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Abstract

In this paper a new multiscale modeling technique is proposed. It
relies on a recently introduced measure-theoretic approach, which allows
to manage the microscopic and the macroscopic scale under a unique
framework. In the resulting coupled model the two scales coexist and
share information. This allows to perform numerical simulations in which
the trajectories and the density of the particles affect each other. Crowd
dynamics is the motivating application throughout the paper.

1 Introduction

Modeling group dynamics of living systems, such as groups of animals or hu-
man crowds, is a difficult task because one can only partially rely on the well-
established theories of classical mechanics. Mathematical models must take into
account several features of living matter: for example, individuals are not pas-
sively dragged by external forces, instead they have a decision-based dynamics;
they experience nonlocal interactions, since they are able to see even far group
mates and make decisions consequently; interactions can be metric (i.e., with
group mates less than a threshold apart) or topological (i.e., with a fixed num-
ber of group mates no matter how far they are) [1]; interactions are strongly
anisotropic because the subjects have a limited visual field, and mechanisms
for collision avoidance are expected to be mainly directed toward group mates
in front [9]; individuals are different from each other, each of them having for
instance her/his own goal, reaction time, and maximal velocity.

One of the most interesting consequences of these characteristics is the emer-
gence of self-organization. Individuals can deploy themselves to give rise to ap-
parently ordered and coordinated configurations or patterns [21]. We cite, for
example, clusters by starlings [1], lines by elephants, penguins, and lobsters,
V-like formations by geese, lanes by pedestrians [15, 18]. Actually such group
configurations are not the result of a common decision made by the individuals
or by a leader. Instead, they stem from simple rules followed by each individual,
which takes into account the position/velocity of a few group mates. It is then
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possible that a single individual does not even perceive the global structure of
the group it is part of.

In this paper we focus on crowd dynamics, which in the last few years has
been the object of many mathematical models. In the microscopic (i.e., agent-
based) approach pedestrians are considered individually. Models usually consist
of a (large) system of ordinary differential equations, each of which describes the
behavior of a single pedestrian [14, 15, 17, 25, 28]. In the macroscopic approach
pedestrians are instead described by means of their average density, which in
most models obeys conservation or balance laws [2, 5, 7, 16, 19].

It is not fair to state that either approach is better for whatever problem.
Rather, it is clear that a microscopic approach is advantageous when one wants
to model differences among the individuals, random disturbance, or small envi-
ronments. Moreover, it is the only reliable approach when one wants to track ex-
actly the position of a few walkers. On the other hand, it may not be convenient
to use a microscopic approach to model pedestrian flow in large environments,
due to the high computational effort required. A macroscopic approach may
be preferable to address optimization problems and analytical issues, as well as
to handle experimental data. Nonetheless, despite self-organization phenomena
are often visible only in large crowds [13], they are a consequence of strategical
behaviors developed by individual pedestrians.

In [10, 29, 30] we have extensively analyzed a measure-based modeling frame-
work able to describe group behavior at both the microscopic and the macro-
scopic scale. The key point is the reinterpretation of the classical conservation
laws in terms of abstract mass measures, which are then specialized to singular
Dirac measures for microscopic models and to absolutely continuous measures
(w.r.t. Lebesgue, i.e., the volume measure) for macroscopic models. We have
shown [10] that the two scales may reproduce the same features of the group be-
havior, thus providing a perfect matching between the results of the simulations
for the microscopic and the macroscopic model in some test cases. This moti-
vated the multiscale approach that we propose here. Such an approach allows
to keep a macroscopic view without losing the right amount of “granularity”,
which is crucial for the emergence of some self-organized patterns. Further-
more, the proposed method allows to introduce in a macroscopic (averaged)
context some microscopic effects, such as random disturbances or differences
among the individuals, in a fully justifiable manner from both the physical and
the mathematical perspective. In the model that we propose, microscopic and
macroscopic scales coexist and continuously share information on the overall dy-
namics. More precisely, the microscopic and the macroscopic part of the model
track the trajectories of single pedestrians and the density of pedestrians, re-
spectively, using the same evolution equation duly interpreted in the sense of
measures. In this respect, the two scales are indivisible. This makes the differ-
ence from other ways of understanding multiscale approaches in the literature.
For example, in [31] a multiscale geometric technique is used to represent the cir-
culatory system: one specific part of the network is accurately modeled in three
dimensions, whereas the rest is described by means of lumped zero-dimensional
models. This enables one to account for the whole circulatory network while
keeping the complexity of the model under control. Multiscale methods can be
implemented also at a numerical level in connection with domain decomposition
(see e.g., [11, 33]), in order to compute the solution to a certain equation with
different local accuracy. The general idea is to couple accurate but expensive
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calculations, performed by a microscopic (e.g., particle-based) solver in small
and inhomogeneous regions, with less accurate but also less expensive ones,
performed by a macroscopic (e.g., continuum) solver in large and homogeneous
regions. The two solvers usually exchange information at the interface of the
respective regions. Another possibility (see e.g., [20]) is to alternate the two
scales for computing on the same system. In the resulting iterative algorithm,
the output of the microscopic simulation is used as input for the macroscopic
simulation and vice versa. A further way to understand the multiscale approach
is through upscaling procedures. In this case, the ultimate goal is to pass from
a detailed but often inhomogeneous description of some quantities to a rougher
but more homogeneous representation, by averaging out inhomogeneities via
homogenization techniques (see e.g., [3]).

It is worth pointing out that the dichotomy fine vs. coarse scale does not
necessarily imply a parallel dichotomy ODE vs. PDE modeling. In other words,
it is possible that the underlying mathematical models pertain to the contin-
uum theory at both scales (like in most of the examples recalled above) or that
the multiscale coupling between a discrete and a continuous model is realized
only at an approximate computational level by averaging and sampling. Con-
versely, in the multiscale approach we propose here, the microscopic scale is
actually a discrete one which complements the continuous flow with granular-
ity. The resulting model is then a coupled microscopic-macroscopic one, and
computational schemes are derived accordingly.

The paper is organized as follows. Section 2 introduces the measure-theoretic
framework and models pedestrian kinematics. Section 3 details the multiscale
approach, addressing in particular the choice of microscopic and macroscopic
parameters and their scaling. Section 4 introduces and qualitatively analyzes
a discrete-in-time counterpart of the multiscale model. Section 5 proposes a
numerical approximation of the equations, with special emphasis on the dis-
cretization in space of the macroscopic scale, and explains in detail the resulting
numerical algorithm. Section 6 discusses the results of numerical simulations
in some case studies aimed at checking the effects of the multiscale coupling on
the crowd dynamics predicted by the model. Section 7 finally draws conclusions
and briefly sketches research perspectives.

2 Mathematical modeling by time-evolving mea-
sures

From the mathematical point of view the mass of a d-dimensional system (d =
1, 2, 3 for physical purposes) at time t is a Radon positive measure µt, that we
assume to be defined on the Borel σ-algebra B(Rd). For any E ∈ B(Rd) the
number µt(E) ≥ 0 gives the mass of pedestrians contained in E at time t ≥ 0.
In principle, the only further property satisfied by µt is the σ-additivity, directly
translating the principle of additivity of the mass.

Let T > 0 denote a certain final time. Following [4], the conservation of the
mass transported by a velocity field v = v(t, x) : [0, T ]× Rd → Rd is expressed
by the equation

∂µt
∂t

+∇ · (µtv) = 0, (x, t) ∈ Rd × (0, T ], (1)
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along with some given initial distribution of mass µ0 (initial condition). Deriva-
tives appearing in Eq. (1) are meant in the functional sense of measures. Specif-
ically, for every smooth test function φ with compact support, i.e., φ ∈ C1

0 (Rd),
and for a.e. t ∈ [0, T ], it results

d

dt

∫
Rd

φ(x) dµt(x) =

∫
Rd

v(t, x) · ∇φ(x) dµt(x), (2)

where integration-by-parts has been used at the right-hand side. A sufficient
condition for Eq. (2) to be well-defined is that v(t, ·) is integrable w.r.t. µt for
a.e. t ∈ [0, T ].

A family of time-evolving measures {µt}t>0 is said to be a (weak) solution
to Eq. (1) if, for all φ ∈ C1

0 (Rd), the mapping t 7→
∫
Rd φ(x) dµt(x) is absolutely

continuous and satisfies Eq. (2). In particular, the latter statement means

∫
Rd

φ(x)dµt2(x)−
∫
Rd

φ(x)dµt1(x) =

t2∫
t1

∫
Rd

v(t, x) · ∇φ(x) dµt(x) dt (3)

for all t1, t2 ∈ [0, T ], t1 ≤ t2, and all φ ∈ C1
0 (Rd).

Modeling the interactions among pedestrians

Equation (1) provides the evolution of the measure µt as long as the velocity is
specified. In our case, given the absence of a balance of linear momentum, this
implies modeling directly the field v. For this reason, our approach will result
in a first-order model.

First-order models are quite common in the literature, especially at the
macroscopic scale. The velocity can be either specified as a known function
[26] or linked to the density of pedestrians by means of empirical fundamental
relations v = v(ρ) [6, 19, 32]. Sometimes a functional dependence on the den-
sity gradient is envisaged, in order to model the sensitivity of pedestrians to
the variations of the surrounding density field [2, 7]. Microscopic models focus
instead more closely on the interactions among pedestrians, normally expressing
them in terms of generalized forces. They resort therefore to a classical New-
tonian paradigm, in which the acceleration is modeled explicitly [12, 14]. We
remark, however, that in [27, 28] the authors adopt a kinematic modeling of the
interactions in the frame of a microscopic model.

With the aim of setting up a model based on the mass conservation only, but
in which the microscopic granularity complements the macroscopic dynamics,
we cannot entirely resort either to generalized forces or to fundamental relations.
Taking advantage of the mass conservation equation in the form (2), which does
not assume a priori any modeling scale, our approach will be at the same time
kinematic, macroscopic, and focused on the strategy developed by pedestrians
at the microscopic scale.

To be more specific, let the velocity be expressed in the following form:

v(t, x) := v[µt](x) = vdes(x) + ν[µt](x), (4)

the square brackets denoting functional dependence on the measure µt.
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The function vdes : Rd → Rd is the desired velocity, i.e., the velocity that
pedestrians would set to reach their destination if they did not experience mu-
tual interactions. In the simplest case it is a constant field, whereas in more
complicated situations it accounts for the presence of possible obstacles to be
bypassed (e.g., pedestrians walking in built environments). In our approach the
desired velocity is deduced a priori from the geometry of the domain, meaning
that it is totally independent of the measure µt. In other words, it can be re-
garded to all purposes as a datum of the problem. It is not restrictive to assume
that it has constant modulus:

|vdes(x)| = V, ∀x ∈ Rd, (5)

where V represents some characteristic speed of the walkers. We refer the reader
to [30] for a possible method to construct vdes.

The function ν[µt] : Rd → Rd is the interaction velocity, that is, the correc-
tion that pedestrians make to their desired velocity in consequence of the in-
teractions. The non-locality of the interactions is introduced in this framework
by deriving ν[µt] from a synthesis of the information on the crowd distribution
around each pedestrian. Specifically, we assume

ν[µt](x) =

∫
Rd\{x}

f(|y − x|)g(αxy)
y − x
|y − x|

dµt(y), (6)

where:

• f : R+ → R is a function with compact support describing how the walker
in x interacts with her/his neighbors on the basis of their distance. If
supp f = [0, R] for some R > 0, then a neighborhood of interaction is
defined for the point x coinciding with the ball BR(x) ⊂ Rd centered in x
with radius R;

• αxy ∈ [−π, π] is the angle between the vectors y − x and vdes(x), that is,
the angle under which a point y is seen from x with respect to the desired
direction of motion;

• g : [−π, π] → [0, 1] is a function which reproduces the angular focus of
the walker in x.

Integration w.r.t. µt accounts for the mass that the walkers see, considering
that two fundamental attitudes characterize pedestrian behavior:

• repulsion, i.e., the tendency to avoid collisions and crowded areas;

• attraction, i.e., the tendency, under some circumstances, to not lose the
contact with other group mates (e.g., groups of tourists in guided tours,
groups of people sharing specific relationships such as families or parties).

Focusing on one of the simplest choices, nonetheless physiologically sound,
we suggest for f the following expression:

f(s) = −Fr
s
χ[0, Rr](s) + Fasχ[0, Ra](s), (7)
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where Fr, Fa > 0 are repulsion and attraction strengths, and Rr, Ra > 0 are
repulsion and attraction radii. This form of f translates the basic idea that
repulsion and attraction are inversely and directly proportional, respectively, to
the distance separating the interacting pedestrians.

As pointed out in the Introduction, interactions can be either metric or
topological. An interaction is metric if the corresponding radius is fixed, so
that each walker interacts with all other pedestrians within that given maximum
distance. Conversely, an interaction is topological if the corresponding radius
is adjusted dynamically by each walker, in such a way that the neighborhood
of interaction encompasses a predefined mass of other pedestrians s/he feels
comfortable to interact with. In this paper we will be mainly concerned with
metric interactions, for both repulsion and attraction. The interested reader is
referred to [1, 10], and references therein, for a detailed discussion of metric and
topological effects, also by means of examples and numerical simulations.

The function g carries the anisotropy of the interactions, which essentially
consists in that pedestrians cannot see all around them and they are not equally
sensitive to external stimuli coming from different directions. If ᾱ ∈ [0, π] is the
maximum sensitivity angular width, a very simple form of g is

g(s) = χ{|s|≤ᾱ}(s), s ∈ [−π, π]. (8)

By mollifying this function it is possible to account for the visual fading that
usually occurs laterally in the visual field when approaching the maximum an-
gular width1.

3 The multiscale approach

The framework presented in Section 2 is suitable to obtain, as particular cases,
models at both the microscopic and the macroscopic scale. In this section we
first briefly review the methodology for their individual derivation, already pro-
posed in [10] to study microscopic and macroscopic self-organization in animal
groups and crowds. Then, exploiting the tools offered by the measure-theoretic
setting, we merge these concepts into a unique multiscale model, in which the
microscopic and the macroscopic dynamics coexist.

3.1 Microscopic models

Let us consider a population of N pedestrians, whose positions at time t are
denoted {Pj(t)}Nj=1. In this case the mass of a set E ∈ B(Rd) is the number of
pedestrians contained in E, that is:

µt(E) = card{Pj(t) ∈ E},

hence µt is the counting measure. We represent it as a sum of Dirac masses,
each centered in one of the Pj ’s:

µt =

N∑
j=1

δPj(t).

1In order to differentiate also the maximum angular widths of repulsion and attraction
[9], one may generalize Eq. (6) by replacing the product of f and g with a function of two
variables accounting simultaneously for |y − x| and αxy .
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Plugging this in Eq. (2) gives

d

dt

N∑
j=1

φ(Pj(t)) =

N∑
j=1

v(t, Pj(t)) · ∇φ(Pj(t)), ∀φ ∈ C1
0 (Rd), (9)

whence, taking the time derivative at the left-hand side and rearranging the
terms,

N∑
j=1

[
Ṗj(t)− v(t, Pj(t))

]
· ∇φ(Pj(t)) = 0,

the dot over Pj standing for derivative w.r.t. t. The arbitrariness of φ implies

Ṗj(t) = v[µt](Pj(t)), j = 1, . . . , N, (10)

where we have set v(t, Pj(t)) = v[µt](Pj(t)) according to Eq. (4), therefore the
microscopic model specializes in a dynamical system of N coupled ODEs for
the Pj ’s. The coupling is realized by the measure µt in the velocity field. In
particular, the microscopic counterpart of Eq. (6) reads

ν[µt](Pj) =
∑

k=1, ..., N
Pk 6=Pj

f(|Pk − Pj |)g(αkj)
Pk − Pj
|Pk − Pj |

,

where αkj ∈ [−π, π] is shorthand for the angle formed by the vectors Pk − Pj
and vdes(Pj). We point out that, with the function f given by Eq. (7), the
statement Pk 6= Pj in the above formula can be converted into the milder one
k 6= j. Indeed one can prove that if the Pj ’s are initially all distinct they remain
distinct at all successive times t > 0 (see [9] for technical details).

3.2 Macroscopic models

Macroscopic models are based on the assumption that the matter is continuous,
thus the measure µt is absolutely continuous w.r.t. the d-dimensional Lebesgue
measure Ld, µt � Ld. Radon-Nikodym’s Theorem asserts that there exists a
function ρ(t, ·) ∈ L1

loc(Rd) such that

dµt = ρ(t, ·) dLd, ρ(t, ·) ≥ 0 a.e., (11)

called the density of µt w.r.t. Ld. In our context ρ(t, x) represents the density
of pedestrians at time t in the point x.

Using ρ, the mass conservation equation (2) rewrites as

d

dt

∫
Rd

ρ(t, x)φ(x) dx =

∫
Rd

ρ(t, x)v(t, x) · ∇φ(x) dx, ∀φ ∈ C1
0 (Rd), (12)

namely a weak form of the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (13)

The interaction velocity specializes as

ν[µt](x) =

∫
Rd

f(|y − x|)g(αxy)
y − x
|y − x|

ρ(t, y) dy

where it should be noticed that the domain of integration may now indifferently
include or not the point x because {x} is a Lebesgue-negligible set.
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3.3 Multiscale models

If the measure µt is neither purely atomic nor entirely absolutely continuous
w.r.t. Ld but includes both parts, we get models that incorporate the micro-
scopic granularity of pedestrians in the macroscopic description of the crowd
flow. More specifically, we consider

µt = θmt + (1− θ)Mt, (14)

where

mt =

N∑
j=1

δPj(t), dMt(x) = ρ(t, x) dx

are the microscopic and the macroscopic mass, respectively. The parameter
θ ∈ [0, 1] weights the coupling between the two scales, from θ = 0 corresponding
to a purely macroscopic model to θ = 1 corresponding to a purely microscopic
model. In Eq. (14) no scaling parameters explicitly appear, but we anticipate
that they will arise naturally from our next dimensional analysis (cf. Section
3.4).

Using the measure (14), the mass conservation equation (2) takes the form
of a mix of microscopic and macroscopic contributions:

d

dt

(
θ

N∑
j=1

φ(Pj(t)) + (1− θ)
∫
Rd

ρ(t, x)φ(x) dx

)
=

θ

N∑
j=1

v(t, Pj(t)) · ∇φ(Pj(t)) + (1− θ)
∫
Rd

ρ(t, x)v(t, x) · ∇φ(x) dx, ∀φ ∈ C1
0 (Rd),

formally a convex linear combination of Eqs. (9), (12). The interaction velocity
ν[µt] is now given by

ν[µt](x) = θ
∑

k=1, ..., N
Pk(t)6=x

f(|Pk(t)− x|)g(αxPk(t))
Pk(t)− x
|Pk(t)− x|

+ (1− θ)
∫
Rd

f(|y − x|)g(αxy)
y − x
|y − x|

ρ(t, y) dy,

therefore it coincides neither with the fully microscopic nor with the fully macro-
scopic one. This definitely makes the overall dynamics not a simple superposi-
tion of the individual microscopic and macroscopic dynamics.

It is worth noticing that the point x may or may not be one of the po-
sitions of the microscopic pedestrians. Computing ν[µt] for x = Pj(t) shows
that the interaction velocity of the j-th pedestrian accounts not only for other
microscopic pedestrians contained in the neighborhood of interaction but also
for the macroscopic density distributed therein, which represents some crowd
whose subjects are not individually modeled. Specifically, the term responsible
for this is ∫

Rd

f(|y − Pj(t)|)g(αPj(t)y)
y − Pj(t)
|y − Pj(t)|

ρ(t, y) dy, (15)
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that we may regard as the macroscopic contribution to the microscopic dynam-
ics. Analogously, computing ν[µt] for x different from all of the Pj ’s shows
that the interaction velocity of an infinitesimal reference volume centered in x
depends not only on the density distributed in the neighborhood of interaction
but also on the microscopic pedestrians therein, which play the role of singular-
ities in the average crowd distribution due to the granularity of the flow. The
corresponding term is∑

k=1, ..., N
Pk(t)6=x

f(|Pk(t)− x|)g(αxPk(t))
Pk(t)− x
|Pk(t)− x|

, (16)

which gives the microscopic contribution to the macroscopic dynamics.

3.4 Dimensional analysis

In order to scale correctly the microscopic and the macroscopic contributions,
it is convenient to refer to the non-dimensional form of the model. For this, let
us preliminarily notice that the main quantities involved in the equations have
the following dimensions:

• [t] = time

• [x] = length

• [vdes] = [ν] = length/time

• [f ] = length/(time × pedestrians)

• [µt] = pedestrians

• [ρ] = pedestrians/lengthd

where “pedestrians” is actually a dimensionless unit. Additionally, g and θ are
dimensionless. Let L, V , % be characteristic values of length, speed, and density
(in particular, V may be the desired speed introduced in Eq. (5)) to be used to
define the following non-dimensional variables and functions:

x∗ =
x

L
, t∗ =

V

L
t, ν∗[µ∗t∗ ](x∗) =

1

V
ν[µ L

V t
∗ ](Lx∗),

f∗(s∗) =
1

V
f(Ls∗), ρ∗(t∗, x∗) =

1

%
ρ

(
L

V
t∗, Lx∗

)
, P ∗j (t∗) =

1

L
Pj

(
L

V
t∗
)
.

Notice that, due to the choice of V as characteristic speed, the dimensionless
desired velocity v∗des turns out to be a unit vector.

In more detail, the non-dimensional mass measure µ∗t∗ is given by

dµ∗t∗(x∗) = dµ L
V t

∗(Lx∗)

= θ
∑
j δLP∗

j (t∗)(Lx
∗) + (1− θ)%Ldρ∗(t∗, x∗) dx∗

= θ
∑
j δP∗

j (t∗)(x
∗) + (1− θ)Λρ∗(t∗, x∗) dx∗

= θm∗t∗(x∗) + (1− θ)ΛM∗t∗(x∗)
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where we have set Λ := %Ld and we have recognized the dimensionless micro-
scopic and macroscopic masses:

m∗t∗ =

N∑
j=1

δP∗
j (t∗), dM∗t∗(x∗) = ρ∗(t∗, ·) dx∗.

We notice that the coefficient Λ has unit [Λ] = pedestrians, therefore it is a non-
dimensional number fixing the scaling between the microscopic and the macro-
scopic mass. It says how many pedestrians are represented, in average, by a
unit density ρ∗ in the infinitesimal reference volume dx∗.

Remark. The measure

µ∗t∗ = θm∗t∗ + (1− θ)ΛM∗t∗ (17)

can be read as a linear interpolation between the microscopic and the macro-
scopic mass via the parameter θ, provided m∗t∗(Rd), M∗t∗(Rd) are, up to scaling,
the same mass, i.e., m∗t∗(Rd) = ΛM∗t∗(Rd). As we will see later (cf. Corollary 2),
in the multiscale model the microscopic and macroscopic mass are individually
conserved in time, hence this can be achieved by setting

Λ =
m∗0(Rd)
M∗0 (Rd)

=
N

M∗0 (Rd)
(18)

as long as 0 < N, M∗0 (Rd) < +∞.

In the following we will invariably refer to the non-dimensional form of the
equations, omitting the asterisks on the non-dimensional variables for brevity.

4 Discrete-in-time model

In this section we derive a discrete-in-time counterpart of the multiscale model,
that will help us gain some insights into the qualitative properties of the math-
ematical structures previously outlined. In addition, it will serve as a first step
to devise a numerical scheme for the approximate solution of the equations.

Let ∆tn > 0 be a possibly adaptive time step and let us introduce a sequence
of discrete times {tn}n≥0 such that t0 = 0 and tn+1 − tn = ∆tn. Denoting
µn := µtn , from Eq. (3) with the choice t1 = tn, t2 = tn+1 we get

∫
Rd

φ(x) dµn+1(x)−
∫
Rd

φ(x) dµn(x) =

tn+1∫
tn

∫
Rd

v(t, x) · ∇φ(x) dµt(x) dt

= ∆tn

∫
Rd

v(tn, x) · ∇φ(x) dµn(x) + o(∆tn),

whence∫
Rd

φ(x) dµn+1(x) =

∫
Rd

[φ(x) + ∆tn v(tn, x) · ∇φ(x)] dµn(x) + o(∆tn).
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At this point let us explicitly assume that µn(Rd) < +∞. If v(tn, ·) is µn-
uniformly bounded then φ(x) + ∆tn v(tn, x) · ∇φ(x) = φ(x + ∆tn v(tn, x)) +
o(∆tn), thus∫

Rd

φ(x) dµn+1(x) =

∫
Rd

φ(x+ ∆tn v(tn, x)) dµn(x) + o(∆tn).

Defining the flow map γn(x) := x+v(tn, x)∆tn and neglecting the term o(∆tn),
we are finally left with∫

Rd

φ(x) dµn+1(x) =

∫
Rd

φ(γn(x)) dµn(x), (19)

which makes sense actually for every bounded and Borel function φ. Choosing
φ = χE for some measurable set E ∈ B(Rd) entails

µn+1(E) = µn(γ−1
n (E)), ∀E ∈ B(Rd),

meaning that µn+1 is the push forward of µn via the flow map γn, also written
µn+1 = γn#µn. Equation (19) provides a discrete-in-time counterpart of Eq.
(3). Obviously, it requires to be supplemented by an initial condition µ0 in order
for the sequence {µn}n≥1 to be recursively generated.

Notice that, with the velocity field (4), it results v(tn, x) = v[µn](x) with in
particular:

ν[µn](x) = θ
∑

k=1, ..., N
Pn

k 6=x

f(|Pnk − x|)g(αxPn
k

)
Pnk − x
|Pnk − x|

+ (1− θ)Λ
∫
Rd

f(|y − x|)g(αxy)
y − x
|y − x|

ρn(y) dy, (20)

where Pnk := Pk(tn) and ρn := ρ(tn, ·).

Preserving the multiscale structure of the measure

Recall that in the multiscale model we assumed that our measure is composed
by a microscopic granular and a macroscopic continuous mass2. Of course, this
is just a formal assumption made to write the model. From the analytical point
of view, it need be proved that such a measure can be actually a solution to our
equations.

Set mn := mtn , Mn := Mtn , so that, owing to Eq. (17), the measure µn can
be given the form

µn = θmn + (1− θ)ΛMn. (21)

The following result clarifies the role played by the flow map γn in preserving
the multiscale structure of µn after one time step.

2With respect to the general structure of a measure as provided by Riesz’s Theorem, this
means that we are in particular excluding the Cantor’s part.
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Theorem 1. Let a constant Cn > 0 exist such that

Ld(γ−1
n (E)) ≤ CnLd(E), ∀E ∈ B(Rd). (22)

Given µn as in Eq. (21), there exist both a unique atomic measure mn+1 and
a unique Lebesgue-absolutely continuous measure Mn+1, with a.e. nonnegative
density, such that µn+1 = θmn+1 + (1− θ)ΛMn+1.

Proof. 1. Using the linearity of the operator γn#·, the measure µn+1 is given
by

µn+1 = θ(γn#mn) + (1− θ)Λ(γn#Mn).

2. Let us define
mn+1 := γn#mn.

A direct calculation shows that such a mn+1 is in fact an atomic measure. For
any measurable set E ∈ B(Rd) we compute:

(γn#mn)(E) = mn(γ−1
n (E)) =

N∑
j=1

δPn
j

(γ−1
n (E))

= card{γn(Pnj ) ∈ E}

=

N∑
j=1

δγn(Pn
j )(E),

hence mn+1 as defined above is in turn a combination of Dirac masses centered
in the new positions {Pn+1

j }Nj=1 given by

Pn+1
j := γn(Pnj ) = Pnj + v[µn](Pnj )∆tn. (23)

3. Analogously, let us define

Mn+1 := γn#Mn.

We claim that, under the hypothesis of the theorem, this measure is absolutely
continuous w.r.t. Ld. To see this, let E ∈ B(Rd) be such that Ld(E) = 0. Then
Ld(γ−1

n (E)) ≤ CnLd(E) = 0, whence, using that Mn � Ld by assumption, we
get Mn+1(E) = Mn(γ−1

n (E)) = 0 and the claim follows.
4. To show the non-negativity of the density of Mn+1 we take the Radon-

Nikodym derivative. Then we discover, for a.e. x,

ρn+1(x) = lim
r→0+

Mn+1(Br(x))

Ld(Br(x))
= lim
r→0+

1

ωdrd

∫
γ−1
n (Br(x))

ρn(y) dy,

where ωd is the volume of the unit ball in Rd. Since ρn is a.e. nonnegative by
assumption, the same holds for ρn+1 and we are done.

5. Finally, uniqueness of mn+1, Mn+1 is implied by the uniqueness of the
Radon-Nikodym decomposition of a measure.

The proof of Theorem 1 is constructive, indeed it shows explicitly how to
obtain the measure µn+1 starting from µn: one simply pushes forward separately
the microscopic and the macroscopic mass via the common flow map γn.

By referring to the results proved in [29], we can state some additional
properties of the measure µn.
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Corollary 2. If γn satisfies (22) for all n ≥ 0 and the initial measure µ0

complies with the form (21) then:

1. there exists a unique sequence of atomic measures {mn}n≥1 and a unique
sequence of positive Lebesgue-absolutely continuous measures {Mn}n≥1

such that µn has the form (21) for all n ≥ 1;

2. the measure µn satisfies the following conservation law:

µn+1(E)− µn(E) = −
[
µn(E \ γ−1

n (E))− µn(γ−1
n (E) \ E)

]
(24)

for all E ∈ B(Rd). In particular, both mn and Mn satisfy this law sepa-
rately at each time step;

3. if ρ0 ∈ L∞loc(Rd) then ρn ∈ L∞loc(Rd) for all n ≥ 1, with moreover

ess sup
x∈E

|ρn(x)| ≤
n−1∏
j=0

Cj ess sup
x∈E

|ρ0(x)|

for all compact set E ⊂ Rd, where the Cj’s are those appearing in the
statement of Theorem 1.

Proof. 1. Existence and uniqueness of microscopic and macroscopic masses have
been proved in Theorem 1 for one time step, hence they follow for all times n ≥ 1
by induction.

2. In view of the σ-additivity of the measure we have, for all E ∈ B(Rd),

µn+1(E) = µn(γ−1
n (E) ∩ E) + µn(γ−1

n (E) \ E).

Subtracting µn(E) at both sides and collecting conveniently gives

µn+1(E)− µn(E) = −
[
µn(E)− µn(γ−1

n (E) ∩ E)
]

+ µn(γ−1
n (E) \ E)

whence, observing that E = (γ−1
n (E) ∩ E) ∪ (E \ γ−1

n (E)) with disjoint union,
the thesis follows. Since we know from Theorem 1 that mn+1, Mn+1 are in turn
generated by push forward with γn, this reasoning can be repeated to find that
each of them fulfills the very same conservation law.

3. In [29] it is proved that ρn ∈ L∞loc(Rd) implies ρn+1 ∈ L∞loc(Rd) as well,
with ess supx∈E |ρn+1(x)| ≤ Cn ess supx∈E |ρn(x)|. Thus proceeding by induc-
tion from n = 0 we get the result.

Some comments on the results of this section are in order.

(i) The main assumption of both Theorem 1 and Corollary 2 is that the flow
map γn satisfies Eq. (22). In general it may be hard to check the validity
of this property directly but in [29] it is proved that a sufficient condition
for it to hold true is that the velocity v[µn] be Lipschitz continuous and
that the time step be chosen so that ∆tn Lip(v[µn]) < 1, n = 0, 1, 2, . . . .

(ii) Equation (24) states that the variation of the mass of a set E in one time
step is due to the net mass inflow or outflow across ∂E. Indeed, E\γ−1

n (E)
is the subset of E which is not mapped into E by γn (outgoing flux), and
γ−1
n (E) \E is the subset of Rd \E which is mapped into E by γn (ingoing

flux).
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(iii) Choosing E = Rd in Eq. (24) yields µn+1(Rd) = µn(Rd), i.e., the conser-
vation of the total mass at each time step. If µ0(Rd) < +∞ then the mass
is finite for all n, therefore, up to normalization, the µn’s may be regarded
as probability measures. Furthermore, since Eq. (24) applies separately
also to mn and Mn, both the total microscopic and the total macroscopic
masses are conserved in time.

5 Numerical approximation of the equations

As anticipated at the beginning of Section 4, the discrete-in-time model provides
a first discretization of the equations, which would be sufficient for tracking the
microscopic mass (cf. Eq. (23)). However, the macroscopic mass requires a
further discretization in space in order to come to a full approximation of the
density ρ. Notice that, in principle, one may refer to Eq. (13) and rely on the
wide literature on numerical methods for nonlinear hyperbolic conservation laws
[24]. Nevertheless, aside from the intrinsic complication due to the multidimen-
sional nature of the equations, this strategy poses several nontrivial technical
difficulties. For example, it demands a correct definition of the convection ve-
locity (i.e., formally the derivative of the flux ρv with respect to the density)
in presence of nonlocal multiscale fluxes, as well as a consistent formulation of
entropy-like criteria for picking up physically significant solutions. All these
issues are instead bypassed if one maintains the measure-theoretic formalism.

For the discretization in space of the density ρn we partition the domain
in pairwise disjoint d-dimensional cells Ei ∈ B(Rd), where i ∈ Zd is an integer
multi-index, sharing a characteristic size h > 0 such that Ld(Ei) → 0 for all i
when h → 0+ (for instance, h ∼ diamEi). Every cell is further identified by
one of its points xi, e.g., its center in case of regular cells.

We approximate ρn by a piecewise constant function ρ̃n on the numerical
grid:

ρ̃n(x) ≡ ρni , ∀x ∈ Ei,

where ρni ≥ 0 is the value that ρ̃n takes in the cell Ei. Consequently, the measure
Mn is approximated by the piecewise constant measure dM̃n = ρ̃n dLd, which
entails the approximation µ̃n = θmn + (1− θ)ΛM̃n for µn.

Analogously, we approximate the velocity v[µn] by a piecewise constant field

ṽ[µ̃n](x) ≡ vni , ∀x ∈ Ei,

where the values vni ∈ Rd are computed as vni = v[µ̃n](xi). The discretization
of the velocity gives rise to the following discrete flow map:

γ̃n(x) = x+ ṽ[µ̃n](x)∆tn,

which turns out to be a piecewise translation because ṽ[µ̃n] is constant in each
cell.

Finally, we look for a piecewise constant approximation M̃n+1 of Mn+1 by
imposing the push forward of M̃n via the flow map γ̃n:

M̃n+1(E) = M̃n(γ̃−1
n (E)), ∀E ∈ B(Rd).
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In particular, choosing E = Ei yields

ρn+1
i =

1

Ld(Ei)
∑
k∈Zd

ρnkLd(Ei ∩ γ̃n(Ek)), ∀ i ∈ Zd, (25)

which provides a time-explicit scheme to compute the coefficients of the density
ρ̃n+1 from those of ρ̃n. Notice in particular that γ̃n(Ek) is simply the set Ek +
vnk∆tn.

Notice that this scheme is positivity-preserving, in the sense that ρ̃n ≥ 0
implies ρ̃n+1 ≥ 0 as well, hence, by induction, ρ̃0 ≥ 0 implies ρ̃n ≥ 0 for all
n > 0. Such a basic property is not as straightforward in usual numerical
schemes for hyperbolic conservation laws. Indeed, unless suitable corrections
are implemented, the latter may develop oscillations leading to locally negative
approximate solutions even when the exact solution is not expected to be so.

Furthermore, considering that γ̃n is a translation in each grid cell and using
the invariance of the Lebesgue measure under rigid transformations, we deduce∫
Rd

ρ̃n+1(x) dx =
∑
k∈Zd

ρnk
∑
i∈Zd

Ld(γ̃−1
n (Ei) ∩ Ek) =

∑
k∈Zd

ρnkLd(Ek) =

∫
Rd

ρ̃n(x) dx,

thus the approximate macroscopic mass M̃n is conserved in time.
The quality of the spatial discretization described above with respect to the

refinement of the grid, in the case of regular flow maps, is provided by the
following result.

Remark. At this point we assume explicitly that the domain of the problem is a
bounded set Ω ⊂ Rd, which for all fixed h > 0 is partitioned with a finite number
of grid cells (however tending to infinity when h → 0+). The multi-index i of
the grid cells runs in a finite subset I ⊂ Zd.

Theorem 3. Assume that γn is a diffeomorphism and let h, ∆tn be sufficiently
small and satisfying

max
i∈I

∆tn
h
|vni | ≤ 1. (26)

Then:

(i) There exists a constant Cn > 0, independent of h, such that

∑
i∈I
|Mn+1(Ei)− M̃n+1(Ei)| ≤ Cn

∫
Ω

|ρn(x)− ρ̃n(x)| dx+ h

 .

(ii) If v[µn](x) is uniformly bounded, there exists a constant C ′n > 0, indepen-
dent of h, such that

max
i∈I
|Mn(Ei)− M̃n(Ei)| ≤ max

i∈I
|M0(Ei)− M̃0(Ei)|+ C ′nh

d.

Proof. See [29].

In order to gain some control over the error introduced by the spatial dis-
cretization, Theorem 3 requires the CFL-like condition (26) to be satisfied at
each time step, similarly to numerical schemes for hyperbolic conservation laws.
However there is a remarkable difference from their CFL condition, namely that
Eq. (26) involves directly the flux velocity and not the convection velocity.
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The algorithm

Here we detail the numerical algorithm stemming from the above scheme, that
we use for simulations.

The algorithm combines a microscopic and a macroscopic part. The former
handles the evolution of pedestrian positions, updating a vector which stores the
values Pnj ∈ Rd. The latter manages instead the evolution of the density, and at
every time step it updates the values ρni at the grid cells. The two models evolve
by means of the same velocity field ṽ[µ̃n], thus guaranteeing coherence of the
final solution. This conceptual scheme is motivated by Theorem 1. The velocity
field must be defined at pedestrian positions {Pnj }Nj=1 for the microscopic part
and at the grid cells {Ei}i∈I for the macroscopic part.

Let us introduce the following superscripts:

• micro: quantities defined at pedestrian positions;

• macro: quantities defined at grid cells;

• micro-for-micro: microscopic quantities computed at pedestrian positions;

• micro-for-macro: microscopic quantities computed at grid cells;

• macro-for-micro: macroscopic quantities computed at pedestrian posi-
tions;

• macro-for-macro: macroscopic quantities computed at grid cells.

The algorithm consists of the following steps.

1. Initialization. We fix the number N of microscopic pedestrians that we
want to model, we define their positions, and we compute the coefficients
ρ0
i of the initial density according to a local average of the microscopic

mass, taking the scaling (18) into account. More precisely, we set:

ρ0
i =

m0(Bξ(xi))

ΛLd(Bξ(xi))
, i ∈ Zd,

where m0 is the microscopic mass at the initial time and Bξ(xi) is the ball
centered in the center of the grid cell Ei with radius ξ > 0. The latter is
tuned depending on the positions of the microscopic pedestrians, in such
a way that the relation Λ = m0(Rd)/M̃0(Rd) be satisfactorily fulfilled in
the numerical sense3 (M̃0 being the approximate macroscopic mass at the
initial time).

2. Microscopic part. At time t = tn we compute the sum at the right-hand
side of Eq. (20) for x = Pnj obtaining

ν̃micro-for-micro := ν̃[mn](Pnj ).

The same computation performed for x = xi gives instead

ν̃micro-for-macro := ν̃[mn](xi),

cf. Eq. (16), which will be shared with the macroscopic part of the code.

3Notice that if one replaces Bξ(xi) with the cell Ei then the measures m0, M̃0 satisfy the
scaling (18) exactly. However, averaging on a neighborhood a bit larger than a single grid
cell is essential in order to have a macroscopic density really distributed in space rather than
clustered in grid cells.



MULTISCALE MODELING OF GRANULAR FLOWS 17

3. Macroscopic part. At the same time instant t = tn we numerically evaluate
the integral at the right-hand side of Eq. (20) for x = xi, using the
approximate density ρ̃n in place of ρn. This way we obtain

ν̃macro-for-macro := ν̃[M̃n](xi).

Next we compute the same integral for x = Pnj , which yields

ν̃macro-for-micro := ν̃[M̃n](Pnj ),

cf. Eq. (15). In particular, the integrals involved in ν̃macro-for-macro and
ν̃macro-for-micro are numerically evaluated via a first order quadrature for-
mula. This component of the velocity field will be shared with the micro-
scopic part of the code.

4. Desired velocity. If the velocity field vdes is given analytically, the com-
putation of vmicro

des := vdes(P
n
j ) and of vmacro

des := vdes(xi) is immediate. If
instead vdes is defined on the numerical grid only, for instance because it
comes from the numerical solution of other equations [30], then vmicro

des is
computed by interpolation. Since we are assuming that all macroscopic
quantities are piecewise constant, we coherently choose a zeroth order
interpolation.

5. Overall velocity. We assemble the previous pieces as

ṽmicro : = ṽ[µ̃n](Pnj )

= vmicro
des + θν̃micro-for-micro + (1− θ)Λν̃macro-for-micro,

and analogously

ṽmacro : = ṽ[µ̃n](xi)

= vmacro
des + θν̃micro-for-macro + (1− θ)Λν̃macro-for-macro.

6. Computation of ∆t. We compute the largest time step ∆t allowed by
condition (26) for the macroscopic velocity field ṽmacro.

7. Advancing in time. We update pedestrian positions and density according
to Eqs. (23), (25) by means of ṽmicro and ṽmacro, respectively.

Remark. No matter what the value of θ is, the two approaches always coexist.
If θ = 0 the macroscopic scale is leading, and the microscopic pedestrians are
simply driven by the macroscopic velocity field. This is the classical way to
see flowing (Lagrangian) particles in a fluid, whose motion was previously com-
puted. Conversely, if θ = 1 the microscopic scale is leading, and the evolution of
the macroscopic density is reliable only if the number of microscopic pedestrians
is sufficiently large.

6 Numerical tests

In this section we present the results of numerical simulations performed with the
model and the algorithm described above. As natural for pedestrian flows, we
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Table 1: Summary of the parameters used in the numerical tests

Test N. θ N Λ Fr Fa Rr Ra

1 [0, 1] 100 10 0.1 0 0.5 N/A
2 [0, 1] 10, 100 10, 100 0.1 0 0.25 N/A
3 0, 0.3, 1 30 30 0.1 0 see text N/A
4 0.3 25 + 1 80 0.05 0.4 1.5 1.5

deal with two-dimensional (d = 2) bounded domains, say Ω ⊂ R2, confining the
attention to the restriction measure µtxΩ. This means that the mass possibly
flowing out of the domain is considered as lost, i.e., it no longer affects the
computation.

Sometimes we will deal with domains with obstacles understood as internal
holes. They require a careful handling of the velocity at their boundaries so
as to prevent it from pointing inward (which would imply unrealistic outflow
of mass). In order to have the mass bypass the obstacles, the velocity (4) is
projected onto a space of admissible velocities Vadm, which can be defined in
several ways depending on the pedestrian behavior one wants to model. Our
choice for the next examples is

Vadm = {v ∈ Rd : v · n ≥ 0 at every obstacle boundary},

where n is the outward normal unit vector at the obstacle boundaries. This
corresponds to setting to zero the normal component of the velocity (4) in case
it points into an obstacle. A different possibility is to set to zero both the normal
and the tangential component if the first one points into an obstacle. In the
former case pedestrians can slide along the obstacle walls following the tangential
velocity, whereas in the latter case they remain still against the obstacles until
no longer pushed by flowing neighbors. This choice may model, for instance,
a more relaxed condition in which walkers are not in a hurry to reach their
destination.

Concerning the parameters, we assume ᾱ = π/2 (frontal interaction) in all
tests, which is suitable for the most common situations encountered in pedes-
trian flow. We also assume no attraction between group mates but in the last
test (Test 4) in which we model the dynamics of a group of people following
a leader. Table 1 summarizes the values of all other parameters used in the
numerical tests.

Test 1: Dynamics of the interactions

In this first test we study the effect of the multiscale coupling on the rearrange-
ment of a crowd subject only to internal repulsion. The goal is to show that
it is possible to obtain a perfect correspondence between the microscopic and
the macroscopic dynamics in some simple cases, which originally motivated and
justified the possibility of a coupled multiscale approach [10].

To this purpose we switch the desired velocity off, so that the velocity v[µt]
coincides with the interaction velocity ν[µt]. (Actually, in order to compute the
angle αxy in Eq. (20) we conventionally assume vdes to be constantly directed
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Figure 1: Test 1. (a) Initial condition. Crowd distribution at time T = 1 with
(b) the purely macroscopic model, (c) the purely microscopic model, and (d)
the multiscale model with θ = 0.3

along the horizontal axis, so as to define what is ahead and what is behind).
Pedestrians are initially arranged in a square-shaped equally-spaced formation,
see Fig. 1a. Due to the frontal repulsion, we expect the frontal part of the
group to stand still and the rear part to stand back from the group mates
ahead. We compare the expansion dynamics of the group as predicted by the
macroscopic (θ = 0), the microscopic (θ = 1), and the multiscale (θ = 0.3)
model. The simulation runs until the final time T = 1 is reached. Notice that
the configuration assumed at that time is not an equilibrium of the system.
Results are shown in Figs. 1b-d.

The main features of the dynamics outlined above are caught at all scales.
In particular, the effect of the only frontal repulsion is visible at the head of
the group, where pedestrians stay aligned on a vertical line as they are initially
because there is none in front of them. This clearly shows up looking both at
the density distribution at the macroscopic scale (Fig. 1b) and at the individual
pedestrians at the microscopic scale (Fig. 1c).

Of course, this does not mean that either scale has no influence at all on
the other. For instance, as an interesting effect of the microscopic scale driving
the macroscopic dynamics, we notice some kind of “density holes” near every
microscopic pedestrian in the limit of the purely microscopic model (Fig. 1c).
They are actually small areas of very low density, caused by that microscopic
repulsion has a great impact at the macroscopic scale. Recall indeed that the
microscopic granularity is seen as a singularity in the average crowd distribution,
and that for θ = 1 the evolution of the macroscopic density is fully ruled by
the microscopic scale. With the multiscale model (Fig. 1d with θ = 0.3) the
hole effect is instead limited, and a good compromise between the two scales
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Figure 2: Test 1. Moments of inertia of the crowd distribution as functions of
θ: (a) Im,M,µ

1 , (b) Im,M,µ
2 , (c) Im,M,µ

G

is reached. Furthermore, in Fig. 1d (multiscale) pedestrians are less scattered
than in Fig. 1c (microscopic), meaning that the contribution of the macroscopic
scale on the overall dynamics has, in a sense, a homogenizing effect. Conversely,
in Fig. 1d the macroscopic density is more broken than in Fig. 1b (macroscopic),
thus the microscopic scale destroys the macroscopic smoothness and introduces
a non-negligible granular effect in the overall dynamics.

To investigate more in depth the intercorrelation between the scales we con-
sider now how the moments of inertia of the mass distribution depend on the
coupling parameter θ, fixing all other parameters as indicated in Table 1. Indeed
from classical mechanics it is known that moments of inertia provide quantita-
tive information on the shape of the group.

Let xG be the center of mass of the crowd at the final time T :

xG =
1

µT (Ω)

∫
Ω

x dµT (x),

then we consider the following three moments of inertia around xG:

Iµ1 =

∫
Ω

|(x− xG) · i|2 dµT (x), Iµ2 =

∫
Ω

|(x− xG) · j|2 dµT (x), IµG = Iµ1 + Iµ2 ,

i, j being the unit vectors in the direction of the horizontal and vertical axis,
respectively. Iµ1 and Iµ2 refer to stretching or shrinking of the group in the
horizontal and vertical direction, respectively, whereas IµG accounts for the global
distribution of the crowd around its center of mass. By replacing µT in the above
formulas with the measure mT (MT , resp.) it is possible to study the analogous
moments of inertia of the sole microscopic (macroscopic, resp.) mass, that we
denote by Im1, 2, G (IM1, 2, G, resp.).

The graphs of Fig. 2 show the trend of the functions θ 7→ Im,M,µ
1 , θ 7→

Im,M,µ
2 , and θ 7→ Im,M,µ

G . Notice that, due to Eq. (17), the moments of
inertia of the multiscale mass are linear interpolations of the corresponding
moments of inertia of the microscopic and the macroscopic masses. The latter
are therefore also plotted in the graphs for reference. The most relevant fact
is that the multiscale moments of inertia are almost constant with respect to θ
(aside from small border effects, especially about θ = 1), which indicates that
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Figure 3: Test 1. Moments of inertia ImG , IMG , IµG as functions of time for (a)
θ = 0, (b) θ = 0.3, (c) θ = 1

the rearrangement of the mass is basically the same at all scales. Therefore the
microscopic and the macroscopic dynamics arising from pedestrian interactions
are compatible with each other and make it possible a coupled approach by scale
interpolation.

The graphs of Fig. 3 show the trend of the mappings t 7→ Im,M,µ
G for the

three values of θ used in Fig. 1, namely θ = 0 (Fig. 3a), θ = 0.3 (Fig. 3b),
and θ = 1 (Fig. 3c). As pointed out in the Remark at the end of Section 5, the
microscopic and the macroscopic scale always coexist and exchange information.
In particular, by comparing Figs. 3a and 3c it can be noticed how the scale
coupling realized in the model produces coherent results at both scales even when
the dynamics is fully ruled by either of them only. No significant qualitative and
quantitative differences are observed in both the fully macroscopic (θ = 0, Fig.
3a) and the fully microscopic (θ = 1, Fig. 3c) case, meaning that there is no
detachment of the two evolutions even when only one of them is actually the
leading one. If this might be quite classical for the (Lagrangian) evolution of
microscopic particles driven by a macroscopic flow, we stress that it is definitely
by far less classical and obvious for the (Eulerian) evolution of a macroscopic
flow driven by microscopic particles.

Test 2: Average outflow time

In this test we address the case of a crowd leaving a room through a door in
normal (i.e., no panic) conditions, and we investigate the influence of the coupled
microscopic and macroscopic effects on the estimated average outflow time.
This will provide meaningful insights into the way in which the microscopic
granularity works within the macroscopic flow. The scenario of the simulation
is depicted in Fig. 4a for the parameters listed in Table 1. The (dimensionless)
door width is 0.5.

Let Ω̂ := [0, 3]× [0, 4] be the room that pedestrians are leaving. We consider
the following average outflow time:

Tµave :=
1

µ0(Ω̂)

T∫
0

tF(t) dt,

where F(t) is the integral flux through the door (taken positive when outgoing)
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Figure 4: Test 2. (a) A crowd leaving a room through a door, initial condition
(top) and underway outflow (bottom). (b) Average outflow time as a function
of θ for a crowd of 10 pedestrians and (c) 100 pedestrians

at time t. The final time T > 0 is chosen so large that the room is defi-
nitely empty, i.e., µT (Ω̂) = 0. Considering that F(t) = − d

dtµt(Ω̂) and using
integration-by-parts, Tµave can be given the following form:

Tµave =
1

µ0(Ω̂)

T∫
0

µt(Ω̂) dt, (27)

hence it is actually an outflow time weighted by the percent mass of crowd that,
at each time instant, still has to leave the room.

The graphs of Figs. 4b, c show the trend of the function θ 7→ Tµave for a
small crowd of 10 pedestrians and a large crowd of 100 pedestrians. In both
cases, the two further curves θ 7→ Tmave, θ 7→ TMave, computed by replacing µt in
Eq. (27) with either mt or Mt, are plotted for suitable reference. Again, due to
Eq. (17), the multiscale average outflow time (27) is the linear interpolation of
the corresponding microscopic and macroscopic times via the parameter θ.

The trend of the Tave’s is qualitatively similar for both the small and the large
crowd, in particular it is decreasing with θ. This elucidates the role played by a
more and more influential microscopic granularity within the macroscopic flow:
the more the multiscale coupling is biased toward the microscopic scale, the more
fluent the crowd stream becomes (and consequently the average outflow time
decreases). This is justifiable considering that θ can be viewed as the percent
mass shifted from the macroscopic to the microscopic scale in consequence of
the multiscale coupling. Subtracting interacting macroscopic mass from the
system progressively reduces the action of the macroscopic interactions while
enhancing that of the microscopic ones. Since the latter are less distributed
in space, because the microscopic mass is clustered in point singularities, this
ultimately results in fewer deviations from the desired velocity and the desired
paths.

Test 3: Pedestrian flow through a bottleneck

In this test we investigate the ability of the multiscale model to reproduce several
flow conditions occurring when two groups of pedestrians, walking toward one
another, share a narrow passage (e.g., a door).
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Figure 5: Test 3. Clogging at the bottleneck (left) and corresponding macro-
scopic fluxes (right) arising with the fully macroscopic dynamics

From the modeling point of view it is necessary to handle two interacting
populations of walkers, which will be done via two mass measures µpt , p = 1, 2,
each obeying Eq. (1). Either population has its own desired velocity vpdes and
interacts with the opposite population through the interaction velocity, which
now depends on both the µpt ’s. Specifically, denoting by p∗ the conjugate index4

of population p, we set

νp[µpt , µ
p∗

t ] = (1−Θ)νp[µpt ] + Θνpp
∗
[µp

∗

t ], (28)

where:

• νp[µpt ] is the endogenous interaction, i.e., the interaction with pedestrians
of one’s own population;

• νpp∗ [µp
∗

t ] is the exogenous interaction, i.e., the interaction with pedestrians
of the opposite population;

• Θ ∈ [0, 1] is a dimensionless number fixing the strength of the exogenous
against the endogenous interaction.

Both the endogenous and the exogenous interaction velocities are formally com-
puted as in Eq. (6), except that the exogenous one is integrated with respect to

µp
∗

t . In addition, the exogenous interaction radius Rpp
∗

need not be the same
as the endogenous one Rp if interactions with opposite walkers require more
promptness than interactions with group mates5.

For this test we let Θ = 0.65, thus 65% repulsion is exogenous and 35% is
endogenous. Repulsion radii are Rpr = 0.2, Rpp

∗

r = 0.35, to be compared with
the unit width of the narrow passage. Other relevant parameters are listed in
Table 1. The setting of the problem is displayed in the snapshots of Figs. 5, 8,
6, in particular the blue crowd with red microscopic pedestrians, say population
1, walks rightward whereas the yellow one with green microscopic pedestrians,
say population 2, walks leftward.

Let us begin from the case θ = 0, with the macroscopic scale leading the
dynamics. The bottleneck tends to clog (Fig. 5a): no density nor microscopic

4That is, p∗ = 2 if p = 1 and p∗ = 1 if p = 2.
5This simply corresponds to the function f having different supports in the expressions of

νp and νpp
∗
.
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Figure 6: Test 3. Alternate flows at the bottleneck in the multiscale model
(θ = 0.3). Negative values of the density of the population walking rightward
are for pictorial purposes only
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Figure 7: Test 3. Multiscale model (θ = 0.3): (a) macroscopic fluxes across the
bottleneck, (b)-(c) number of microscopic pedestrians crossing the bottleneck
rightward and leftward, respectively

pedestrians flow through, except for a small mass passing initially when the
passage is still free. This is well confirmed by the time trend of the macro-
scopic flux across the bottleneck (Fig. 5b): that of population 2 is permanently
zero for t ≥ 4.5, whereas that of population 1 oscillates between small positive
and negative values, which implies that population 1 is pushed backward by
population 2 as soon as it tries to cross.

By increasing θ to an intermediate value between 0 and 1, a multiscale
coupling is realized. For θ = 0.3, the resulting dynamics is depicted in Fig. 6
and summarized in Fig. 7 by the time trend of the macroscopic and microscopic
fluxes across the bottleneck. The model reproduces now the oscillations of the
passing direction at the bottleneck described e.g., in [12, 14, 15]. In more detail,
starting from the initial condition depicted in Fig. 6a, pedestrians of population
2 are induced to stop at the bottleneck while those of population 1 go through
at one side (Fig. 6b, Fig. 7 for 4.5 ≤ t ≤ 8.5). After some time, population 2
reorganizes and stops the flow of population 1 (Fig. 6c, Fig. 7 for 8.5 ≤ t ≤ 11),
then its larger mass stuck at the bottleneck gives it locally the necessary strength
for repelling opposite walkers and gaining room in the middle (Fig. 6d, Fig. 7
for 11 ≤ t ≤ 15). Some walkers of population 1 remain trapped by the stream
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Figure 8: Test 3. Alternate lanes through the bottleneck (left) and correspond-
ing macroscopic fluxes (right) emerging with the fully microscopic dynamics.
Notice that both fluxes are identically zero for t ≥ 8 because by then both
populations have completely flowed across the door

of population 2 and cannot access the passage (Fig. 6e, Fig. 7 for t ≈ 15) until
most of population 2 has flowed through (Fig. 6f, Fig. 7 for 15 ≤ t ≤ 17.5).

From the modeling point of view, the difference with the case θ = 0 is that
the multiscale coupling shifts some macroscopic mass (30% in this example) onto
the microscopic pedestrians, all other parameters and initial conditions being
unchanged. The inhomogeneous distribution of this microscopic mass induces
a break of symmetry between the interfacing populations, which finally leads
to an alternate occupancy of the passage according to the repulsion prevailing
locally in space and time.

Setting θ = 1, which amounts to shifting the whole mass onto the micro-
scopic pedestrians and having the microscopic scale lead the dynamics, produces
instead the outcome displayed in Fig. 8. Now the microscopic granularity fully
dominates, hence the stream is the most fluent one (cf. also Test 2). As a result,
the bottleneck interferes less with the stream than in the previous cases, and
the model reproduces the alternate oppositely walking lanes (Fig. 8a) exten-
sively observed as one of the main effects of self-organization in real crowds (cf.
[15, 18] and references therein). The time trend of the macroscopic flux across
the bottleneck (Fig. 8b) confirms that the two populations flow simultaneously
through the passage, with comparable fluxes, in the interval 1.8 ≤ t ≤ 8. After
the time t = 8 the macroscopic fluxes are identically zero because by then both
populations have completely flowed across the door.

Test 4: Macroscopic effect of a microscopic leader

In this last test we outline a capability of the multiscale model, not yet high-
lighted so far, which will surely deserve further investigation. More precisely, we
are referring to the use of the microscopic scale for modeling some features of the
system which could not be described in a purely macroscopic framework, but
which nonetheless affect the macroscopic dynamics. This is essentially different
from the previous tests, where the same effects, such as repulsion and obstacle
avoidance, were described at both scales. The main novelty here is that the
system includes a microscopic term with no macroscopic counterpart.

We consider the case of a crowd following a leader, for instance a group of
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Figure 9: Test 4. (a) initial condition, (b) the group assumes an elongated
configuration, (c) the group is formed and follows the leader, (d) the leader
waits for the group while the group moves on

tourists and their guide. The leader is a microscopic pedestrian who behaves in
a different way with respect to all of the other group members: s/he is the only
one informed of the way to go, hence s/he walks with a pre-assigned velocity
(0.4i in this example) independently of the others (i.e., s/he does not interact
with the rest of the group). S/he only stops when her/his distance from the
group becomes too large. The followers have zero desired velocity, because they
are not informed of the way to go, and experience both frontal attraction and
frontal repulsion with their group mates, including the leader. (Like in Test 1,
the angle αxy in Eq. (20) is computed by assuming conventionally vdes = i).
Attraction acts against group dispersion, and is needed especially in order for the
crowd to follow the leader. Instead, repulsion is intended for collision avoidance
among group mates. The radii Ra, Rr are equal (cf. Table 1), in particular Ra
is so small that the tail of group does not feel the leader ahead.

The group starts from the square-shaped distribution depicted in Fig. 9a,
with the leader in front. Then, after a transient (Fig. 9b), it assumes a hori-
zontally elongated shape (Fig. 9c) as a result of joint attractive and repulsive
effects. With no leader such a configuration would be an equilibrium, as at-
traction and repulsion balance. However, as soon as the leader starts moving
forward undisturbed, pedestrians at the front, who can feel him directly, are
attracted and move forward in turn. At the same time, pedestrians at the rear
are attracted toward group mates in front. This makes the information on the
way to go travel backward across the group, which ultimately moves forward as
a whole.

It is worth stressing again that at the macroscopic scale there is no counter-
part of the microscopic leader. This implies that the macroscopic interaction
velocity ν[Mt] is not affected by the microscopic leader, therefore the macro-
scopic mass feels the latter only through the microscopic interaction velocity
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ν[mt].
This test shows that our multiscale framework is suitable to reproduce a well

known feature of self-organizing groups, namely the fact that a small number
of informed agents can move the whole group in the desired direction [8]. In
particular, thanks to the multiscale coupling, this effect is appreciable also at
the macroscopic scale, which would not be suitable by itself to model differences
among the individuals.

7 Conclusions and future research

In this paper we have presented a measure-based multiscale method for modeling
pedestrian flow. We point out that neither a purely microscopic ODE-based
approach nor a purely macroscopic PDE-based approach is new in the literature
for this kind of application. The novelty here is the way of coupling the two scales
in a rigorous mathematical framework. This is possible thanks to the measure-
theoretic approach, which makes no a priori distinction between the scales,
and to the fact that, by a proper scaling, the microscopic and the macroscopic
model can reproduce the flow of the same mass of pedestrians with comparable
outcomes (cf. the numerical test 1). We stress that introducing microscopic
heterogeneity in a macroscopic model is not straightforward. Adding random
disturbances to the macroscopic variables may lead to apparently good results
but it cannot be mathematically nor physically justified in an averaged context.
Instead, our method allows to add granularity to the macroscopic flow and to
preserve at the same time physical meaning and mathematical rigor.

From the modeling side, it is worth noticing that a macroscopic model of
pedestrian flow is useful to get overall distributed information, especially in
connection with design, control, and optimization issues. However, as demon-
strated by our numerical simulations, a certain amount of granularity is often
crucial to catch some aspects of self-organization in crowds triggered by the
microscopic inhomogeneities of the flow (cf. the numerical test 3). Of course, it
has to be expected that the outcome at whatever scale partly depends on the
tuning of the parameters of the model. Therefore, it is not our purpose to state
that the multiscale approach is always better (i.e., more realistic) than either
the microscopic or the macroscopic approach by itself. Rather we believe that
the proposed technique offers a convenient way to make the two scales interact
and jointly contribute to the final result.

The present form of our multiscale approach is mainly concerned with the
same mass of pedestrians modeled at both the microscopic and the macroscopic
scale. The multiscale coupling is then realized by scale interpolation. However,
the numerical test 4 demonstrates that the framework is suitable also to model
features at either scale, which have no explicit counterpart at the other scale and
nonetheless affect crucially the overall dynamics. As a research development,
we plan to further generalize our multiscale approach in this direction, having
in mind specific applications related to traffic flow.

Pedestrians and cars share some relevant features, such as a desired velocity
driving them toward specific destinations and a frontally restricted visual field.
Actually car movements are much more constrained than pedestrians’, hence
self-organization is more limited, however not completely inhibited. For exam-
ple, an application quite considered in the technical literature [22, 23] concerns
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mixed traffic conditions with few mopeds within a flow of cars.
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appear. Preprint at arXiv:0906.4702.



MULTISCALE MODELING OF GRANULAR FLOWS 29

[11] A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder. A hybrid particle-
continuum method for hydrodynamics of complex fluids. Multiscale Model.
Simul., 8(3):871–911, 2010.

[12] D. Helbing. Traffic and related self-driven many-particle systems. Rev.
Mod. Phys., 73(4):1067–1141, Dec 2001.

[13] D. Helbing and A. Johansson. Quantitative agent-based modeling of hu-
man interactions in space and time. In F. Amblard, editor, Proceedings
of The Fourth Conference of the European Social Simulation Association
(ESSA2007), pages 623–637, September 2007.

[14] D. Helbing and P. Molnár. Social force model for pedestrian dynamics.
Phys. Rev. E, 51(5):4282–4286, May 1995.

[15] D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay. Self-organizing pedestrian
movement. Environment and Planning B: Planning and Design, 28(3):361–
383, 2001.

[16] L. F. Henderson. On the fluid mechanics of human crowd motion. Transp.
Res., 8:509–515, 1974.

[17] S. P. Hoogendoorn and P. H. L. Bovy. Simulation of pedestrian flows
by optimal control and differential games. Optim. Control Appl. Meth.,
24:153–172, 2003.

[18] S. P. Hoogendoorn and W. Daamen. Self-organization in pedestrian flow. In
Traffic and Granular Flow ’03, pages 373–382. Springer, Berlin Heidelberg,
2005.

[19] R. L. Hughes. A continuum theory for the flow of pedestrians. Transport.
Res. B, 36(6):507–535, 2002.

[20] T. Kraft. An efficient method for coupling microscopic and macroscopic
calculations in solidification modelling. Modelling Simul. Mater. Sci. Eng.,
5(5):473–480, 1997.

[21] J. Krause and G. D. Ruxton. Living in Groups. Oxford University Press,
Oxford, 2002.

[22] L. W. Lan and C.-W. Chang. Inhomogeneous cellular automata modeling
for mixed traffic with cars and motorcycles. J. Adv. Transport., 39(3):323–
349, 2005.

[23] T.-C. Lee, J. W. Polak, and M. G. H. Bell. New approach to modeling
mixed traffic containing motorcycles in urban areas. Transp. Res. Record,
2140:195–205, 2009.

[24] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge,
2002.

[25] R. Löhner. On the modeling of pedestrian motion. Appl. Math. Model.,
34(2):366–382, 2010.



MULTISCALE MODELING OF GRANULAR FLOWS 30

[26] B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd
motion model of gradient flow type. Math. Models Methods Appl. Sci., 2010.
Accepted. Preprint at arXiv:1002.0686.

[27] B. Maury and J. Venel. Handling of contacts in crowd motion simulations.
In Traffic and Granular Flow ’07, volume 1, pages 171–180. Springer Berlin
Heidelberg, 2007.

[28] B. Maury and J. Venel. A mathematical framework for a crowd motion
model. C. R. Math. Acad. Sci. Paris, 346(23-24):1245–1250, 2008.

[29] B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling
of pedestrian flow. Arch. Ration. Mech. Anal. To appear. Preprint at
arXiv:0811.3383.

[30] B. Piccoli and A. Tosin. Pedestrian flows in bounded domains with obsta-
cles. Contin. Mech. Thermodyn., 21(2):85–107, 2009.

[31] A. Quarteroni and A. Veneziani. Analysis of a geometrical multiscale model
based on the coupling of ODE and PDE for blood flow simulations. Mul-
tiscale Model. Simul., 1(2):173–195, 2003.

[32] F. Venuti and L. Bruno. An interpretative model of the pedestrian funda-
mental relation. C. R. Mecanique, 335(4):194–200, 2007.

[33] J. R. Weimar. Coupling microscopic and macroscopic cellular automata.
Parallel Comput., 27(5):601 – 611, 2001.


	1 Introduction
	2 Mathematical modeling by time-evolving measures
	3 The multiscale approach
	3.1 Microscopic models
	3.2 Macroscopic models
	3.3 Multiscale models
	3.4 Dimensional analysis

	4 Discrete-in-time model
	5 Numerical approximation of the equations
	6 Numerical tests
	7 Conclusions and future research

