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Abstract

A procedure based on combining the method of characteristics with
a Galerkin finite element method is analyzed for approximating reac-
tive transport in groundwater. In particular, we consider equations
modeling contaminant transport with nonlinear, non-equilibrium ad-
sorption reactions. This phenomena gives rise to non-Lipschitz but
monotone nonlinearities which complicate the analysis. A physical
and mathematical description of the problem under consideration is
given, then the numerical method is described and a priori error esti-
mates are derived.
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1 Introduction

In this paper, we describe a characteristic-Galerkin finite element method
(CGFEM) for modeling contaminant transport with nonlinear, non-equilibrium
adsorption kinetics. The CGFEM, also known as the modified method of
characteristics, Lagrange-Galerkin, or Euler-Lagrange method, has been used

*Dept. of Computational and Applied Mathematics, Rice University, Houston, TX
77251

'Dept. of Mathematics, Delft University of Technology, Delft, Netherlands



extensively in the modeling of linear and nonlinear flows; see, for example,
[9,12,13,14]. The method was first analyzed in [3] for advective flow problems
in one space dimension, and improvements and extensions of these estimates
were derived in [4]. These estimates were proved primarily for linear prob-
lems; however, certain types of smooth nonlinearities were also considered.

Here we consider the application of the CGFEM to a nonlinear system
of equations which arises in contaminant transport, and derive an a prior:
error estimate. The primary difficulty in these equations is the presence of
possibly non-Lipschitz nonlinearities, which require special treatment in the
analysis. The presence of such nonlinearities also reduces the regularity of
the solution, thus, the expected rates of convergence are possibly suboptimal
when approximating by piecewise polynomials.

In the next section, we give some basic notation. In Sections 3 and 4,
the physical problem is described, and existence and uniqueness of weak
solutions, and regularity of solutions are discussed. In Section 5, we describe
the application of the CGFEM method, and in Section 6, the method is
analyzed, assuming optimal regularity of the solution.

2 Notation

For Y a measurable space or space-time domain, let LP(Y), 1 < p < oo,
denote the standard Banach space on Y, with norm || - ||zsy). For Q a
bounded spatial domain in IR%, 1 < d < 3, denote by W*(€) the standard
Sobolev space on 2 with norm || - ||s. We denote the L*(Q) norm by || - ||.
Let [, 8] € [0,T] denote a time interval, where T > 0 is a fixed constant,
and let X = X((2) denote a normed space. Denote by || ||1r(a,s:x) the norm
of X— valued functions f with the map ¢ — || f(-,¢)||x belonging to L?(a, ).
Letting Q7 = Q x (0,T] we denote by V,"°(Qr) the Banach space con-

sisting of elements having a finite norm
|U|QT = ||U||L°°(0,T;L2(Q)) + “vu||L2(O,T;L2(Q))~

We denote by W,"'(Qr) the Hilbert space with scalar product

(u, v)w;'l(QT) = /QT(uv + Vu - Vo + u,v; )dzdt.



For ¢ : [0,00) — [0,00), the notation ¢ € C?([0,00)), p € (0,1) means
¢ is Holder continuous in its argument with exponent p. We denote by
C*P(Qr), where o and 8 are nonintegral positive numbers, the standard
Holder space defined on Q. Here a represents smoothness in space and 3
represents smoothness in time.

3 Statement of the Problem

When chemical species are dissolved in groundwater they may undergo ad-
sorption or exchange processes on the surface of the porous skeleton. Knowl-
edge about the influence of these chemical processes on the transport of the
solutes when the groundwater is moving is of fundamental importance to
understand, for instance, how pollutants spread in space and time through
the soil.

Below we present the mathematical formulation for a one-species system
in which the chemicals undergo non-equilibrium adsorption reactions. Cer-
tain types of two-species systems of binary ion exchange can also be put into
this framework. In particular this is the case when a conservation property
allows for the reduction to a one-species system. In [7], details of this reduc-
tion are given, as well as a fundamental discussion of adsorption processes in
porous media and related references.

The domain (2 is occupied by a porous material through which an incom-
pressible fluid, say water, flows. The related specific discharge g(m/s), with

components ¢;,2 = 1,...,d and length |g|, satisfies the equation
a0
—+V.-¢=0 .

which expresses conservation of fluid volume. In this equation, § denotes the
water content.

In what follows we shall consider § and g as given quantities which are
determined independently of the concentration of the dissolved chemicals.
Thus, we implicitly assume here that concentrations occur only at tracer
levels and hence do not influence the flow.

Let ¢(mol/m?) denote the concentration of adsorbate in solution and
A(mol/kg porous medium) the adsorbed concentration. Conservation for



the chemical species gives the equation

% (0c+ pA)+ V- (gc—0DVc) =0, (3.2)
in which p = p(z) (kg porous medium/m?) denotes the density of the
porous medium (bulk density), and D(m?/s) the hydrodynamic dispersion
matrix which incorporates the effects of molecular diffusion and mechanical
(velocity-dependent) dispersion. In most transport models for porous media
D takes the form, e.g. see [1]

B9y i=1,...,d, (33)
Il
where D j(m?/s) is the molecular diffusivity of the adsorbate in the fluid
(incorporating the tortuosity effect) and ar(m) and ar(m) are the transver-
sal and longitudinal dispersion lengths, respectively.

Next we turn to the adsorption process. In this paper we assume that the
reactions are relatively slow compared to the flow of the fluid. This makes it
necessary to consider non-equilibrium adsorption. In addition, the adsorbent
surface of the grains may be heterogeneous. Consider a subdivision of a
representative grain surface (i.e. rescaled grain surface, e.g. the unit sphere)
into m chemically different collections of adsorption sites corresponding to
1 € {1,...,m}; let \; be their relative size at the representative grain surface
and s; the corresponding adsorbed concentration. Then

0D;; = {0D0] + orlql} 8 + (e — ar)

i/\i =1 (A > 0), (3.4)

and
A= Z A,‘Si . (35)
1=1
Each component s; is related to the dissolved concentration ¢ through an
adsorption reaction which is described by the first order equation

%ii =kfi(c,s;) with ¢e{l,...,m}. (3.6)

In these equations k£ > 0 (1/s) is the rate constant, which we assume here
to be constant (thus independent of space, time, and 7), and f; is the rate
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function describing the adsorption reactions at sites 7. For the rate function
in (3.6) we use the explicit form

file,s:) = ¢ilc) — s, i€ {1,...,m}, (3.7)

which, in a heuristic approach, is widely used in contaminant transport mod-
els, e.g. see [2]. The functions ¢; in (3.7) are called the adsorption isotherms.
They are the adsorbed concentrations in the equilibrium, i.e. fast reaction
case, as k — oco. Typical examples are the Langmuir isotherm

I{IC
= K, K 0 3.8
¢(C) 1+I(2ca ‘la ‘2> 9 ( )
and the Freundlich isotherm
é(c) = Ksc?, K3;>0,p>0. (3.9)

In the last example one usually takes p € (0,1]. For p < 1, the nonlinearities
are not Lipschitz continuous up to ¢ = 0. This results in the finite speed of
propagation property for the concentration ¢ as ¢ | 0, and thus gives rise to
a free boundary as the boundary of the support of c.

Thus, together with the transport equation (3.2), with A given by (3.5),
we have to solve for the m-O.D.E.’s

% =k(¢i(c)—si) with € {l,...,m}. (3.10)

We consider (3.1), (3.2), (3.5) and (3.10) in the cylinder Q7 = Q x (0, T).

For all unknowns ¢ and s; we need to specify initial conditions. Thus
c(+,0) =co and s;(-,0) =sp; in Q, (3.11)

fori € {1,...,m}. In addition we prescribe for ¢ conditions along the bound-
ary § = 0Q of (). Letting @ = —7 - g, we distinguish an inflow boundary
Sy where o > 0 and an outflow/no flow boundary S, where @ < 0. Here
S1US; =8 and 7 denotes the outer unit normal. Then we impose

(0DVc—gc)-n=F on Sir=5 x(0,T], (3.12)
(0DVc)-n=0 on Syr =S, x(0,7). (3.13)
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In (3.12), the function F' = F(z,t), with (z,t) € Sir, denotes the flux of
solute entering the flow domain across S; at time ¢ > 0.

Equations (3.1)-(3.13) define the Contaminant Transport Model, which
we shall refer to as Problem CTM. In defining a weak solution or a weak
formulation for Problem CTM we follow the usual definition for linear prob-
lems, e.g. see [11] and [10]. In particular we use the space V,"°(Qr). Then
we have the following definition.

Definition 3.1 The functions c,s; : Qg — [0,00) fori € {1,...,m} form a
weak solution of Problem CTM if the following holds:

(Z) cE V21'0(QT); ¢i(c) € L2(QT) fO?“i € {1> o a"n};

) Js; : on . o\ 0s;

(( j i€ i € {foct [ ($50.5)

i _

+ QT(«‘)DVc—qc)-Vn:/SITFT)-{—/S”acn, (3.14)

for alln € W' (Qr) which vanish at t = T;

(iv) 8(9? =k{di(c) — s}, i€ {l,...,m}, (z,1) € Qr;

(v) c(-,0) =co and si(-,0) = s0;, ¢ € {1,...,m}, (2,t) € Qr.

Throughout this paper we take S to be piecewise smooth. With respect to
the coefficients and functions appearing in Definition 2.1 we shall assume
that the following structural and regularity conditions are satisfied; see also

[5] and [10].

(Hla) For each ¢ € {1,...,m} the isotherms ¢; : [0,00) — [0,00) are
nondecreasing;

(H1b) There are constants v,y > 0 such that for ¢ € R?, (z,t) € Qr,
vIE|* < EN(OD)(x, 1) < plel?,

the D;; are measurable in Qr, 9,D;; € L®(Qr) for 1,5 =1,...,d

k)
0D is symmetric;



(Hlc) There exists 6 > 0 such that
e(x’t) 2 0o for (Ivt) € QT )
6,00 € L=(QT);

(H1d) ¢ € L®(Qr) fori =1,...,d, V- § € L*(Qr), § - 1 exists in the
sense of trace and § -7 € L®(St), 0 and § satisfy equation (3.1);

(Hle) F € L*®(Si1), co,50i > 0 and cg, so; € L*(Q) for i € {1,...,m};
(HI) peL=(Q), p>0.

4 Some Analytical Observations

Weak solutions of Problem CTM, in the sense of Definition 2.1, were studied
in [5] and [10]. The main, and nonstandard, difficulty for this problem lies
in the fact that one of the isotherms ¢; may be non-smooth at ¢ = 0. This
happens for instance when it is of Freundlich type, see (3.9). Then a situation
may occur where the set {c > 0} spreads at finite speed through the flow
domain €. A free boundary or interface arises as the boundary of the support
of ¢, i.e. 3{c > 0}. Across the free boundary ¢ will have limited smoothness,
even though the coefficients in (3.2) may be C*®. The free boundary aspect of
the problem was studied for a 1-dimensional flow situation in [5] and further,
for the special case of travelling wave solutions, in [6,8].

To prove uniqueness and stability for weak solutions only the monotonic-
ity of the isotherms @; is required. There are three essential steps needed
which we outline briefly below. In a later section about the convergence
estimates they will reappear in discrete form.

Let ( = ¢; — ¢ and B; = s3; — 894, ¢ € {1,...,m}, where (¢1, ;) and
(c2,52i) are two weak solutions of Problem CTM. First, in (3.14), set

o 0, te(r,T),
n(@,t) = { ((z,t), te(0,7), (4.1)

where 7 € (0,T). This leads to an expression that contains the term

m ai
/QT/)ZAia—[_:c. (4.2)

=1
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Next, multiplying (3.10) by n defined by (4.1) gives

%% = k{¢i(c1) — di(c2)}¢ — kB:i( = —kB:( (4.3)

where we have used the monotonicity of the isotherms. Then (4.2) can be
estimated from below by

—k [ P NBC. (4.4)
Qr =0
Thirdly, in (3.14), we set

t) = . tenTl, (4.5)
n(z,t) = _[ ((x,s)ds, te€(0,7). '

This gives an expression which contains a term similar to (4.4). After some
technicalities and a Gronwall argument we obtain:

Theorem 4.1 Let hypothesis (H1) be satisfied. Then Problem CTM has a

unique weak solution.

At the expense of some additional conditions it is possible to extend the
uniqueness proof and to obtain a Lipschitz stability result for the difference
in the V;"°(Q7) norm. Assume

(H2a) g and % are independent of time;
(H2b) %(GD) is positive definite a.e. in Q7 and 26 < 0 in .

Then we obtain

Theorem 4.2 Let (¢q,81;) and (c3, $2i), ¢ € {1,...,m} denote the weak solu-
tion of Problem CTM corresponding to the data {coy, s, F1} and {coy, So2i, F2 },
respectively. Then there exists a constant C > 0 such that
len — el < C {”001 — coz|| + X |lp(s01i — So2i) || + || F1 — F2”L°°(SIT)} .
=1
(4.6)



Remark 4.3 Using expression (3.3) for the hydrodynamic dispersion ma-
triz, hypotheses (H2) are obviously fulfilled for the case of stationary water
distribution (0) and flow (g).

Existence of weak, stong, and classical solutions was also established in
[5] and [10]. Here we make some remarks in the direction of classical solu-
tions. When the isotherms satisfy in addition to the monotonicity (Hla), the
conditions (for : € {1,...,m})

¢,(O) =0, ¢i(8) >0 for s>0, (47)

$; € C*([0,00)) N CL.((0,00)) for some p € (0,1), (4.8)

(such as the Freundlich isotherm (1.9)), and if the coefficients and initial/boundary
data in Problem CTM are sufficiently smooth (e.g. co € C**?(Q), so; €

C?(Q), F = acy with ¢y > 0 and ¢; € L*®(S11), and other technical condi-
tions), then

c€ CHPIP(Qr) and s; € CPP(Qr) . (4.9)

Note that if one of the isotherms is of Freundlich type (3.9), then (4.9) is
the optimal global regularity. Even if the coeflicients in (3.2) (6, ¢,¢ and D)
were C*, this would only imply

¢, s, € C®°{c>0}NQ7).

4 The CGFEM for Non-Equilibrium Adsorp-
tion

In this section we discuss the numerical approximation of solutions to (3.2),
(3.10) by the CGFEM. For simplicity, assume m = 1 and s, = s. We will
make the following assumptions:

(H3a) The data and coefficients are sufficiently smooth so that (4.9) holds.
(H3b) The isotherm ¢ satisfies (Hla), (4.7), and (4.8).
(H3c) § = S;, with DVe-n=0o0n S.
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(H3d) 6 and g are independent of time.
(H3e) D = D(q) is symmetric and positive definite.

For convenience, we will assume Problem CTM is Q—periodic; i.e., we
assume all functions involved are spatially 2—periodic. This assumption is
reasonable since the no-flow boundary conditions (H3c) are generally treated
by reflection, and we are primarily interested in interior flow patterns and
not boundary effects.

Let 0 =% < t! < --- < tM = T be a given sequence, with At" = " —¢"~1,
Define f*(-) = f(-,t"). Let h > 0 and M, be a finite dimensional subspace
of W}() consisting of continuous, piecewise polynomials of degree < k on a
quasi-uniform mesh of diameter less than or equal to h.

In the CGFEM, we approximate ¢(z,t") and s(z, ") by functions C™ and
S™in M),. Writing (3.2) in nondivergence form and applying (3.1), we obtain

Oci + pAi+q-Ve—V - (DVe)=0. (4.1)
Let 7 denote the unit vector in the direction (g, 6) and set
b= (g +101)* . (42)
Then
Ye, =0c+ G- Ve (4.3)

and (4.1) can be written as

Ye, — V- (0DVe) + pA; =0 . (4.4)
Let
t=a- %At , (4.5)

and let f(:l:) = f(2) for a given function f. Approximate ¢, by the backward
difference

c(z,t™) — ¢(z,t™ 1)

e, (z,t") = () A7

(4.6)
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Let

o"(z) = 6() x — ¥(z)c(2), (4.7)
t
and
s*(z) —s" Yz o

(e = T ) (1)

Then (3.2) can be written
0677- —én—l Y. (0DV n)+ fn_—sn—l- — o™ + Ww" (4 9)

T PV e = e
and (3.10) can be written
s — Sn_] n n n

p—xy— = ke(@(c") = 87) + pu”. (4.10)

Initially, set C° = C° € My, where C(z,t) is the §—weighted L2-projection
defined by

(Oé("t)’X) = (ec('at)aX) y XE€ My . (411)

Furthermore, set S° = 5% € M,, where S(z,t) is the p—weighted L*-
projection

(pS(,1),x) = (ps(-,1),X), X € My, . (4.12)
Forn =1,2,..., M, define C* € M, S™ € M}, by

0 Cn _ Cm—l N Sn _ Sn—l
At » X P Al » X
+(0DVC™,Vx) =0, x € M,, (4.13)
and
Sn _ Sn—l " "
Q% ) = k(p(d(C™) = S™),v), veEM,. (4.14)
Equations (4.13) and (4.14) are obtained by multiplying (4.9) and (4.10) by

test functions y and v in My, respectively, integrating (4.9) by parts, and
substituting C™ for ¢", and S™ for s".
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5 Error Estimates

In this section we analyze the method given by (4.11)-(4.14). In the argu-
ments that follow, K will denote a generic positive constant and € a small
positive constant, independent of h and At. We will also employ the well-
known inequality

abg%az%-%bz, a,bee R, €>0.

€

Let ¢ = C—C, ¢t =c—C,where C is given by (4.11), and let 3= S — 8,
where S is given by (4.12). Then by (4.9)-(4.14),

Cn Cn 1 . Bn ﬂn 1
( A ,x) +(0DV(", Vx) + ( Al ,x)

n __ fn—1
= (Gn,X) + (0£—A§— vX) + (0DV€”,VX)

Qtn 1 _ Cn 1
and
ﬂn — 6n—1 A n n n n
P 0] = kp(9(C™) = 4 = B7),0) + (" 0) v E Mif52)

where o™ is given by (4.7) and w™ by (4.8).
Following the uniqueness arguments given in [5], we first set v = (" in
(5.2) and note that by the monotonicity of ¢:

( g A'fn_ ’C") = k(p(¢(C™) — ¢(c")), (™)

= k(pB",¢") + (pw™, (")
(6(C™) = ¢(c")),C™ = ")
— k(p(#(C™) — (")), €")
= k(pB",¢") + (pw™, (")
—k(pB",C") — k(p(8(C™) — ¢(c")),€™)
+ (pw", (™). (5.3)

= k(p

v

12



Setting x = (™ in (5.1) and using (5.3), we find

Cn Cnl " n "
( v ,<)+<eDvc,VC)

— k(pB",¢") — k(p(8(C™) — ¢(c")),€") + (p™, (")

< (a.n’cn)_i_( 6” Ain ’C>

Fn—1 _ /-1
+ (0DVE, V(™) + (0% ,cn) + (™, CM) . (5.4)

We next consider (5.1) with

M
x =3 (At (5.5)

l=n

multiply the result by At, and sumon n,n =1,..., M. First, we observe

E( P Cn 1 f:c"m) At

X_: ¢, ¢MA (5.6)

i:l(()(” [ZCZ+ Y ¢

(= (=n+1

by summation by parts and because (° = 0. Similarly, since ° =0,

= =n

M
X_: pB*,C") (5.7)

Furthermore,
M
(4 ED PV’
{=n
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[t v - et v
At

wl'—'

%vcn V(AL

Thus
M M
3 (ODVC", ng‘fm) At
n=1 l=n
1 M M
= 3 (HD STVCTAL Y VC"At)
n=1 n=1
1M
3 Z(()DVC",VC”)At2 . (5.8)
n=1

Using (5.7) and (5.1) with x = M | V(" At, (5.6), and (5.8), we obtain

M

M n __ AQn-— M
(2 )
n=1 l=n
M Cn Cn 1 M M
= kY { ( Z gQ&t) (ODV(”, > vngt)
n=1 l=n

+ (wvg", -3 vc’m)
{=n
n é‘n _ én—l
e (55

(fn—l _ Cn—l M
+ 0 (T) + pw", — Z CfAt) } At

{=n

- 3

n=1

{0c.¢ + S0D9¢n veman
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M
+ (0DV§", -3 vcfAt)
l=n

én _ én—l
At

én -1 C'n 1 M
0————+pw, ZC‘ZAt)}At
At —

+ (0"+0

k M M
+5 (90 S vera Y VC"At) . (5.9)
n=1 n=1

Multiplying (5.4) by At and summing on n, substituting (5.9) into the
result, and using assumption (H1b), we obtain

(€587 ) oo e

k [(0 et + é (0DV(¢™ ,V(”)At]} At

kz

- [(Zvc At Zvc At) <§( At, Zc At)]

n=1

= ¢(c")),€")

" " €n énl o
+om e+ (055 )

CAn 1 Cn 1
+(6DVE" ,VC) + (0 — c)

k [(0" ,gjgw)

+( il i €nl %g%t)

M=
—_
?~4
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+ (9DV§" , %V(‘At)

l=n
é’n—l _ Cn—l M M
+ (0 — c‘fAt) + (pwn, > c"At)] } At
At l=n {=n
M M
. (Z ALY C"At)

=1

= T+ +Ty . (5.10)

We now estimate the terms T through Ty;.
By the Holder continuity of ¢, and Holder’s inequality

M
T, = kX_:(p(fzﬁ(C")—qﬁ(C")),é")At

M
< Ellplleo D 116(C™) — (™)o@l €™ || () At
n=1
M 1
< Mol 3 ([ 167 =€) el @t
n=1
where
1 1
-4+ -=1
q T
Choose q = %, then r = o and
T2
M 2 M
T < KR2Y ([€)? + 11¢™17)* At + KR 23 |[€"|3 o)At
n=1 n=1
M M
< KR [IEM1P + ISP AL + KR |16 |2 o)At -
n=1 n=1

Applying Hélder’s inequality again to the second term, at the expense of a
possibly larger constant, we obtain

M M
Ty < KR (G + llgnlI™1At + KA™* ) _||¢"|I* At .

n=1 n=1
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Before estimating T,, we note that, for a spatially periodic, L? function
g, it is shown in (3] that

l A

g—g o 1 9(z) —g(2) ;o
At ” = fewﬁm[nfnl/n At @

< Kllgll. (5.11)
Consider
M
I, = Z(panan)At
n=1

M c(z) — Y a
- Aty /Q o(z) [0(.1) (z) = ( )—(067+U-Vc")(x)] " (z)dz

- Até { [ ote) [9@)—&—— (- w)(x)] (" (a)da

¢(z) — e H(a)

+ p(xw(x)[ o —c?(:c)] c"u)dx}

= To1+Tap.

By Taylor expansion,

c(z) — é™(x)

o) = (v @),
where 7 is between x and z. Thus,

c"(z) — é*(x)

0(z) Y —(u-Ve*)(z) = (u-V")(T) — (u- V) ()
= V(u-Vc")(&)- (¢ - 2),

where 7 is between z and z. Since |z — Z| = O(At),

M n o__an
Tl < KA |65 —w-ver||licnl
= At
M
< KAt2Z(||CnH2+||U||1||Cn||1)|ICnH
n=1
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M
< KA+ K ||¢MPAt.

n=1

For the second term T3 ,, we note that

T A S 0—1 " d d
= t o — pn n

o= ALY [ o0 [ e s) = @) ds (e
Consider

/ﬂ poAit /t_ ez, 5) — c(2)] ds¢™(2)da
—/p 7 /t" 1 [¢i(z,s) — ¢z, 8) + ¢(z,8) — ¢} (z)]ds (" (z)dz

_/p A7 Jonos LT3 8) — ¢z, 8)]ds ("(z)dx

+ [ o0 At/ fei(@y5) = f(2)]ds ¢*(z)da
=To21 + T2,

By (5.11), the first term above satisfies

| O "
Toaal < ||x7 [, (ess) —etoslds | lo0c
t" N
< K|\ [ als)ds|[11€7]h

< KAt||e|pee 12yl 1€" |1
< KA+ €|¢m)

For the second term above, by the Holder continuity of ¢,
tn
Tanal < K/ = [ lele,s) = ci(@)lds |7l da
t
< KAt%/ I¢™(2)|dz
Q
< KAt + K||¢C"].

18



Combining these estimates we find

M M
T, < K(h? + A + AP) + K S |ICM12At + €)X [ICM 1AL
n=1

n=1

For a function g(z) € W} (), we note that
llg = gll < KAt Vyll,
and using the fact that (6&™,x) = 0 for x € M, we obtain

M n_ ¢n—1
Ty = Y (05—5—,&) At

n=1

B M €n—1 _ én-l .
- L (s

M M
< K IVEiPaL+ kY [CPAL
n=1 n=1
Moreover,
M
T, = Z(GDV&",VC”)At
n=1

M M
< KXY ||VEr|PAL + €3 |IVC|PAt .
n=1 n=1

Similar to the estimate for T3,
M Fn—1 n—1
("=
< po—— ("
TS =~ nz::l ( At a( At

M M
< KY|ICPAL+ ey [IVEmTHPAL .
n=1 n=1

Similar to the estimate for 75,
M M
Te = kY, (0”, de) At
n=1 l=n

19



= ké( Z(%t Z(‘At)

=1

M
< K(AP+ R+ e | ¢tAt

1
2

n—1
Y AL At

=1 1

M
+ K>

n=1

Similar to the estimates for T35 and T},

M fn 1 gn 1
o= 3 (9—A— Zc%t) At

n=1
M M 2
< KDY IVETPAt+ e > ¢tAt
n=1 =1
M ||n-1
+ K Z ZC At Af
n=1 | ¢{=1
and
M
Ty, = Y <9DV§" > vc‘m)
n=1
M M 2
< K Z ||V§"||2 At + € Z ("At
n=1 =1 1
M
+ K Z Z (ZAt At
n=1 ll{=1
By (5.11),

M 571—1 _ Cn—-l M ;

T, = % (9 T,Zg"m) At i

n=1 l=n '

én—l _ Cn—l
At

M
< K)

n=1

At

1
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2

IN

M
> ¢at

=1

M
K, 1771 At + e

n=1

1

n—1 2

S At At

=1 1

M

+KY

n=1

Moreover,

Ty = 2 (Zg At, Z (“At)

kl/

=1
M 2
K Ic" At] dz
/QL; |

2

IN

dz

IN

IA

[8 Lt [£ s

2

At

M
< KY AL+ ¢
n=1

M
> (MAt
n=1 1

For the estimate of Ty,, consider

st — Sn—l
n — . tn _
w St( k) ) At
1t
= —A—‘t i1 [St(', tn) - St )] dt
By the Holder continuity of s;, we obtain
1

_A—t i [St(',tn) bl St(',t)] dt
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]‘r tn

< t—t"|Pdt
- At t"—1| |
< KAtP.
Thus,
M M
Tn = Y, (,M,-Z(‘At) At
n=1 {=n
M 2 M |n-1 :
< KA +¢||S¢CAY + KX |13 cfAt) At
(=1 n=1 |l {=1

Combining the estimates for T,-T;; with (5.10), and using the fact that

M Cn _ Cn—l N 1 M ,
> (9—'&—,( )At > 5(9C ,¢MY

n=1

and the estimate
HEC O + AIEC DI < KR [e(+ )]l
we find
1

M
+Z_: [(DV(”,VC") + k(6¢™,C") + % (DVC”,VC")At] At

w|”‘

v M M M M
n [(zww, zvgmt) + (Z(nm, Z(“Atﬂ
n=1 n=1 n=1 n=1

M M
< KRS|CMIPAL+ KSIICIPAL + K At + KA + K

n=1 n=1

M M | n-1 2
Fe S ICMBAt+ K Y || doctAt) At
n=1 n=1 =1 1
M 2
+e€ Z ("At (5.12)
n=1 1




We now hide terms multiplied by €, and define

g" = ("¢ +

Yo ¢tAt
=1

2
1

The L? stability of C™ can be demonstrated using essentially the same
arguments given above; i.e., we set x and v = C™ in (4.13) and (4.14),
and use the monotonicity of . We then set x = ¥M C*’At in (4.13),
multiply the result by At and sum on n, and sum by parts. The result is
that ||C"|| < K||C°|| for each n, where K is independent of h and At. Thus,
by the L? stability of C, we have

IS™1*” < K.
Then, (5.12) implies

M
M < KW+ AP) + K'Y |g"|At.

n=1

Applying Gronwall’s Lemma and the triangle inequality, we obtain the fol-
lowing result:

Theorem 5.1 Assume (Hla)-(HIf), (4.7)-(4.9), and (H3a)-(H3¢) hold, then

max ||c* — C™|| < K(At? + h).

References

(1] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York
(1972).

[2] G. H. Bolt, Soil Chemistry B. Physico-Chemical Models, Elsevier, Am-
sterdam (1979).

[3] J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-
dominated diffusion problems based on combining the method of charac-
teristics with finite element or finite difference procedures, this Journal,

19 (1982), pp. 871-885.



[4] C. N. Dawson, T. F. Russell, and M. F. Wheeler, Some improved error
estimates for the modified method of characteristics, this Journal, 26

(1989), pp. 1487-1512.

[5] C. J. van Duijn and P. Knabner, Solute transport through porous media
with slow adsorption, in Free Boundary Problems: Theory and Applica-
tions, vol. 1, K. H. Hoffman and J. Sprekels, eds., Longman (1990), pp.
375-388.

[6] C. J. van Duijn and P. Knabner, Solute transport in porous media
with equilibrium and non-equilibrium multiple-site adsorption: Travel-
ling waves, J. Reine Angewandte Math., 415 (1991), pp. 1-49.

[7] C. J. van Duijn and P. Knabner, Travelling waves in the transport
of reactive solutes through porous media: adsorption and binary ion
exchange-part I, Transport in Porous Media, 8 (1992), pp. 167-194.

[8] C. J. van Duijn and P. Knabner, Travelling waves in the transport of
reactive solutes through porous media: adsorption and bionary ion ex-
change part II, Transport in Porous Media, 8 (1992), pp. 199-226.

[9] R. E. Ewing, T. F. Russell, and M. F. Wheeler, Convergence analysis
of an approximation of miscible displacement in porous media by mized
finite elements and a modified method of characteristics, Comput. Meth-
ods Appl. Mech. Engrg., 47 (1984), pp. 73-92.

[10] P. Knabner, Mathematische modelle fir den transport geldster stoffe
in sorbierenden porosen medien, Habilitationsschrift, Universitat Augs-

burg, Germany (1988).

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’ceva, Linear and
Quasilinear Fquations of Parabolic Type, Translations of Mathematical
Monographs, v. 23, American Mathematical Society, Providence, R. 1.

(1968).

[12] O. Pironneau, On the transport-diffusion algorithm and its application
to the Navier-Stokes equations, Numer. Math., 38 (1982), pp. 309-332.

24



[13] T. F. Russell, Time-stepping along characteristics with incomplete iter-
ation for a Galerkin approzimation of miscible displacement in porosu

media, this Journal, 22 (1985), pp. 970-1013.

[14] E. Siili, Convergence analysis of the Lagrange-Galerkin method for the
Navier-Stokes equations, Report 86/3, Oxford University Computing
Laboratory, Oxford, 1986.

25



960

961
962

963
964

965
966
967

968
969
970
971
972
973
974
975

976

977
978

979
980

981

982
983
984
985
986
987

988
989
990
991
992

993
994
995
996
997

998
999

1000
1001

1002

1003

Recent IMA Preprints
Author/s Title

Richard A. Brualdi, Shmuel Friedland and Alex Pothen, Sparse bases, elementary vectors and nonzero
minors of compound matrices
J.W. Demmel, Open problems in numerical linear algebra
James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic
matrices
James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR
J.J.L. Veldzquez, Estimates on the (N — 1)-dimensional Hausdorff measure of the blow-up set
for a semilinear heat equation
David C. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation
C.J. van Duijn and Joseph D. Fehribach, Analysis of planar model for the molten carbonate fuel cell
Yongzhi Xu, T. Craig Poling and Trent Brundage, Source localization in a waveguide with unknown
large inclusions
J.J.L. Veldzquez, Higher dimensional blow up for semilinear parabolic equations
E.G. Kalnins and Willard Miller, Jr., Separable coordinates, integrability and the Niven equations
John M. Chadam and Hong-Ming Yin, A diffusion equation with localized chemical reactions
A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms
Bei Hu, A free boundary problem arising in smoulder combustion
C.M. Elliott and A.M. Stuart, The global dynamics of discrete semilinear parabolic equations
Avner Friedman and Jianhua Zhang, Swelling of a rubber ball in the presence of good solvent
Avner Friedman and Juan J.L. Veldzquez, A time-dependence free boundary problem modeling
the visual image in electrophotography
Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr., On the poset of all posets on
n elements
Ricardo D. Fierro and James R. Bunch, Multicollinearity and total least squares
Adam W. Bojanczyk, James G. Nagy and Robert J. Plemmons, Row householder transformations for
rank-k Cholesky inverse modifications
Chaocheng Huang, An age-dependent population model with nonlinear diffusion in R"
Emad Fatemi and Farouk Odeh, Upwind finite difference solution of Boltzmann equation applied to
electron transport in semiconductor devices
Esmond G. Ng and Barry W. Peyton, A tight and explicit representation of @ in sparse QR
factorization
Robert J. Plemmons, A proposal for F FT-based fast recursive least-squares
Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces
Alan Edelman and G.W. Stewart, Scaling for orthogonality
G.W. Stewart, Note on a generalized sylvester equation
G.W. Stewart, Updating URV decompositions in parallel
Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols, Numerical methods for the
regularization of descriptor systems by output feedback
Ralph Byers and N.K. Nichols, On the stability radius of generalized state-space systems
David C. Dobson, Designing periodic structures with specified low frequency scattered in far-field data
C.-T. Pan and Kermit Sigmon, A bottom-up inductive proof of the singular value decomposition
Ricardo D. Fierro and James R. Bunch, Orthogonal projection and total least squares
Chiou-Ming Huang and Dianne P. O’Leary, A Krylov multisplitting algorithm for solving linear systems
of equations
A.C.M Ran and L. Rodman, Factorization of matrix polynomials with symmetries
Mike Boyle, Symbolic dynamics and matrices
A. Novick-Cohen and L.A. Peletier, Steady states of the one-dimensional Cahn-Hilliard spaces
Zhangxin Chen, Large-scale averaging analysis of single phase flow in fractured reservoirs
Boris Mordukhovich, Stability theory for parametric generalized equations and variational inequalities
via nonsmooth analysis
Yongzhi Xu, CW mode structure and constraint beamforming in a waveguide with unknown large inclusions
R.P. Gilbert and Yongzhi Xu, Acoustic waves and far-field patterns in two dimensional oceans
with porous-elastic seabeds
M.A. Herrero and J.J.L. Veldzquez, Some results on blow up for semilinear parabolic problems
Pierre-Alain Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid
phase transitions
Izchak Lewkowicz, Stability robustness of state space systems inter-relations between the continuous and
discrete time cases
Kenneth R. Driessel and Wasin So, Linear operators on matrices: Preserving spectrum and displacement
structure



1004
1005
1006
1007
1008
1009

1010
1011

1012

1013
1014

1015

1016

1017

1018
1019

1020

1021
1022

1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

Carolyn Eschenbach, Idempotence for sign pattern matrices

Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson, Self-inverse sign patterns

Marc Moonen, Paul Van Dooren and Filiep Vanpoucke, On the QR algorithm and updating the SV D and
URV decomposition in parallel

Paul Van Dooren, Upcoming numerical linear algebra issues in systems and control theory

Avner Friedman and Juan J.L. Veldzquez, The analysis of coating flows near the contact line

Stephen J. Kirkland and Michael Neumann, Convexity and concavity of the Perron root and vector of
Leslie matrices with applications to a population model

Stephen J. Kirkland and Bryan L. Shader, Tournament matrices with extremal spectral properties

E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of g-algebra representations:
Matrix Elements of U,(su3)

Zhangxin Chen and Bernardo Cockburn, Error estimates for a finite element method for the
drift-diffusion semiconductor device equations

Chaocheng Huang, Drying of gelatin asymptotically in photographic film

Richard E. Ewing and Hong Wang, Eulerian-Lagrangian localized adjoint methods for reactive transport
in groundwater

Bing-Yu Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect
to their initial values

Kenneth R. Driessel, Some remarks on the geometry of some surfaces of matrices associated with
Toeplitz eigenproblems

C.J. Van Duijn and Peter Knabner, Flow and reactive transport in porous media induced by well
injection: Similarity solution

Wasin So, Rank one perturbation and its application to the Laplacian spectrum of a graph

G. Baccarani, F. Odeh, A. Gnudi and D. Ventura, A critical review of the fundamental semiconductor
equations

T.R. Hoffend Jr., Magnetostatic interactions for certain types of stacked, cylindrically symmetric
magnetic particles

IMA Summer Program for Graduate Students, Mathematical Modeling

Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga, The real positive definite completion problem
for a simple cycle

Charles A. McCarthy, Fourth order accuracy for a cubic spline collocation method

Martin Hanke, James Nagy, and Robert Plemmons, Preconditioned iterative regularization for I111-posed
problems

John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, An efficient algorithm to compute row and column |

counts for sparse Cholesky factorization

Xinfu Chen, Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a
thermistor problem

Xinfu Chen and Weiqing Xie, Discontinuous solutions of steady state, viscous compressible Navier-Stokes
equations

E.G. Kalnins, Willard Miller, Jr., and Sanchita Mukherjee, Models of g-algebra representations: Matrix
elements of the g-oscillator algebra

W. Miller, Jr. and Lee A. Rubel, Functional separation of variables for Laplace equations in two dimensions

I. Gohberg and I. Koltracht, Structured condition numbers for linear matrix structures

Xinfu Chen, Hele-Shaw problema nd area preserved curve shortening motion

Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs

Harald K. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic
Riccati equation

Harald K. Wimmer, Monotonicity and parametrization results for continuous-time algebraic Riccati equations
and Riccati inequalities

Bart De Moor, Peter Van Overschee, and Geert Schelfhout, H, model reduction for SISO systems

Bart De Moor, Structured total least squares and L, approximation problems

Chjan Lim, Nonexistence of Lyapunov functions and the instability of the Von Karman vortex streets

David C. Dobson and Fadil Santosa, Resolution and stability analysis of an inverse problem in electrical
impedance tomography — dependence on the input current patterns

C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant
transport with non-equilibrium adsorption kinetics

Bing-Yu Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their
initial values

Neerchal K. Nagaraj and Wayne A. Fuller, Least squares estimation of the linear model with autoregressive
errors

H.J. Sussman & W. Liu, A characterization of continuous dependence of trajectories with respect to the input
for control-affine systems

|
|
|

|
|
|



