) ≥ N}. By uniqueness, for M < N the

solutions XM
. (x) and XN

. (x) coincide on [0, ζM (x)). Then, the family ζN (x) is increasing with

limit ζ(x) := limN→∞ ζN (x). We can define Xt(x), t < ζ(x) by Xt(x) = XN
t (x) if t < ζN (x). It

is a maximal solution of SDE(µ, σ) starting at x at t = 0.

(ii) We shall prove that the above X.(x) is a continuous strictly increasing flow. Take any sample

ω such that XN
t (ω, .) defines a continuous map strictly increasing in x for any N . Probability of

the set of all such samples is 1. We first note that each ζN (ω, x) is lower semicontinuous in x i.e.

DN
t (ω) = {x : ζN (ω, x) > t} is open for any t > 0, since on this set XN

s (ω, x) < N for all s ≤ t.

Hence, the same inequality holds for any x′ in the neighborhood of x. Now since ζ(ω, x) is the upper

limit of ζN (ω, x) it is also lower semicontinuous. Set Dt(ω) = ∪NDN
t (ω). Since X(t, x) = XN(t, x)

holds on DN
t (ω), the map X(t, x) : Dt(ω) → R

+ is continuous strictly increasing with continuous

inverse.

(iii)The differentiability properties are showed similarly by truncation techniques, using derivability

of processes XN .

Comment Recently, several papers address the question: under which minimal assumptions on

the SDE’s coefficients, the solution is non-explosive? For example, when the coefficients µ and

σ are a deterministic functions independent of the time, the property holds true under global

log-Lipschitz type conditions as it is showed in Zongxia [20] and Fang [12]. But these new results

and many others can not be applied directly to our study because the coefficients of SDE’s we are

concerned are structurally stochastic.

Local regularity on SDEs coefficients appears as a kind of minimal assumption to ensure the

regularity of a global solution if there exists. Because of its importance in the sequel, we give a

name to this class of SDE’s.

Definition 2.1. A SDE(µ, σ) is said to be of class Sm,δ if

a) the coefficients (µ, σ) are in the spaces (Km,δ
loc ,K

m,δ

loc ))

b) the maximal solution X is non explosive.

By Theorem 2.4, the unique solution X is strictly monotonic with range [0,∞) and of class

Km,ε
loc , ε < δ.

Classical examples of Sm,δ SDEs are given by SDE(µ, σ) when (µ, σ) are in the spaces (Km
b ,K

m

b ),

or even in (K0
b ,K

0

b) ∩ (Km,δ
loc ,K

m,δ

loc ). Moreover, in these last two cases, the asymptotic behavior of

the solution is given by Theorem 1.2, Equation (1.6) and Equation (1.7).

2.3 Solvable SPDEs via SDEs

Dynamics of inverse flow of regular SDE solution In the utility framework, under

the strong assumptions of Theorem 1.5, we have shown that Ũy, the inverse flow of (−Ux(t, x)),

is solution of a SPDE and a SDE(µ̃, σ̃) simultaneously. We want to relax the a priori assumption

15



that the inverse flow Ũy is an Itô random field. So, we proceed differently, by starting from the

maximal solution of the local SDE (µ̃, σ̃) with explosion time ζ(x), and by verifying that up to

ζ(x) this process is the inverse flow of the solution of the SDE(µ, σ). By an easy argument base

on the uniqueness of non-explosive solution of the SDE(µ, σ), we deduce ζ(x) = ∞, a.s.. Some

regularity on the SDE(µ, σ) is required to conduct calculation and conclude.

Theorem 2.5 (Inverse flow SDE). Let (Xx
t ) be the monotonic solution of a SDE(µ, σ) of class

Sm,δ,m ≥ 3, δ ∈]0, 1], so that as random field (Xx
t ) and its local characteristics (λ(t, x) = µ(t,Xx

t ))

and (θ(t, x) = σ(t,Xx
t )) are of class Km,ε

loc and Lm,ε
loc ×K

m,ε

loc for any 0 < ε < 1.

We are concerned with the SDE(µ̃, σ̃)

dξt = −
1

Xx(t, ξt)

[(
λ(t, ξt)−

1

2
∂x

(‖θ‖2
Xx

)
(t, ξt)

)
dt+ θ(t, ξt).dWt

]
, ξ0 = z, (2.7)

where σ̃(t, z) = −
θ(t, z)

Xx(t, z)
and µ̃(t, z) =

1

Xx(t, z)

(1
2
∂x

(‖θ‖2
Xx

)
(t, z)− λ(t, z)

)
.

(i) The SDE(µ̃, σ̃) is of class Sm−2,ε(0 < ε < δ) and its unique monotonic solution ξz is the

inverse flow X−1 of X.

(ii) Consequently, the inverse X−1 of X is a semimartingale and belongs to the class Km−2,ε
loc ∩Cm.

Proof. The proof is in several steps, by first proving the local regularity of the coefficients (µ̃, σ̃),

and then the existence of a monotonic solution ξz up to a explosion time ζ(z). The main step is

then to prove that ζ(z) = ∞ a.s. by showing that locally ξz is the inverse X−1.

(i) Since X ∈ Km,ε
loc and (λ, θ) ∈ Km,ε

loc × K
m,ε

loc , by Proposition 2.3 1/Xx ∈ Km−1,ε
loc and so

(λ/Xx, θ/Xx) ∈ Km−1,ε
loc ×K

m−1,ε

loc and ∂x(
‖θ‖2

Xx
) ∈ Km−2,ε

loc . Consequently the coefficients (µ̃, σ̃) are

of class Km−2,ε
loc ×K

m−1,ε

loc .

(ii) Since the coefficients (µ̃, σ̃) satisfy the assumptions of Theorem 2.4, the SDE(µ̃, σ̃) has a

unique maximal solution ξz , up to an explosion time ζ(z).

a) We claim that the solution ξzt is the inverse flow X−1(t, z) for t ∈ [0, ζ(z)) of the SDE(µ, σ)

monotonic solution Xx
t := X(t, x). Since by assumption X is of class Km,ǫ

loc and its local character-

istics (λ, θ) are of class (λ, θ) ∈ Km,ε
loc ×K

m,ε

loc (m ≥ 3, ǫ ∈]0, δ[), we can apply Itô-Ventzel’s formula

to X(t, ξzt ) up to the time ζ(z). Then, on [0, ζ(z)), by using the short notation ξ in place of ξz,

dX(t, ξt) =
[
θ(t, ξt) +Xx(t, ξt)

−θ(t, ξt)

Xx(t, ξt)

]
.dWt

+
[
λ(t, ξt) +Xx(t, ξt)

(
−

1

Xx(t, ξt)

(
λ(t, ξt)−

1

2
∂x

(‖θ‖2
Xx

)
(t, ξt)

))]
dt

+
[1
2
Xxx(t, ξt)

(‖θ‖2
X2

x

)
(t, ξt) +

(
θx(t, ξt).

(−θ
Xx

)
(t, ξt)

]
dt

=
[
0
]
.dWt +

[1
2
∂x

(‖θ‖2
Xx

)
(t, ξt)−

1

2

( 1

Xx
∂x‖θ‖

2
)
(t, ξt))−

1

2

(
∂x(

1

Xx
)‖θ‖2

)
(t, ξt)

]
dt

= 0

b) Then the continuous (in time) process X(t, ξzt ) is constant a.s. on [0, ζ(z)). At time t = ζ(z) <

∞, ξzt = ∞ and X(t,∞) = ∞. On the other hand, by continuity, X(t, ξzt ) = z if t = ζ(z) < ∞.

To avoid contradiction, necessarily ζ(z) = ∞, a.s..
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As in Theorem 1.5, we can also characterize the inverse process in terms of monotonic solution of

non-linear stochastic partial differential equation (SPDE). This point of view is well-suited to the

study of consistent dynamic utilities developed in the next sections.

Solvable SPDEs via SDEs Now we show how to solve some non-linear SPDEs via SDEs. A

first link is obtained by the transformation of the SDE (2.7) into a SPDE. Recall that conditions

of type Sm,δ are related to the coefficients of the SDE, when conditions of type Km,δ
loc are related

to the local characteristics of the solution.

Theorem 2.6 (SPDE point of view). Let us consider a SDE (µ, σ) of class Sm,δ with m ≥

2, δ ∈ (0, 1], and its adjoint operator L̂σ,µ
t,z = 1

2∂z(‖σ(t, z)‖
2∂z)− µ(t, z)∂z. Denote by X its unique

solution.

(i) For m ≥ 3, the inverse flow X−1 = ξX of X is a strictly monotonic solution of class Km−2,δ
loc ∩Cm

of SPDE(L̂σ,µ,−σ∂z), with initial condition ξ0(z) = z,

dξ(t, z) = −ξz(t, z)σ(t, z).dWt + L̂σ,µ
t,z (ξ)dt (2.8)

(ii) Conversely, (m ≥ 2), let ξ be a K1,δ
loc ∩ C2-regular solution of SPDE(L̂σ,µ,−σ∂z) (2.8). Then,

ξ(t,X(t, x)) ≡ x and ξ is the strictly monotonic inverse flow X−1 := ξX of X. Moreover, unique-

ness holds true for the SPDE(L̂σ,µ,−σ∂z) in the class of K1,δ
loc ∩ C2-regular solutions.

Comment When the coefficients (µ, σ) of the SDE are non random, in a multi-dimensional case,

the SPDE(L̂σ,µ,−σ∂z) is known as the stochastic transport equation in Zhang [40] or in Constantin

and Iyer [3].

Proof. (i) According to notations of Theorem 2.5, since ξX is the inverse of X , we have:

λ(t, ξX(t, z)) = µ
(
t,X

(
t, ξX(t, z)

))
= µ(t, z), ξXz (t, z) =

1

Xx(t, ξX(t, z))
,

θ(t, ξX(t, x)) = −
σ
(
t,X

(
t, ξX(t, z)

))

Xx(t, ξX(t, z))
= −ξXz (t, z)σ(t, z)

which easily leads to µ̃(t, ξX(t, z)) = L̂σ,µ
t,z (ξ

X)(t, z). So ξX is solution of the SPDE (2.8).

(ii) Let now turn to the converse implication by starting from a given monotonic solution ξ of

class K1,δ
loc ∩ C2 of the SPDE: dξ(t, z) = −ξz(t, z)σ(t, z).dWt + L̂σ,µ

t,z (ξ)dt.

a) From Theorem 2.2, ξ is regular enough to use Itô-Ventzel’s formula with the solution X(t, x) =

Xx
t of the SDE(µ, σ) to compute the dynamics of H(t, x) = ξ(t,X(t, x)). In the next equation, we

do not recall the parameter x.

dHt =
(
− ξz(t,Xt)σ(t,Xt)− ξz(t,Xt)σ(t,Xt)

)
.dWt

+
(
L̂σ,µ(ξ) +

1

2
ξzz‖σ‖

2 + µ ξz + ∂z(−ξzσ).σ
)
(t,Xt)dt

=
(
ξzz‖σ‖

2 +
1

2
ξz(∂z‖σ‖

2)− ∂z(ξz)‖σ‖
2 −

1

2
ξz(∂z‖σ‖

2)
)
(t,Xt)dt

= 0

The random field H(t, x) = ξ(t,X(t, x)) is constant in time and equal to its initial condition x.

This finishes the proof that X is the inverse flow of ξ.
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b) Since SDE(µ, σ) is of Sm,δ, there is only one solution X . Then any "regular" solution ξ of the

SPDE is the inverse of X and then is unique.

Next result, useful for applications, is a slight extension of the previous one. It establishes a con-

nection between a more general second order SPDE and two SDEs. As discussed in the following,

this connection is in the core of the study of consistent dynamic utilities. It is based on the ob-

servation that if ξ is the inverse of SDE(µX , σX) monotonic solution X and if φ ∈ C2 a regular

monotonic function, the process X(., φ(x)) satisfies the same SDE(µX , σX), and so its inverse

φ−1(ξ.(z)) satisfies the same SPDE than ξ. The extension, given in the following result describes

the dynamics of compound processes Y (t, ξ(t, z)) and ξ(t,X(t, x) for regular Itô semimartingales

Y and X and show how to solve the associated SPDEs.

Theorem 2.7. Let X be a solution of SDE(µX , σX) and ξ a K1,δ
loc ∩ C2-regular solution (δ > 0) of

the SPDE(L̂X ,−σX∂z), where L̂X
t,z = L̂σX ,µX

t,z = 1
2∂z(‖σ

X(t, z)‖2∂z)− µX(t, z)∂z.

(i) Let Y be a solution of class K1,δ
loc ∩ C2 of SDE(µY , σY ) with initial condition φ ∈ C2. Then the

random field Y (t, ξ(t, z)) = G(t, z) evolves as,

dG(t, z) = σY (t, G(t, z)).dWt + µY (t, G(t, z))dt

− ∂zG(t, z)σ
X(t, z)

[
dWt + σY

y (t, G(t, z))dt] + L̂X
t,z(G)(t, z))dt (2.9)

(ii) Let X be a solution of SDE(µ, σ) with initial condition ψ(x). Denote by ∆µ(t, z) := µX(t, z)−

µ(t,Xt) and ∆σ(t, z) := σX(t, z)− σ(t,Xt). Then the random field ξ(t,Xt) evolves as

dξ(t,Xt) = −ξz(t,Xt)
[(
σX(t,Xt)− σ(t,Xt)

)
.(dWt − σx(t,Xt)dt)

]
+ L̂∆(ξ)(t,Xt). (2.10)

(iii) Solvable SPDE: Let G be a solution of class K1,δ
loc ∩ C2-regular of the SPDE (2.9); then the

process G(t,Xt(x)) with initial condition G(0, ψ(x)) evolves as

dG(t,Xt) = σY (t, G(t,Xt)).dWt + µY (t, G(t,Xt))dt (2.11)

− Gz(t,Xt)
(
σX − σ)(t,Xt).

[
dWt + (σY

y (G)− σx)(t,Xt)dt
]
+ L̂∆(G)(t,X t)dt

(iv) In particular, G(t,Xt(φ(y)) is a solution of the SDE(µY , σY ) with initial condition φ(y). If

uniqueness holds true for this equation, then G(t, z) = Yt(t, ξ(t, z)) and uniqueness also holds true

for the SPDE (2.9).

Note the different nature of assumptions (which may be equivalent) in the assertions of this theo-

rem. In (i), we assume that the coefficients are regular enough such that Y satisfies the Itô-Ventzel

assumptions and such that the inverse ξ of X is an Itô semimartingale, while in (ii) we only sup-

pose the existence of X (without regularity), but in return we assume the existence of a smooth

solution G of the SPDE (2.9).

Otherwise, remark that the first line in (2.9), associated with Y , is purely the SDE part of the

dynamics of G while the second corresponds to the partial differential part. This writing suggests

a simple method for solving such equations. Indeed, when considering any SPDE, if we are able

to rewrite it in the form (2.9), then we can hope solve it (if regularity of the identified coefficients

holds) by associating two SDEs, and then by composing with the solution associated with the

partial differential part (X in our result); this is the aim of assertions ((iii), (iv)).
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Proof. (i) The proof is based on the Itô-Ventzel formula, applied to Y as random field, and ξ(t, z)

as semimartingale; that leads to

dG(t, z) = µY (t, G(t, z))dt+
(
σY (t, G(t, z))− Yy(t, ξ(t, z))ξz(t, z)σ

X(t, z)
)
.dWt

+
1

2
Yyy(t, ξ(t, z))‖ − ξz(t, z)σ

X(t, z)‖2 +Xx(t, ξ(t, y))L̂
Z
t,z(ξ)dt

+ < dYy(t, y), dξ(t, z) > |y=ξ(t,z)

= µY (t, ξ(t, z))dt+
(
σY (., G)− Yy(., ξ)ξzσ

X
)
(t, z).dWt

+
[1
2
Yyy(., ξ)‖ξzσ

X‖2 + Yy(., G)L̂
X(ξ)−Gzσ

Y
y (., G).σX

]
(t, z)dt

Now using identity ∂z
(
Yy

(
t, ξ(t, z)

))
= Yyy(t, ξ(t, z))ξz(t, z) and Gz(t, z) = Yy(t, ξ(t, z))ξz(t, z), it

follows, at first, that

Yyy(., ξ)‖ − ξz σ
X‖2 + Yy(., ξ)∂z

(
‖σX‖2ξz

)
= ∂z

(
Yy(., ξ)

)(
ξz‖σ

X‖2
)
+ Yy(., ξ)∂z

(
‖σX‖2ξz

))

= ∂z
(
Yy(., ξ)ξz‖σ

X‖2
)
= ∂z

(
‖σX‖2Gz

)

Second, by injecting this identity in the dynamics of G, we obtain

dG(t, z) =
(
σY
t (G(t, z))−Gz(t, z)σ

X
t (z)

)
.dWt

+
(
L̂X
t,z(G) + µY

t (G(t, z))− ∂z
(
σY (t, G(t, z)).σX(t, z)

))
dt

In a simpler formulation, that is equivalent to,

dG(t, z) = σY (t, G(t, z)).dWt + µY (t, G(t, z))dt

− ∂zG(t, z)σ
X(t, z)

[
dWt + σY

y (t, G(t, z)] + L̂X(G)(t, z)dt

In the particular case, where Y (t, x) = F (x), µY ≡ 0 and σY ≡ 0 and the result is obvious.

(ii) Again, Itô-Ventzel calculus yields to

dξ(t,Xt) =
[1
2
∂y

(
||σX(t, y)||2ξ(t, y)

)
(t,Xt)− µX(t,Xt)ξz(t,Xt)

]
dt

+ ξz(t,Xt)σ(t,Xt)dWt +
[
ξz(t,Xt)µ

X(t,Xt) +
1

2
ξzz(t,Xt)||σ(t,Xt)||

2

−
(
ξyy(t,Xt)σ

X(t,Xt) + ξy(t,Xt)σ
X
z (t,Xt)

)
.σ(t,Xt)

]
dt

− ξz(t,Xt)σ
X(t,Xt)dWt

and by arranging the terms properly we get

dξ(t,Xt) = −ξz(t,Xt)
(
σX(t,Xt)− σ(t,Xt)

)
dWt − ξz(t,Xt)

(
µX(t,Xt)− µ(t,Xt)

)
dt

+
1

2
ξzz(t,Xt)

(
||σ(t,Xt)||

2 + ||σX(t,Xt)||
2 − 2σX(t,Xt).σ(t,Xt)

)
dt

+ ξz(t,Xt)
(
σX(t,Xt)− σ(t,Xt)

)
.σX

z (t,Xt)dt

= −ξz(t,Xt)
(
σX(t,Xt)− σ(t,Xt)

)
dWt − ξz(t,Xt)

(
µX(t,Xt)− µ(t,Xt)

)
dt

+
1

2
ξzz(t,Xt)||σ(t,Xt)− σX(t,Xt)||

2dt

+ ξz(t,Xt)
(
σX(t,Xt)− σ(t,Xt)

)
.σX

x (t,Xt)dt
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Subsequently, by introducing new coefficients ∆µ and ∆σ as follows:

∆µ(t, y) := µX(t, y)− µ(t,Xt) et ∆σ(t, y) := σX(t, y)− σ(t,Xt)

the last line becomes ∂y
(
||∆σ(t, y)||2ξz

)
(t,Xt) which yields to the desired formula:

dξ(t,Xt) = −ξz(t,Xt)
(
σX(t,Xt)− σ(t,Xt)

)
dWt + L̂∆(ξ)(t,Xt)dt

= −ξz(t,Xt)σ̂(t,Xt)dWt + L̂∆(ξ)(t,Xt)dt

(iii)The properties of the random field G(t,Xt) are obtained once again from Itô-Ventzel’s formula,

in a very similar way than for ξ(t,Xt), since the second line of Equation (2.9) has the same form

than the SPDE of ξ except that the Brownian dW is replaced by dW. + σY
x (G)dt. So we obtain

Equation (2.11).

Back to Progressive Utilities Let now come back to progressive utilities U. The results

of this section will be of great use in the rest of this work, especially when we focus on dynamic

optimal portfolios. We give sufficient conditions on progressive dynamic utilities so that assump-

tions of Theorem 1.1 are satisfied, in particular that the inverse −Ũy of Ux is a semimartingale.

These assumptions are made on the coefficients of the intrinsic SDE(µ, σ) and not on the local

characteristics (β, γ), since essential results are obtained from SDEs properties.

Theorem 2.8. Consider SDE(µ, σ) of class S1,δ, δ ∈ (0, 1] and let Z be its unique monotonic

solution of class K1,ε
loc for any 0 < ε < δ . For any deterministic utility function u s.t. ux is

integrable near to x = 0, define U(t, x) =
∫ x

0
Zt(ux(z))dz. Then

(i) U(t, x) is an Itô semimartingale with local characteristics β(t, x) =
∫ x

0 µ(t, Zt(ux(z))dz and

γ(t, x) =
∫ x

0
σ(t, Zt(ux(z))dz.

(ii) U is a progressive utility with derivative Ux(t, x) = Zt(ux(x)). Moreover, U is a K2,ε
loc-

semimartingale for any 0 < ε < δ, with local characteristics (β, γ) are of class K2,ε
loc × K

2,ε

loc for

any ε < δ.

(iii) If the SDE(µ, σ) is of class Sm,δ, (m ≥ 3, δ ∈ (0, 1]), then, the progressive convex conjugate

utility Ũ of U is a Km−1,ε
loc -semimartingale.

− Its derivative Ũy = −(Ux)
−1 is a Km−2,ε

loc -semimartingale, solution of the SDE(σ̃, µ̃) in Sm,ε for

any 0 < ε < δ, where

σ̃(t,−z) =
γx(t, z)

Uxx(t, z)
, µ̃(t,−z) =

1

Uxx(t, z)

(
βx(t, z)−

1

2
∂x

(‖γx(t, z)‖2
Uxx(t, z)

))
(2.12)

− Assumptions of Theorem 1.5 are satisfied and the dynamics of Ũ and Ũy are,

dŨ(t, y) = γ(t,−Ũy(t, y)).dWt + β(t,−Ũy(t, y))dt+
1

2
Ũyy(t, y)‖σt(y)

)
‖2 dt

dŨy(t, y) = −Ũyy(t, y)σ(t, y).dWt +
(1
2
∂y

(
‖σ‖2∂y(Ũy)

)
(t, y)− µ(t, y)∂y(Ũy)(t, y))

)
dt

Concluding remarks on these two sections Having introduced the progressive utilities and

their convex conjugate in Section 1, we have studied in detail conditions ensuring concavity and

Inada conditions, by using that Ux is a monotonic solution of a "regular" SDE. But the main
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result given in Section 2 concerns the inverse flow ξ of the monotonic solution X of a SDE, and the

sufficient conditions on the coefficients ensuring the semimartingale property of the inverse flow ξ.

The introduction of the adjoint SPDE satisfied by ξ and the result of Theorem 2.7 are a powerful

tool for that follows. We turn now to the study of additional condition called consistency property

that we introduce in the next section.

3 Consistent Dynamic Utilities

3.1 Definition of Consistent Dynamic Utilities

The notion of progressive utility is very general and should be specified so as to represent more

realistically the dynamic evolution of the individual preferences of an investor in a given financial

market. The utility input provides a differential constraint on the risk attitude of the investor in

terms of preference for higher or lower wealth, through the local risk tolerance τU (x, t) = − Ux(x,t)
Uxx(x,t)

,

and, that we call, utility market risk premium ηU (t, x) = γx(t,x)
Ux(x,t)

, revealing the interplay between

the investment universe and the risk attitude.

The market input is described by a vector space X of portfolios incorporating feasibility

and trading constraints and high liquidity. Several interpretations of the subclass of admissible

portfolios can be done. The first one, proposed by Musiela and Zariphopoulou is that this class

describes all investment universe. The second one is as follows: the market inputs may be viewed as

a calibration universe, and the class X as a test-class of processes. The existence of an admissible

portfolio giving the maximal satisfaction to the investor, which will be preserved at all times in the

future, explains the martingale property in the definition below. On the other hand if the strategy

in X fails to be optimal then it is better not to make investment. The optimal portfolio may

be viewed as a benchmark for the investor using the utility U . Once his consistent progressive

utility is defined, an investor can then turn to a portfolio optimization problem in a larger financial

market or to calculate indifference prices. Following [25, 29], a X -consistent dynamic utility is

defined as follows.

Definition 3.1 (X -consistent dynamic utility). A X -consistent dynamic utility U = {U(t, x); t ≥

0, x > 0} is a progressive utility with the following additional properties:

Consistency with the test-class: For any admissible wealth process X ∈ X ,

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t a.s.

Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal wealth

process X∗ ∈ X such that X∗
0 = x, and for all s ≤ t,

U(s,X∗
s ) = E(U(t,X∗

t )/Fs) ∀s ≤ t a.s.

In short for any admissible wealth X ∈ X , U(., X.) is a positive supermartingale and a martingale

for the optimal-benchmark wealth X∗.

Remark 3.1. (i) The martingale property can be weakened by the following localization proce-

dure, if there exists a sequence of increasing stopping times Tn(X0) ր ∞ on the random interval
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[0, Tn(X0)], U(., X∗
. ) is a martingale.

(ii) Note that the initial condition U(0, .) = u(.) is part of the definition, in particular u is a

deterministic utility function which is fixed a priori independently of the given financial market

and in particular of X .

(iii) So a X -consistent dynamic utility is a constant in time deterministic function only when the

test-portfolios are local martingales. In this case, the optimal strategy is to do nothing.

(iv) Our definition differs slightly from the original ([25]) since we do not require that the wealth

processes X are discounted. This variation offers more options and allows us to study the in-

variance of the class of dynamic utilities by change of numeraire. In any case, there is no fixed

horizon.

3.2 The investment universe

We consider a incomplete Itô market, equipped with a n-standard Brownian motion, W with

Brownian coordinates (W1,W2, ...,Wn)
T (n ≥ d) and characterized by a short rate (rt) and a

n-dimensional risk premium vector (η). All these processes are defined on the filtered probability

space (Ω,Ft≥0,P) satisfying usual assumptions, with minimal integrability assumptions. Since

we only need to know the class of admissible portfolios, we immediately give the mathematical

definition of this class, based on the self-financing equation without arbitrage. The market incom-

pleteness is modeled as in Lehoczky, Karatzas, Shreve & Xu [16]. The notations are the same

than in Karatzas and Shreve [17] where the interested reader may be find all complementary

information.

Definition 3.2 (Test portfolios). (i) A positive Itô semimartingale Xκ is called a portfolio, or

admissible wealth process if

dXκ
t = Xκ

t

[
rtdt+ κt.(dWt + ηtdt)

]
, κt ∈ Rt. (3.1)

where κ is a n-dimensional vector, progressive such that
∫ T

0 ‖κt‖
2dt < ∞, a.s., measuring the

volatility vector of the wealth Xκ.

(ii) The family of admissible wealth processes, also called test portfolios is defined by some re-

strictions on the volatility vector κ; we assume there exists progressive family of vector spaces (Rt)

such that for any t, κt ∈ Rt.

(iii) The family of test portfolios is denoted by X . It may be easy to verify that X is convex.

The following short notations will be used extensively. Let R be a vector subspace of Rn. For any

x ∈ R
n, xR is the orthogonal projection of the vector x onto R and x⊥ is the orthogonal projection

onto R⊥.

The existence of a risk premium η is a possible formulation of the absence of arbitrage opportunity.

Since from (3.1), the impact of the risk premium on the wealth dynamics only appears through

the term κt.ηt for κt ∈ Rt, there is a "minimal" risk premium (ηRt ), the projection of ηt on the

space Rt (κt.ηt = κt.η
R
t ), to which we refer in the sequel. Moreover, the existence of ηR is not

enough to insure the existence of equivalent martingale measure, since in general we do not know if

the exponential local martingale LηR

t = exp(
∫ t

0 −ηRs .dWs −
1
2

∫ t

0 |η
R
s |2 ds) is a uniformly integrable

martingale, density of an equivalent martingale measure. Nevertheless, we are interested into the
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class of the so-called state price density processes Y ν (taking into account the discount factor)

who will play the same role for the dynamic conjugate utility, than the wealth processes Xκ for

the dynamic utility U .

Definition 3.3 (State price density process). (i) A Itô semimartingale Y ν is called a state price

density process if for any wealth process Xκ, κ ∈ R, Y νXκ is a local martingale. It follows that

Y ν satisfies,

dY ν
t = Y ν

t [−rtdt+ (νt − ηRt ).dWt], νt ∈ R⊥
t , Y ν

0 = y (3.2)

(ii) Denote Y the convex family of all state density processes Y ν where ν ∈ R⊥ and observe that

Y ν is the product of Y 0 (ν = 0) by the density martingale Lν
t = exp

( ∫ t

0
νs.dWs − 1/2

∫ t

0
|νs|

2ds
)
.

3.3 Consistent Dynamic Utility and Portfolio Optimization

X -consistent dynamic utility and HJB constraint In Paragraph 1.2, more precisely

in Theorem 1.1, we have characterized progressive utilities in terms of their local characteristics

(β, γ) as well as in terms of the parameters (µ, σ) of the intrinsic SDE (1.3) satisfied by Ux. In this

section, we are concerned with the constraint induced on the drift characteristic β of the dynamic

utility by the consistency property. The consistency property plays the same role that the dynamic

programming principle in the classical theory of backward expected utility maximization, (see for

example H. Pham [30]). Thanks to Itô-Ventzel’s formula (Theorem 1.4), constraints on the local

characteristics (β, γ) of U lead to non standard Hamilton-Jacobi-Bellman Stochastic PDE. As in

the classical case, the main parameters of the SPDE are the risk tolerance process and the utility

market risk premium.

Definition 3.4 (Utility risk tolerance and risk premium). In this financial framework, the utility

risk tolerance random field is defined by τU (t, x) = − Ux(t,x)
Uxx(t,x)

and the utility risk premium random

field by ηU (t, x) = γx(t,x)
Ux(t,x)

with its two components ηU,R ∈ R, ηU,⊥ ∈ R⊥.

Observe that Condition (1.8) in Corollary 1.3 states that ηU is bounded in x with random bound.

The supermartingale property of U(., Xκ) implies that the drift of these processes must be negative

for all κ ∈ R, and equal to 0 for some κ∗. We proceed by verification as in the classical case.

Theorem 3.1 (Utility-SPDE). Let U be a progressive utility which is a K2,δ
loc-semimartingale

(δ ∈ (0, 1]) with local characteristics (β, γ). Assume the drift constraint to be of HJB type,

β(t, x) = −Ux(t, x)rtx−
1

2
Uxx(t, x) inf

κ∈R

{
‖xκ‖2 + 2xκ.

(Ux(t, x)η
R
t + γx(t, x)

Uxx(t, x)

)}
. (3.3)

(i) The minimum of the quadratic form (3.3) is achieved at the optimal policy κ∗ given by
{

xκ∗t (x) = − 1
Uxx(t,x)

(Ux(t, x)η
R
t + γR

x (t, x))

and β(t, x) = −Ux(t, x)xrt +
1
2Uxx(t, x)‖xκ

∗(t, x)‖2
(3.4)

(ii) For any κ ∈ R, the process U(., Xκ
. ) is a supermartingale, and a local martingale for any

solution (if there exists) X∗ of the SDE dX∗
t = X∗

t

(
rtdt+κ

∗(t,X∗
t ).(dWt+η

σ
t dt)

)
. Under additional

integrability assumptions, the X -consistency property is satisfied.
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Remark 3.2. In the classical backward framework, similar SPDE is investigated by Mania and

Tevzadze[22] using BSDE tools, and by Englezios and Karatzas [14]. (See also Remark 4.2)

Proof. By Itô-Ventzel’s formula (Theorem 1.4), for any admissible portfolio Xκ,

dU(t,Xκ
t ) =

(
Ux(t,X

κ
t )X

κ
t κt + γ(t,Xκ

t )
)
.dWt

+
(
β(t,Xκ

t ) + Ux(t,X
κ
t )rtX

κ
t +

1

2
Uxx(t,X

κ
t )Q(t,Xκ

t , κt)
)
dt,

where Q(t, x, κ) := ‖xκ‖2 + 2xκ.
(Ux(t, x)η

R
t + γx(t, x)

Uxx(t, x)

)
.

Since κ ∈ R, Q(t, x, κ) is only depending on γR
x (t, x), the orthogonal projection of γx(t, x) on

Rt. The minimum Q∗(t, x) = infκ∈RQ(t, x, κ) of the quadratic form Q(t, x, κ) is achieved at the

optimal policy κ∗ given by

{
xκ∗t (x) = − 1

Uxx(t,x)

(
Ux(t, x)η

R
t + γR

x (t, x)
)

Q∗(t, x) = − 1
Uxx(t,x)2

‖Ux(t, x)η
R
t + γR

x (t, x))‖2 = −‖xκ∗t (x)‖
2.

(3.5)

Then the drift of the semimartingale U(t,Xκ
t ) satisfies

β(t,Xκ
t ) + Ux(t,X

κ
t )rtX

κ
t +

1

2
Uxx(t,X

κ
t )Q(t,Xκ

t , κt)

≤ β(t,Xκ
t ) + Ux(t,X

κ
t )rtX

κ
t +

1

2
Uxx(t,X

κ
t )Q

∗(t,Xκ
t , κt)

= β(t,Xκ
t ) + Ux(t,X

κ
t )rtX

κ
t −

1

2
Uxx(t,X

κ
t )‖X

κ
t κ

∗
t (X

κ
t )‖

2

The proof is complete.

Conjugate of consistent dynamic utility The characteristics of the conjugate progres-

sive utility Ũ can be computed directly from Theorem 1.5. Given that β is associated with an

optimization program, we show that the dual drift β̃ is also constrained by a HJB type relation

in the new variables. So, the convex conjugate utility Ũ is consistent with a family of state price

density processes (Definition 3.3). As observed in Theorem 2.8 (ii), the study of the conjugate

utility Ũ requires stronger assumptions than the study of U .

Theorem 3.2. Let U a progressive utility with characteristics (β, γ) satisfying Assumptions of

Theorem 2.8. Then its progressive convex conjugate utility Ũ and its marginal conjugate utility

Ũy are Itô random fields with local characteristics (β̃, γ̃) and (β̃y, γ̃y) respectively. Assume the

drift constraint of U to be of HJB type (3.3).

(i) The local characteristics of the convex conjugate Ũ are given by:




γ̃(t, y) := γ(t,−Ũy(t, y)), γ̃y(t, y) := −γx(t,−Ũy(t, y)).Ũyy(y)

β̃(t, y) = yŨy(t, y)rt +
1

2Ũyy(t, y)

(
‖γ̃y(t, y)‖

2 − ‖γ̃R
y (t, y) + yŨyy(t, y)η

R
t ‖2

) (3.6)

(ii) The non linear drift β̃(t, y) is associated with the following optimization program:

β̃(t, y) = yŨy(t, y)rt −
1

2
y2Ũyy(t, y) inf

νt∈R⊥

{‖νt − ηRt ‖2 + 2
(
νt − ηRt

)
.
( γ̃y(t, y)

yŨyy(t, y)

)
} (3.7)
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(iii) The minimum of this quadratic form is achieved at the optimal policy

yν∗t (y) =
−γ̃⊥y (t, y)

Ũyy(t, y)
= γ⊥x

(
t,−Ũy(t, y)

)
= yηU,⊥(t,−Ũy(t, y)).

(iv) Rewritten in terms of optimal strategy, β̃(t, y) becomes

β̃(t, y) = yŨy(t, y)rt −
1

2
Ũyy(t, y)

[
‖yν∗t (y)− yηRt ‖2 − 2(yν∗t (y)− yηRt ).

γ̃y(t, y)

Ũyy(t, y)

]
. (3.8)

(v)For any admissible state price density process Y ν ∈ Y with ν ∈ R⊥, Ũ(t, Y ν
t ) is a submartingale,

and a local martingale for any solution Y ∗ (if there exists) of the equation dY ∗
t = Y ∗

t [−rtdt +

(ν∗(t, Y ∗
t )− ηRt ).dWt].

Proof. (i) By Theorem 1.5, the local characteristics (β̃, γ̃) of the conjugate random field Ũ

are given by γ̃(t, y) = γ(t,−Ũ(t, y)) and β̃(t, y) = β1(t,−Ũ(t, y)) where β1(t, x) = β(t, x) −
1

2Uxx(t,x)
‖γx(t, x)‖

2. Combining this identity with the HJB-constraint β(t, x) = −Ux(t, x)xrt +
1
2Uxx(t, x)‖xκ

∗(t, x)‖2 yields to

β1(t, x) = −xUx(t, x)rt −
1

2Uxx(t, x)

(
‖γx(t, x)‖

2 − ‖Ux(t, x)η
R
t + γR

x (t, x)‖2
)
.

(ii) & (iii) Since the norm of the projection on Rt is the distance to the orthogonal vector space

R⊥
t ,

‖
γR
x (t, x)

Ux(t, x)
+ ηRt ‖2 := ‖ηU,R(t, x) + ηRt ‖2 = inf

ν∈R⊥
t

‖ν − (ηU,R + ηRt )‖2.

Using the relation |x|2 − |y|2 = |x− y|2 + 2(x− y).y, we get:

‖ηU,R(t, x) + ηRt ‖2 − ‖ηU (t, x)‖2 = inf
ν∈R⊥

{‖ν − ηRt ‖2 + 2(ν − ηRt ).ηU (t, x)}

= ‖ηU,⊥(t, x) − ηRt ‖2 + 2(ηU,⊥(t, x)− ηRt ).ηU (t, x).

By coming back to β1, we can make the minimization program to be explicit,

β1(t, x) + xUx(t, x)rt =
U2
x(t, x)

Uxxt, x)

(
inf

ν∈R⊥

{‖ν − ηRt ‖2 + 2(ν − ηRt ).ηU (t, x)}
)

=
U2
x(t, x)

Uxxt, x)

(
‖ηU,⊥(t, x)− ηRt ‖2 + 2(ηU,⊥(t, x)− ηRt ).ηU (t, x)

)
.

The minimum in the quadratic form is achieved at ηU,⊥(t, x), corresponding the optimal strategy

ν∗t (y) = ηU,⊥(t,−Ũy(t, y)). From this and the identities,

U2
x(t,−Ũy(t, y))

2Uxx(t,−Ũy(t, y))
= −

1

2
y2Ũyy(t, y), ηU (t,−Ũy(t, y)) = −

γ̃y(t, y)

yŨyy(t, y)

we get the desired formula for β̃ both in (3.6) and in (3.8), i.e.

β̃(t, y) = yŨy(t, y)rt +
1

2Ũyy(t, y)

(
‖γ̃y(t, y)‖

2 − ‖γ̃R
y (t, y) + yŨyy(t, y)η

R
t ‖2

)

= yŨy(t, y)rt −
1

2
Ũyy(t, y)

[
‖yν∗t (y)− yηRt ‖2 − 2(yν∗t (y)− yηRt ).

γ̃y(t, y)

Ũyy(t, y)

]
.

(iv) is a simple rewriting of the HJB constraint on β̃.

(v) The supermartingale property is proved in very similar manner than for dynamic utility, (proof

of Proposition 3.2 (ii) and (iii)).
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4 Marginal Utility SPDE and Optimal SDEs

As seen in Section 1 and 2, our utility characterization is based on the marginal utility. So, we

focus now on the dynamics of the random field Ux. As established in Theorem 3.1, the drift

characteristic of X -consistent utility is constraint by a HJB type condition (3.3)

β(t, x) = −Ux(t, x)xrt +
1
2Uxx(t, x)‖xκ

∗
t (x)‖

2.

The diffusion characteristic γx is explained by the optimal policies of the primal and dual problems,

Theorem 3.1 and Theorem 3.2:

γx(t, x) = −Uxx(t, x)xκ
∗
t (x) − Uxη

R
t + Ux(t, x)ν

∗
t (Ux(t, x))

The characteristic γx(t, x) may be rewritten in a more convenient form, using the diffusion coeffi-

cient of the optimal policy σ∗
t (x) := xκ∗t (x), and the diffusion coefficient of the optimal state price

density σ̃∗
t (y) = −yηRt + γ⊥x (t,−Ũy(t, y)) as,

γx(t, x) = −∂x(Ux)(t, x)σ
∗
t (x) − Ux(t, x)η

R
t + σ̃∗

t (Ux(t, x))

It is easy to recognize the diffusion coefficient of the SPDE (2.9) in Theorem 2.7 associated with

the SDEs with diffusion parameters σ∗
t (x) and σ̃∗

t (y). Moreover, by taking the x-derivative in the

drift constraint β(t, x) = −Ux(t, x)xrt+
1
2Uxx(t, x)‖xκ

∗
t (x)‖

2 = −Ux(t, x)xrt+
1
2Uxx(t, x)‖σ

∗
t (x)‖

2,

it appears naturally a divergence term associated with the optimal policy σ∗
t (x) = xκ∗t (x) in the

drift characteristic of Ux which suggests to use the main theorem (Theorem 2.7) applied to the

optimal SDEs.

4.1 Main result : solving marginal utility SPDE via optimal SDEs

To be closer to the notation of Theorem 2.7, we recall all the coefficients of SDEs associated with

the optimal policies X∗ and Y ∗ if they exist:




µ∗
t (x) := rtx+ xκ∗t (x).η

R
t , σ∗

t (x) := xκ∗t (x)

µ̃∗
t (y) := −rt y, σ̃∗

t (y) = −ηRt y + γ⊥x (t,−Ũy(t, y))

L̂∗
t,x := 1

2∂x(‖σ
∗
t (x)‖

2∂x)− µ∗
t (x)∂x

(4.1)

We start with the identification of the SPDE satisfied by the marginal utility of a consistent

dynamic utility imposing only regularity condition on the utility random field and its local charac-

teristics. We will then give additional conditions that guarantee the existence of solution to SDEs

with coefficients (µ∗, σ∗) and (µ̃∗, σ̃∗).

Proposition 4.1. Let U be a K2,δ
loc ∩ C3-regular (δ > 0) progressive utility U , whose the local

characteristics (β, γ) satisfy the HJB constraints,
{
γx(t, x) := −Uxx(t, x)σ

∗
t (x) + ηRt Ux(t, x) + σ̃∗

t (Ux(t, x))

β(t, x) := −Ux(t, x)x rt +
1
2Uxx(t, x)‖σ

∗
t (x)‖

2
(4.2)

The marginal utility Ux is a decreasing solution of the SPDE(2.9) with coefficients (µ∗, σ∗) and

(µ̃∗, σ̃∗)

dUx(t, x) = σ̃∗
t (Ux(t, x)).dWt + µ̃∗

t (Ux(t, x))dt

− ∂xUx(t, x)σ
∗
t (x).

(
dWt + σ̃∗

y(t, Ux(t, x))dt) + L̂∗
t,x(Ux)dt (4.3)
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Proof. At first, as U is assumed to be K2,δ
loc ∩ C(3)-regular, Ux is of class K1,δ

loc and its local

characteristics (βx, γx) are of class C1 in x; then, the vectors σ∗
t (x) = xκ∗t (x) = −(γR

x (t, x) +

ηRt Ux(t, x))/Uxx(t, x) and σ̃∗
t (y) = −ηRt y + γ⊥x (t,−Ũy(t, y)) are also of class C1, necessary condi-

tion to define L̂∗. By derivation of the local characteristics, it is clear that βx contains a second

order term in divergence form associated with xκ∗t (x) = σ∗
t (x), which leads us to introduce the

adjoint operator L̂∗
t,x associated with (µ∗, σ∗). It remains to make some slight transformations on

the drift characteristic. Observe that

βx(t, x) = −∂x(Ux(t, x)xrt) + ∂x
(
1
2Uxx(t, x)‖σ

∗
t (x)‖

2
)

= L̂∗
t,x(Ux)− rtUx(t, x) + ∂xUx(t, x)σ

∗
t (x).η

R
t

= L̂∗
t,x(Ux) + µ̃∗

t (Ux) + ∂xUx(t, x)σ
∗
t (x).η

R
t

(4.4)

Let us give another interpretation of σ∗
t (x).η

R
t . Since σ̃∗(t, y) + ηRt y belongs to the vector space

R⊥
t the spatial derivative σ̃∗

y(t, y)+η
R
t is also in R⊥

t , yielding to the relation on the scalar products

−σ∗
t (x).η

R
t = σ∗

t (x).σ̃
∗
y(t, y). Then, Identity (4.3) holds true.

Comment (i) There is a fairly subtle relation between the SDE(µU , σU ) introduced in Theo-

rem 1.1 to characterize the marginal utility Ux where µU (t, z) = βx
(
t,−Ũy(t, z)

)
and σU (t, z) =

γUx
(
t,−Ũy(t, z)

)
, and the coefficients of the two optimal SDEs, in particular in terms of diffusion

coefficients. The HJB constraint γUx (t, x) = −Uxx(t, x)σ
∗
t (x) + ηRt Ux(t, x)) + σ̃∗

t (Ux(t, x)) becomes

σU (t, z) =
σ∗
t (−Ũy(t, z))

Ũyy(t, z)
+ ηRt z + σ̃∗

t (z)

In particular, since σ̃∗
t (z) = σU,⊥(t, z), any regularity property on σU are immediately trans-

ferred by linear projection on σ̃∗
t (−z). But, only some local regularity on σ∗

t (t, z) may be deduced

from global regularity of σU . Nevertheless, we can justify the existence of a global optimal wealth

solution in a similar way than for the inverse process.

(ii) Observe also that we obtained a way to generated X -consistent utility only from their local

characteristics and the SPDE 4.3, since we do not use a priori the concavity assumption in the

following theorem.

Theorem 4.2 (Main theorem). Let U be a K2,δ
loc ∩ C3-semimartingale progressive utility U ,

whose the local characteristics (β, γ) satisfy the HJB constraints (4.2); then, the derivative Ux(t, x)

is solution of the SPDE (4.3).

Assume, in addition, the existence of two positive adapted stochastic bounds (K1,K2) such that

‖γ⊥x (t, x)‖ ≤ K1
t |Ux(t, x)|, ‖γ

⊥
xx(t, x)‖ ≤ K2

t |Uxx(t, x)|, a.s., (K
1,K2) ∈ L2(dt) (4.5)

Existence of optimal processes: (i) The conjuguate SDE(µ̃∗, σ̃∗) is uniformly Lipschitz and

has a unique strong solution Y ∗
t (y), which is strictly positive, and strictly monotonic, with range

[0,∞).

(ii) The SDE(µ∗, σ∗) has only local Lipschitz property, and admits a maximal monotonic solution

X∗ defined a priori only up to a stopping times ζ∗(x). But, the explosion time ζ∗(x) = ∞ a.s.

since the processes Ux(., X
∗
. (x)) is distinguishable from the solution Y ∗

. (ux(x)).

Consistency and marginal utility characterization: The random field U is a X -consistent
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utility, with optimal wealth X∗. Furthermore, the derivative random field Ux(t, x), solution of the

SPDE (4.3) is given by Ux(t, x) = Y ∗
t (ux((X

∗
t )

−1(x))). So Ux(t, x) is a strictly decreasing and

positive process with range [∞, 0].

Remark 4.1. In this framework, we do not need that the inverse process X (t, x) is a semimartin-

gale. Nevertheless, if γ⊥x ≡ 0, then Y ∗
t (y) = yY 0

t and as Ux(t, x) is a semimartingale, ux(X (t, x))

is also semimartingale, consequently X (., x) is a semimartingale since U(t, x) and u are assumed

to be of class C3.

Proof. (i) The assumption (4.5) implies as above observed that the coefficients (µ̃∗, σ̃∗) are uni-

formly Lipschitz in space, and then the SDE has an unique monotonic strong solution Y ∗
t (y). Since

by assumption ‖γx(t, x)‖ ≤ K1
t |Ux(t, x)|, then ‖α̃∗(t, y)‖ = ‖σ̃∗(t,y)‖

y ≤ K1
t . As K1 ∈ L2(dt), Y ∗

which is also solution of the SDE dY ∗
t = Y ∗

t [rtdt+ α̃∗(t, Y ∗
t ).dWt is strictly positive.

(ii) Under the same assumption in addition to the property of U of class K2,δ
loc , the coefficients

(µ∗, σ∗) are only in K0,1
loc × K

0,1

loc

)
, and then by Theorem 2.4, there exists a monotonic maximal

solution X∗
t (x) up to explosion time ζ∗(x).

(iii) a) We show together the property( Ux(t,X
∗
t (x)) = Y ∗

t (ux)) )and the fact that ζ∗(x) = ∞.

We are applying, up to ζ∗(x), Theorem 2.7 iv) to Ux(t, x), solution of the SDPE (4.3), and to the

process X∗
t .Then, it follows that Ux(t,X

∗
t (x)) is solution of SDE(µ̃∗, σ̃∗) up to ζ∗(x) with initial

condition ux. In other words, Ux(t,X
∗
t (x)) = Y ∗

t (ux(x))); t < ζ∗(x).

b) When t 7→ ζ∗(x) on ζ∗(x) <∞, Ux(t,X
∗
t (x)) 7→ 0, and Y ∗

t (ux(x))) 7→ Y ∗
ζ∗(x), then Y ∗

ζ∗(x)(ux(x))) =

0, but since Y ∗
t (y) is a strictly positive process, a contradiction occurs if P(ζ∗(x) <∞) > 0.

(iv) The property of U are deduced of the identity Ux(t,X
∗
t (x)) = Y ∗

t (ux(x))) and from Theorem

2.8.

Remark 4.2. In [14] the authors have also shown that the solution of the backward SPDE can

be represented through the composition of two invertible processes. The main difference with the

approach proposed here is that their processes are given as conditional expectation of monotonic

functions as we describe them in path-wise form as SDE solutions.

Comment: Obviously the main result, Theorem 4.2, gives us only sufficient conditions to generate

X -consistent utility from their characteristics. In fact, the assumptions gives us the existence

of a monotonic strictly positive strong solution Y ∗ of SDE(µ̃∗, σ̃∗), and by local regularity, the

existence of a monotonic solution X∗ of SDE(µ̃∗, σ̃∗) up to explosion time ζx. Obviously, we

can interchange the roles of Y ∗ and X∗. Indeed, in line with Section 2, given the existence of a

solution of the SPDE (4.3), by assertion (iii) of Theorem 2.7, the existence of a solution X∗
. (x)

starting from x to the SDE(µ∗, σ∗) implies that Ux(t,X
∗
t (x)) is solution of the SDE(µ̃∗, σ̃∗) and so

is a state price density process Ŷ ∗
t (ux(x)), starting from ux(x). Moreover, existence of a solution

to SDE(µ∗, σ∗) is equivalent to existence of a solution to SDE(µ̃∗, σ̃∗). Otherwise, if we give

ourselves X∗ monotone solution of SDE(µ∗, σ∗) with a semimartingale inverse X and Y ∗ a K2

regular solution to SDE(µ̃∗, σ̃∗) then, from assertion (i) of Theorem 2.7, the compound process

Ŷ ∗
t

(
ux

(
X (t, x)

))
is an obvious solution of SPDE (4.3).
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4.2 Reverse Engineering Problem

We consider the converse point of view of the marginal utility characterization given by Theorem

4.1. More precisely, by taking as input an initial condition U(0, .) = u(.) and some monotonic

solution of SDE(µ, σ) and SDE(µ̃, σ̃), we propose an explicit way to recover all consistent utility U

generating this wealth as optimal process. In the classical expected utility framework, this reverse

engineering problem has been considered by He and Huang [10] (1992) in a complete market.

Since the class of dynamic utilities is larger than the class of Markovian utilities considered in [10],

our problem is easier to solve. In particular, we establish that the only assumption we need is

the monotonicity of the wealth process with respect to the initial wealth, plus some integrability

conditions.

In the following theorem, we try to introduce minimum assumptions used in the different problems.

Either we assume the strong assumption that the SDE(µ, σ) is regular enough to have a unique

monotonic strong solution X whose the inverse X is a semimartingale or we make the existence of

X in addition to the existence of a solution X to the SPDE(L̂µ,σ
t,x ,−σ∂x).

Theorem 4.3. Let κ ∈ R be a volatility vector and σt(x) = xκt(x), µt(x) := rtx + σt(x).η
R
t

the coefficients of the SDE defining an admissible wealth process. As previously, let L̂µ,σ
t,x :=

1
2∂x(‖σt(x)‖

2∂x)− µt(x)∂x be its adjoint operator.

Similarly, let ν ∈ R⊥ be an orthogonal volatility vector, and
(
µ̃(t, y) := −yrt, σ̃(t, y) = y(νt(y) −

ηRt )
)

the coefficients of the SDE defining an admissible state price density process.

Assumptions a) Strong assumptions Assume the SDE(µ, σ) in the class S3,δ (δ ∈ (0, 1]), so

that SDE(µ, σ) has a unique monotonic solution X, whose the inverse X is solution of the SPDE

dX (t, x) = −Xx(t, x)σt(x).dWt + L̂t,x(X )dt. (4.6)

b) or Weak assumptions Assume only the SDE(µ, σ) in the class S1,δ (δ ∈ (0, 1]), and the

existence of a solution X of the SPDE(L̂t,x,−σ∂x)

c) Assume the SDE (µ̃, σ̃) in the class S2,δ with monotonic solution Y .

main Result (i) For any initial utility function u, the stochastic random field V defined by

V (t, x) = Yt
(
ux

(
X (t, x)

))
, if it is integrable near to zero, is the derivative of a consistent stochas-

tic utility U, solution of the SPDE (4.3) with optimal wealth process X = X−1, solution of the

SDE(µ, σ).

(ii) The derivative of the convex conjugate Ũ of U is Ũy := −V
−1 with Ũy(t, y) = Xt

(
−

ũy
(
Y(t, y)

))
where Y denote the inverse flow of Y. Moreover, if the SDE(µ̃, σ̃) belongs to S3,δ,

the processes (Ũy(t, y)) and (Ũ(t, y)) are Itô’s semimartingales.

Proof. Calculations are easy consequence of Theorem 2.7 (ii), applied to the processes X solution

of the SPDE (4.6), and Y in place of X with initial condition ux.

(i) With the notations of Theorem 4.7, we have

dV (t, x) = σ̃t(V (t, x)).dWt + µ̃t(V (t, x))dt

− ∂xV (t, x)σt(x)
[
dWt + σ̃t(V (t, x))/V (t, x)dt + L̂t,x(V )dt

Recall that σ̃t(y) = y(νt(y) − ηRt ), so that σ̃t(y).σt(x) = −yηRt .σt(x). So, the process V satisfies

29



the SPDE (4.3). As in the proof of Theorem 4.1, the drift βV may be transformed into

βV (t, x) = µ̃t(V (t, x))− ηRt .σt(x)Vx(t, x)) + ∂x
(1
2
Vx(t, x)‖σt(x)‖

2
)
− µt(x)Vx(t, x)

= −[rtV (t, x) + Vx(t, x)(−xrt + ηRt .σt(x) − ηRt .σt(x)) + ∂x
(1
2
Vx(t, x)‖σt(x)‖

2
)
]

= −∂x(V (t, x)x rt) + ∂x
(1
2
Vx(t, x)‖σ(t, x)‖

2
)

Similarly, the diffusion characteristic of V , γV is given by

γV (t, x) = σ̃t(V (t, x))− Vx(t, x)σt(x)

= V (t, x)νt(V (t, x)) − ηRt .V (t, x)− Vx(t, x)σt(t, x)

(ii) We recognize that V has the same local characteristics that marginal of consistent utility

(Theorem 4.1 ). Taking the primitive of V , (if that makes sense) we define a random field U(t, x) =∫ x

0
V (t, z)dz =

∫ x

0
Y
(
t, ux

(
X (t, z)

))
dz which is a progressive utility satisfying the HJB constraint,

βU (t, x) = −Ux(t, x)xrt +
1
2Uxx(t, x)‖σt(t, x)‖

2 and the diffusion constraint γUx (t, x) = γV (t, x) =

Ux(t, x)νt(Ux(t, x)) − ηRt .Ux(t, x)− Uxx(t, x)xκ(t, x). So, U is a consistent dynamic utility.

Corollary 4.4. With the same notations as in Theorem 4.7, assume in addition global Lipschitz

regularity on (µ, σ), that is σ ∈ K̃0,1
b ∩ K̃3,δ

loc, ν ∈ K̃0,1
b ∩ K̃2,δ

loc for δ ∈ (0, 1]. Let us also consider a

utility function u satisfying Inada’s conditions, such that ux ∼ x−ζ (ζ < 1) in the neighborhood of

z = 0.

The composite random field Yt
(
ux

(
X (t, x)

))
is integrable near to zero and it is the derivative of a

consistent stochastic utility U .

Proof. Since σt(x) = xκt(x) ∈ K̃0,1
b ∩ K̃3,δ

loc , νt(y) ∈ K̃0,1
b ∩ K̃2,δ

loc for δ ∈ (0, 1] one can easily shows

that the pair (µ, σ) belong to
(
K0,1

b ∩K3,δ
loc

)
×
(
K̃0,1

b ∩K̃3,δ
loc

)
and (µ̃, σ̃) to

(
K0,1

b ∩K2,δ
loc

)
×
(
K̃0,1

b ∩K̃2,δ
loc

)
.

Then, all assumptions of Theorem 4.7 are satisfied. Moreover, from Theorem 1.2, the unique strong

monotonic solutions X and Y satisfy the following asymptotic behavior (equation (1.7))

lim
z→0

(
sup

0≤t≤T

Z(t, z)

zε

)
= 0 and lim

z→0

(
sup

0≤t≤T

Z(t, z)

z1+ε

)
= +∞, for all T

Consequently, one can easily shows that, for any utility function u satisfying Inada’s conditions

s.t. ux(x) < x−ζ for some ζ < 1, the composite random field Yt
(
ux

(
X (t, x)

))
is also integrable

near to zero. Indeed, it suffices to write that for any α, β, γ > 0 we have

lim
x→0

xαYt
(
ux

(
X (t, x)

))
= lim

x→0
(Xt(x))

αYt
(
ux(x)

)
= lim

y→+∞
(Xt(−ũy(y)))

αYt(y)

= lim
y→+∞

(
Xt(−ũy(y))

(−ũy(y))β
)α(−ũy(y)y

γ)αβ
Yt(y)

yαβγ

As ux(x) ∼ x−ζ , we have limx→0 x
γ′

ux(x) = limy→+∞ −y
1

γ′ ũy(y) = 0 for any ζ < γ′ < 1. Taking

γ = 1
γ′ > 1, ε > 0 and β = 1 + ε we deduce, from the asymptotic behavior of X∗ and Y ∗ and

Inada’s conditions, that

lim
x→0

xαYt
(
ux

(
X (t, x)

))
= lim

y→+∞
(
Xt(−ũy(y))

(−ũy(y))β
)α(−ũy(y)y

γ)αβ
Yt(y)

yαβγ
= 0, ∀α ∈ (0,

1

βγ
) ⊂ (0, 1),

which shows the integrability near to zero of Yt
(
ux

(
X (t, x)

))
.
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Risk tolerance dynamics With the utility characterization given in Theorem 4.7 the study

of the risk tolerance coefficient, taken along the optimal wealth, is greatly simplified. In particular,

the martingale property established in He and Huang in [10] in a complete market, Y ∗ = yY 0 is

easy to understand. A similar study has been performed by Zariphopoulou & Zhou [39] in the

special case of dynamic utility deduced by change of numeraire (see next section) and stochastic

environment from a deterministic time depending utility function.

Proposition 4.5. Assume the optimal state density process to be the minimal one Y ∗(., y) = yY 0
. ,

or equivalently the orthogonal risk premium to be 0. Let U be a consistent dynamic utility with

optimal regular wealth X∗ with derivative X∗
x .

(i) The path of the risk tolerance coefficient τU (t, x) = − Ux(t,x)
Uxx(t,x)

at benchmark optimal wealth is

given by τU (t,X∗
t (x)) := τ∗(t, x) = τu(x)X∗

x(t, x).

(ii) τU (t,X∗
t (x)) = τ∗(t, x) is an admissible portfolio with initial wealth τu(x) and admissible

allocation κdt = κ∗t (X
∗
t ) +X∗

t κ
∗
x(t,X

∗
t ). In particular, Y 0

t τ
∗(t, x) is a local martingale.

(iii) As in [39], the pair (X∗, τ∗) is solution of two dimensional SDE with random coefficients.

Proof. (i) We start with the representation of the marginal utility as Ux(t, x) = Y 0
t ux

(
X (t, x)

))
,

and of its derivative Uxx(t, x) = Y 0
t uxx

(
X (t, x)

)
∂xX (t, x)

)
= Y 0

t uxx
(
X (t, x)

)
/X∗

x(t,X (t, x)). By

taking the ratio of these two quantities, we have that

τU (t, x) = τu(X (t, x))X∗
x(t,X (t, x)) or equivalently τU (t,X∗

t (x)) = τu(x)X∗
x(t, x)

(ii) This last characterization is interesting since from Equation (2.4)

dX∗
x(t, x) = X∗

x(t, x)
[
rtdt+ σ∗

x(t,X
∗
t ).(dWt + ηRt dt)

]
(4.7)

As in the proof of Theorem 4.1, assertion i), since R is a vector space, X∗
x(t, x) is still an admissible

portfolio with allocation policy κdt = σ∗
x(t,X

∗
t ) = κ∗t (X

∗
t ) +X∗

t κ
∗
x(t,X

∗
t ).

(iii) The pairs of processes (X∗(t, x), X∗
x(t, x)), and (X∗(t, x), τ∗(t, x)) are solutions of the same

2-dimensional SDE.

All results of the proposition can be extended to the general case, where Y ∗
t (y) is no more a linear

function of y, but the interpretation of the results is more difficult.

Proposition 4.6. Let U be a K2,δ
loc ∩ C3-consistent dynamic utility (δ > 0), then

(i) The risk tolerance coefficient τU is given by

τU (t, x) =
Y ∗
t (ux(X ))X∗

x(t,X )

uxx(X )Y ∗
x (t, ux(X ))

=
(
τu(X )

Y ∗
t (ux(X )X∗

x(t,X )

ux(X )Y ∗
y (t, ux(X ))

)
(t, x). (4.8)

and, along the optimal wealth, τU (t,X∗
t (x)) =

Y ∗

t (ux(x))
Y ∗
y (t,ux(x))uxx(x)

X∗
x(t, x).

(ii) The derivative of the optimal wealth is an admissible portfolio associated with the allocation

κdt = κ∗t (X
∗
t ) +X∗

t κ
∗
x(t,X

∗
t ) and initial wealth 1.

(iii) The process Y ∗
y (t, y)τ

U (t,X∗
t (x)) is a local martingale.

The proof of this proposition is obvious.
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Pathwise dynamic programming principle In this paragraph we are interested in using

the previous marginal utility characterization from a backward point of view. Unlike the standard

case, we obtain a pathwise dynamic programming principle.

For this, observe that the identity Ux(t, x) = Y ∗
t

(
ux(X (t, x))

)
leads to the following identity based

on the inverse flow Y of Y ∗, ux(x) = Yt(Ux(t,X
∗
t (x))

)
. This explains how to recover the marginal

utility at time 0 from the stochastic terminal one at a time t. This point of view is interesting,

because in this case the initial condition ux is simply the derivative of the value function of

a classical optimization problem. To go further into this idea, properties of stochastic flows,

previously not used (as explained above), will be essential.

Flow property.

(i) Let (Zt(x)) be a strictly monotonic random field with respect to x with range [0,∞) whose

the inverse random field is denoted by Zt(z). We extend the random field Z to intermediate dates

(0 ≤ s ≤ t) by defining Zt(s, x) = Zt(Zs(x)). The following classical notation Zt(s, x) := Zs,t(x) is

useful to express the semi-group property, that is for s ≤ t ≤ u, Zt,t(x) = x and Zt,u ◦Zs,t = Zs,u.

Note that Zt(x) = Z0,t(x).

Similarly, we can extended the random field Z to intermediate dates by taking the inverse of

(Zt(s, x)) such that Zt(s, z) = Zs(Zt(z)) := Zs,t(z). Then Zt(s, z) = Zs,t(z) is a backward flow

achieving the amount z at date s. Then, the semi-group property holds true with the inverse order

of the dates, that is for s ≤ t ≤ u, Zs,t ◦ Zt,u = Zs ◦ Zt ◦ Zt ◦ Zu = Zs,u.

(ii) When the flow Zt(x) is the monotonic solution of some SDE(µ, σ) starting from x at time

0, a classical result states that Zs,t(x) is a solution defined on [s,∞) of the same SDE(µ, σ) starting

from x at time s. When the SDE(µ, σ) is regular enough so that Zt(z) is the monotonic solution

of the SPDE(µ, σ), then Zs,t(z) is solution on [s,∞) of the same SPDE with initial condition z at

time s. Given that Zs,t(z) = Zs(Zt(z)), this result may be viewed as a consequence of Theorem

2.7 (i), applied to the regular function G(y) = Zs(y) considered as deterministic after the time s.

But, it is more natural to consider Zs,t(z) as a process in s and so to introduce, time reversal and

backward integration as in Kunita [19] Section 4.5, or Carmona & Nualart [2]. We do not develop

this point of view here.

Let us come back to consistent utility framework.

Proposition 4.7. We adopt the same framework as in Theorem with the monotonic solutions X

and Y of two SDE(µ, σ) and SDE(µ̃, σ̃). As usual the inverse processes are denoted by X and Y.

The marginal utility is defined as Ux(t, x) = Yt
(
ux(Xt(x))

)
.

(i) For any t, the pathwise identity holds true, ux(x) = Yt

(
Ux(t,Xt(x))

)
. This property is close

to the following one, also true on the classical backward point of view,

ux(x) = Yt

(
Ux(t,Xt(x))

)
, ux(x) = E

(
Ux(t,X(t, x))Xx(t, x)

)
(4.9)

(ii) More generally, using the stochastic flows Xx
s,t, Y

y
s,t,X

z
s,t,Y

u
s,t, we have the pathwise dynamic

principle

Ux(t, x) = Ys,t
(
Ux(s,Xs,t(x))

)
, Ux(s, x) = Ys,t

(
Ux(t,Xs,t(x))

)
, (4.10)

Proof. The both identities are easily deduced from the identity

ux(Xt(x)) = Yt(Ux(t, x)) = ux(Xs(Xt,s(x)) = Ys(Ux(s,Xt,s(x))).
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Comment The link between HJB SPDE and the inverse flows of some SDEs has received little

attention in the literature to our knowledge, may be essentially because people are more interested

by the Markovian case.

5 Openness to other topics and works

We close the paper by some openness to other topics and works; we show the stability of the

notion of consistent utility by change of numeraire and then, without loss of generality, we can

consider the martingale market where the portfolios are simple local martingales and the stochastic

PDE’s are easier to deal with. We also apply our method to the specific example of decreasing

consistent utilities (see [1] and [28]) where the volatility vector γ is given equal to zero, given a

new interpretation of the optimal wealth as solution of inf-convolution problems in random power

utilities.

5.1 Change of numeraire

Notations about the investment universe are the same as in Section 3. A numeraire is a monetary

reference used as payment instrument. When transactions take place in a given country, the do-

mestic currency is used as numeraire, but in an international setting, a common numeraire is used

in general for all the transactions. Because an investor is often faced with investing in different

markets, we are concerned in this paragraph, by the impact of the change of numeraire on its

progressive utility random field.

It is well-known (see Geman, El Karoui, and Rochet [9]) that the self-financing property is in-

variant by change of numeraire. So, if N is an Itô positive continuous semimartingale, solution

of linear equation with coefficients (µNx, δNx), it is well-known (see also Platen and Heath, or

Karatzas and Kardaras, [9, 31, 15]) that using N as new numeraire transforms an Itô market with

risk premium ηR and short rate rt into an investment universe, where the admissible portfolios

are the processes X̂ κ̂ = Xκ/N and the state price density processes are the processes Ŷ ν = N.Y ν .

The parameters of this new market are η̂ = ηR− δN , for the risk premium and r̂ = r−µN + δN .ηR

for the short rate.

(i) By the previous results, any X -consistent dynamic utility U defines a XN -consistent dynamic

utility UN by the transformation UN(t, x̂) = U(t, x̂Nt). Then the conjugate ŨN is given by

ŨN(ŷ) = Ũ(t, ŷ/Nt).

(ii) The class XN of the admissible portfolios is characterized by the processes κ̂ = κ− δN . The

vector spaces (Rt; t ≥ 0) are transformed into affine spaces R̂t = Rt−δ
N
t . Nevertheless if δNt ∈ Rt,

for any time t, the constraint spaces R̂t in the new market are the same than the constraint spaces

Rt in the initial market.

(iii) The associated optimal portfolio is XN,∗ = X∗/N and the optimal state price density process

is Y N,∗ = Y ∗/N .

(iv)The diffusion characteristic γN (t, x̂) is obtained from Itô-Ventzel’s formula, γN (t, x̂) = γ(t, x̂.Nt)+

x̂UN
x̂ (t, x̂)δNt . The new drift βN (t, x̂) is more complicated to described, and the explicit form is
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not of great interest in the general case.

(v) In the usual case, the market numeraire (Y 0)−1 = M (also called numeraire portfolio, or

growth optimal portfolio as in Platen and Heath [31]) is chosen as numeraire Y 0. Since M is an

admissible portfolio with volatility ηR, the market parameters η̂ and r̂ are identically zero, and

any admissible portfolio and any admissible state price density is a local martingale (under the

historical probability).

The optimal policies are simply given by

x̂κ̂∗t (x̂) =
γM,R
x̂ (t, x̂)

UM
x̂x̂(t, x̂)

, ŷν̂∗t (ŷ) =
γ̃M,⊥
ŷ (t, ŷ)

ŨM
ŷŷ (t, ŷ)

while, the drift characteristics of the utility UM (t, x̂) and ŨM (t, ŷ) are given by,

βM (t, x̂) = −
1

2
UM
x̂x̂(t, x̂)‖x̂κ

∗,M
t (x̂)‖2, β̃M (t, ŷ) = −

1

2
ŨM
ŷŷ (t, ŷ)‖ŷν

∗,N
t (ŷ)‖2,

Consequently, UM is a supermartingale and ŨM is a submartingale. Moreover, if γMx̂ ∈ R the

conjugate utility ŨM is a local martingale and the optimal dual process is constant, YM,∗ ≡ 1.

By symmetry, if γMx̂ ∈ R⊥, UM (., x̂) is a local martingale for any x̂, and the optimal wealth

XM,∗
t (x̂) ≡ x̂.

5.2 Decreasing Consistent Utilities

In this section, all prices of the investment universe are assumed to be discounted, corresponding

to the case where r ≡ 0. An interesting class of consistent utilities is the class of decreasing

consistent utilities, which was studied and fully characterized in the literature by Musiela & al.

[28] and Berrier & al. [1]. This utilities have a volatility characteristic γ identically zero. It is an

example where the dual SPDE is easier to study than the primal one, since by taking γ = 0, it

follows from Theorem 3.2 (3.6), that U and Ũ are solutions of the following SPDEs

dU(t, x) =
1

2

Ux(t, x)
2

Uxx(t, x)
||ηRt ||2dt, dŨ(t, y) = −

1

2
y2Ũyy(t, y)||η

R
t ||2dt. (5.1)

which implies by convexity, that t 7→ U(t, .), Ũ(t, y) are decreasing functions.

Example of power utilities (i) It is easy to verify that the power dual utility functions

Ũϑ(t, y) = 1
1−ϑ (1 − C̃ϑ

t y
1−ϑ), (ϑ > 0), where as usual the parameter ϑ is the risk tolerance

coefficient, are 5.1, if and only if C̃ϑ
t (ω) is solution of the ordinary equation dC̃ϑ

t (ω) = −C̃ϑ
t (ω)ϑ(1−

ϑ)||ησt (ω)||
2dt. In other words,

Ũϑ(t, y) =
1

1− ϑ
(1− C̃ϑ

t y
1−ϑ), C̃ϑ

t = exp(−ǫ̃(ϑ)Aη
t ), withAη

t =

∫ t

0

||ηRs ||2ds, ǫ̃(ϑ) = (1−ϑ)ϑ > 0.

Then, Ũϑ(t, yY 0
t )−

1
1−ϑ = − y1−ϑ

1−ϑ (Y 0
t )

1−ϑC̃ϑ
t is a martingale, since yY 0

t is the optimal state price

density.

(ii) Let us observe that at any time t > 0 the marginal conjugate utility Ũϑ
y (t, y) = −C̃ϑ

t y
−ϑ

is no longer a monotonic function of the risk tolerance coefficient ϑ since the function ϑ 7→

ǫ̃(ϑ)Aη
t + ϑ ln(y) is no monotonic.
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(iii) The marginal power utility Uϑ
x (t, x) is given by Uϑ

x (t, x) = (C̃ϑ
t )

1/ϑ x−1/ϑ. Since (Y 0
t )

1−ϑC̃ϑ
t

is a local martingale, the process X∗,ϑ
t (x) = xC̃ϑ

t (Y
0
t )

−ϑ is an admissible portfolio, and it is

easy to see that it is the optimal one. Using the notation X
ϑ

t = X∗,ϑ
t (1) = C̃ϑ

t (Y
0
t )

−ϑ, we have

X∗,ϑ
t (x) = xX

ϑ

t .

(iv) As in the deterministic case, the optimal strategy κ∗,ϑ(t, x) is collinear to the risk premium

ηRt with factor ϑ, κ∗,ϑ(t, x) = ϑηRt . Then, we recover the characterization of the marginal utility

at the optimal state price density yY 0
t as Ũϑ

y (t, yY
0
t ) = −C̃ϑ

t y
−ϑ(Y 0

t )
−ϑ = ũϑyX

ϑ

t .

Characterization of decreasing conjugate utilities (i) The set of positive solutions Ũ

to the dual linear PDE 5.1 is a convex cone, stable by positive linear combination. From this, it

is natural to consider the integral of conjugate power utilities, with respect to some positive Borel

measure m, including the initial condition. The avoid the problem related to the constants, we

formulate the problem on the marginal conjugate utilities and assume that
∫
R

∗

+

y−ϑdm(ϑ) < ∞,

to define the new conjugate marginal utility

Ũm
y (t, y) =

∫

R
∗

+

Ũϑ
y (t, y)C̃

ϑ
t dm(ϑ), ũmy (y) = −

∫

R
∗

+

y−ϑdm(ϑ) (5.2)

Such assumption on the initial condition ũy(y) (then denoted ũmy (y)) is equivalent to say that

ũmy (ez) is a completely monotonic function. All conjugate utility functions ũ(y) do not verify this

condition, but if it the case and if m is compactly supported, it is easy to check that any primi-

tive Ũm(t, y) verifies the random PDE (5.1), since the property is true for the power conjuguate

functions Ũϑ
y (t, y) using Dirac measure at ϑ as shown in page 34. In other words, Ũm(t, y)(ω)

is a space-time harmonic function of a geometrical Brownian motion with variance At(ω). By a

generalization of Widder’s Theorem [38], Musiela & al. [28] and Berrier & al. [1] showed that

there is no other solution to the random PDE (5.1).

Sup-convolution interpretation (i) There is an interesting interpretation of these stochas-

tic utilities: one can imagine an investor starting with power utility, with some ambiguity on its

risk tolerance coefficient. At time 0, she starts with a mixture of marginal conjugate power utilities,

weighted by some measure m. At time t, the marginal conjugate consistent utility is still a mixture

of power conjugate utilities with respect to the measure mt(dϑ) := C̃ϑ
t dm(ϑ), with decreasing in

time random density C̃ϑ
t . The stochastic measure mt(dϑ) is the unique measure which ensure that

the process Ũm
y constructed in equation (5.2) is the derivative of the conjugate of a consistent

utility.

(ii) Optimal wealth The characterization of the marginal conjugate utility Ũm
y (t, yY 0

t ) along

the optimal density process yY 0
t as Ũm

y (t, yY 0
t ) = X∗,m

t (−ũmy (y)) is useful to characterize the

optimal wealth X∗,m
t (x), since the same property is true for the standard power utility functions,

X∗,m
t (−ũmy (y)) =

∫

R
∗

+

Ũϑ
y (t, yY

0
t )dmt(ϑ) =

∫

R
∗

+

X∗,ϑ
t (−ũϑy (y))dmt(ϑ) =

∫

R
∗

+

X
ϑ

t y
−ϑdmt(ϑ),

To give a decomposition directly in terms of x, we start with a family of well-chosen initial wealths

xϑ,m satisfying xϑ,m(x) = −ũϑy(u
m
x (x)) so that

∫
R

∗

+

xϑ,m(x))dm(ϑ) = −ũmy (umx (x)) = x. So, the

optimal wealth process X∗,m
t issued from x = −ũmy (umx (x)) is given by the closed formula

X∗,m
t (x) =

∫ ∞

0

X∗,ϑ
t (xϑ(x))mt(dϑ) =

∫ ∞

0

xϑ(x)X
ϑ

tmt(dϑ),with
∫ ∞

0

xϑ(x)m(dϑ) = x. (5.3)
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X∗,m
t (x) is strictly increasing and regular with respect to its initial condition x, since any function

xϑ,m(x) is monotonic and regular. The conjuguate of Ũm
t (y), Um(t, x) is a consistent utility with

optimal wealth X∗,m
t (x).

(iii) The risk tolerance coefficient We are concerned with the risk tolerance coefficient

τmU (t, x) = −
Um
x (x)

Um
xx(x)

of the utility function Um(t, x), given that for power utility τϑ(t, x) = ϑx.

According to assertion (i) of Proposition 4.5 stating that τmU (t,X∗,m
t (x)) = τmu (x)X∗,m

x (t, x), we

see that

τmU (t,X∗,m
t (x)) = τmu (x)X∗,m

x (t, x) =

∫ ∞

0

τmu (x)xϑx(x)X
∗,ϑ
x (t, xϑ(x))mt(dϑ)

On the other hand, by the fact that xϑx(x) = −umxx(x)ũ
ϑ
yy(u

m
x (x)), we easily get the equality

τϑ(xϑ(x)) = xϑx(x)τ
U (x), and so and hence,

τmU (t,X∗,m
t (x)) =

∫ ∞

0

τϑ(t,X∗,ϑ
t (xϑ(x)))mt(dϑ) (5.4)

We still have some mixture properties along the optimal processes.

(iv) Sup-convolution interpretation Classical result in convex analysis shows the link

between mixture of conjuguate utility functions and inf-convolution problem, in the following form:

assume that the derivative of some conjuguate utility function ũmy (y) may be represented as the

integral of some family of marginal conjuguate utility functions ũϑy (y), with respect to some positive

Borel measure m, ũmy (y) =
∫∞

0
ũϑy (y)m(dϑ), where the integral is finite for any y. Then, ũm is the

convex conjuguate of the sup-convolution problem associated with

um(x) = sup
{∫ ∞

0

uϑ(xϑ)m(dϑ)
∣∣(xϑ) such that

∫ ∞

0

xϑm(dϑ) = x
}

(5.5)

The optimal solution (x∗ϑ) that achieves the maximum in the optimization problem 5.5 is given

explicitly as xϑ,m(x) = ũϑy (−u
m
x (x)).

Come back to our problem of decreasing consistent utility random field. The strategy associated

with the initial condition xϑ,m(x) may be interpreted as the deterministic optimal allocations of the

initial wealth with respect to the parameter ϑ, in a Pareto optimal equilibrium where a continuum

of agents with different risk aversion are in competition. The same interpretation holds true at

time t, with the family of wealth X∗,ϑ
t (xϑ(x)) and the random measure mt(dϑ).

Moreover, the decreasing consistent utility random field is given at any time t as,

Um(t, x) = sup
{∫ ∞

0

Uϑ(t,Xϑ(t, x))mt(dϑ)
∣∣(Xϑ(t, x)) such that

∫ ∞

0

Xϑ(t, x)mt(dϑ) = x
}

(5.6)

(v)The role of the initial utility function In the study of decreasing utilities, we introduced

an assumption on the initial condition, that is ũmy (y) = −
∫
R

∗

+

y−ϑdm(ϑ). The Borel measure m is

determining in the definition of the optimal wealth. This may seem at odds with the rest of the

paper. This is not the case and even this is a nice example to illustrate our results.

Indeed, starting from the optimal portfolio X∗,m defining in Equation (5.3), it is easy to con-

struct a new consistent utility (more easily its Fenchel conjuguate Ṽ (t, y)) having (X∗,m, yY 0) as

optimal processes, starting from an initial concave function v with Fenchel conjuguate ṽ. Thanks
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to the dual characterization Ṽ m
y (t, yY 0

t ) = X∗,m
t (−ṽy(y)) of the marginal conjuguate utility, the

same identity applied to Ũm
y yields to the following relation Ṽ m

y (t, yY 0
t ) = X∗,m

t (−ṽy(y)) =

Ũm
y

(
t, umx (−ṽy(y))Y

0
t

)
. It remains to make the change of variable y 7→ y/Y 0

t , to obtain the

marginal dual conjuguate

Ṽ m
y (t, y) = X∗,m

t (−ṽy(y/Y
0
t )) = Ũm

y

(
t, umx (−ṽy(y/Y

0
t ))Y

0
t

)
.

Obviously, by this transformation we lose the decreasing property in time of Ṽ m
y (t, y) since

umx (−ṽy(y/Y
0
t ))Y

0
t is no more a decreasing process. The same kind of construction may be made

when the optimal dual process yY 0
t is replaced by a monotonic one.

Note, similar ideas are developed in [5] to build richer classes of utilities.

Conclusion In this new approach, the solution of the utility SPDE have a pathwise represen-

tation, unlike to the characteristics method where the solutions are represented as a conditional

expectation. There are several advantages of this connection between SPDEs and SDEs due to the

many results of the SDE theory. To the best of our knowledge, there are no or few results that

assert the monotonicity or the convexity of such solutions. Also, there may be other advantages

in numerical methods and simulations of the SDE than of SPDE.

Otherwise, this paper investigates consistent stochastic utilities from the SPDE point of view.

This leads therefore to make strong regularity assumptions: the market is a Brownian market

and securities are modeled as continuous semimartingales. Utilities are at least of class K2 in the

sense of Kunita in order to apply Itô-Ventzel’s formula and to deduce the SPDEs. Moreover, the

method of stochastic utilities construction is based on the dynamics of stochastic flows and their

inverses, and therefore additional regularity assumptions on X∗ and Y ∗ are required. However,

one can take a direct approach still based on monotonicity assumptions on optimal processes for

the primal and dual problem, and on compound flows formula ; it is showed in [6], that these

assumptions can be considerably weakened. Indeed, considering any financial market in which

the securities are modeled as bounded semimartingales, the stochastic utilities are of class K1 and

wealth process are required to lie in a convex class X ⊂ X
+, the monotonicity assumption of X∗

and Y ∗ is sufficient to show the validity of the construction proposed in this work, using analysis

methods and optimality conditions.
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