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SIAM J. NUMER. ANAL. ? 1991 Society for Industrial and Applied Mathematics 
Vol. 28, No. 4, pp. 1165-1182, August 1991 015 

TWO-STEP RUNGE-KUTTA METHODS* 

Z. JACKIEWICZtI, R. RENAUTtI?, AND A. FELDSTEINt 

Abstract. Implicit two-step Runge-Kutta methods are studied. It will be shown that these methods 
require fewer stages to achieve the same order as one-step Runge-Kutta methods, which means the two-step 
methods are potentially more efficient than one-step methods. Order conditions are derived and examples 
of two-step one-stage methods of order 2 and two-step two-stage methods of order 4 are presented. Stability 
properties of these methods with respect to y'= ay are studied and A-stable two-step methods of order 2 
are characterized. Two-step two-stage methods of order 4 which are A-stable are found by an extensive 
computer search. Semi-implicit two-stage methods of order 4 were also constructed. This is in contrast to 
the situation encountered in the Runge-Kutta theory where the unique two-stage method of order 4 is not 
semi-implicit. 

Key words. two-step Runge-Kutta method, order conditions, stability analysis 

AMS(MOS) subject classifications. 65L05, 65L07 

1. Introduction. The purpose of this paper is to study two-step Runge-Kutta 
(TSRK) methods for the numerical solution of systems of ordinary differential equations 
(ODEs) 

(1.1) y'(x) =f(y(x)), x E [a, b], 

y(a) = Yo, 

where the functionf: R"q - Rq is assumed to be sufficiently smooth. For positive integer 
N let the stepsize h be given by h=(b-a)/N, and define the grid xi=a+ih, i= 
0, 1, * N. We consider methods of the form 

m 

yi+1 = (I - O)yi + Oyi-I + h fI (vjf( Yj_I) + wjf(( YJ)), 
j=1 

(1.2) iJ-1= yi-I + h E aj,f(Yi 1), j=1,2,* ,m, 
s=1 

m 

YJ =yi+h E ajsf(Ys), j= 1, 2, - - m, 
s=1 

i --1, 2,.. **, N-i1. Here, yi is an approximation to y(xi), where y is the solution to 
(1.1), and 0, v;, w;, and ajs are coefficients of the method. We will represent (1.2) by 
the following table: 

C1 al1 a12 . . . alm 

C2 a2l a22 
. 

- a2m 

cA _ 

VT cm am I am2 ... amm 

0J W T 0 V1 V2 Vm 

W1 W2 . . . Wm 
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1166 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

where ci = EJm=I a... Observe that in advancing from ti to ti, we need only to compute 
YJ since YLI can be taken from the previous step. Therefore we gain extra degrees 
of freedom associated with a two-step scheme without the need for extra function 
evaluations. 

The special case of these methods corresponding to 0 = 0 was first studied by 
Byrne and Lambert [2]. They considered explicit two-step two-stage and two-step 
three-stage methods of order 3 and 4, respectively, given by 

0 
o U1 Ui 

Ul Ul and U2 U2-U3 U3 

0 Ao Al 0 Ao Al A2 
Bo B1o 0 B1 B2 

Renaut [10], [11] found methods of the form (1.2) appropriate for the numerical 
solution of systems of ODEs arising from the semidiscretization of hyperbolic partial 
differential equations. Verwer [12]-[14] considered two-step and three-step explicit 
Runge-Kutta methods for the numerical integration of systems resulting from parabolic 
partial differential equations by applying the method of lines. We refer also to van der 
Houwen and Sommeijer [7], [8] and van der Houwen [6] for related results concerning 
explicit k-step m-stage Runge-Kutta methods. 

The methods of type (1.2) belong to the class of general linear methods considered 
by Butcher [1]. Define the vector Yi 

Yi i y i yi . . . Yim Yi+I9Yi1 9 

and the (m +2) x (m +2) matrices A, B, and C 

0 0 .. 0 1 0 
0 0 .. 0 1 0 

0 0 *-- 0 1 0 ' 
0 0 ... 0 1-0 0 
0 0 *-- 0 1 0 

all a12 a.. aim 0 0 

a2l a22 ... a2m 0 0 

B:= 
am I am2 a.* amm 0 0 

W1 W2 ... Wm 0 0 

0 0O 000 O 
L0 0 .. 0 0 

0 0 *- 0 0 0 

0 0 ..0 0 0 
V1 V2 ... Vm 0 0 

0 0 ..0 0 0 

Then the method (1.2) can be written in the form 

Yi = (A? I) Yi>I + h(B?I)F( Yi) + h(C?I)F( Ybi), 
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TWO-STEP RUNGE-KUTTA METHODS 1167 

where A( B is the direct (tensor) product of matrices A and B, I is the unit q x q 
matrix, where q is the dimension of the system (1.1) and 

F( Yi) = [f( Yi )j( Yz), ...* f Yi ) (il,fY 

The representation of the form (A, B, C) is not unique. At the expense of increasing 
the size of the vector Yi we could find the standard representation in the form (A*, B*) 
(cf. Butcher [1]). This representation is also not unique. 

It is known that the method (1.2) is convergent if and only if it is consistent and 
zero-stable (see [15]). The method is consistent if it has the order at least 1. This is 
satisfied if 

m 

E (vj+wj)=1+0 
j=l 

(cf. ? 2). The method is zero-stable if no root of the polynomial 

p(A) =A2_ (1-O)A -0 

has modulus greater than 1 and if the root has modulus 1 it is simple. This is clearly 
satisfied if -1 < 0?1. 

2. Order conditions. To derive order conditions for the method (1.2) we use the 
theory by Hairer and Wanner [3]. First, we rewrite (1.2) in the matrix form 

(2.1) Y=A(?)Y0+hA(1)f(Y), 

where 

iy 9 
. 

yl im- 1 yil, *9* *, Yi, Yi+l], 

yo [Yi_I, , Yi_- ,Yi, .. Yi] Tg 

m times m + 1 times 

f( Y) = [f( Yl_), . . . ,f( Ymi- ),f( Yl), . . . f( Ym),f(Yi+l)]T] 

0 . 0 1 0 ...O 0 0 

O .0 1 0 . 0 0 0 

A(?)= 0 *-0 0 0 ... 0 1 0 , 

0 ...0 0 0 .. 0 1 0 

0 ... 0 0 0 ... 0 1-0 0 

all ... aim 0 ... 0 0 

aml ... amm 0 ... 0 0 
A()= 0 ... 0 all ... aim 0 

0 ... 0 aml ... amm 0 

V1 ... Vm W1 ... Wm 0 

Observe that A(?)u= u, where 

2m + 1 times 

These definitions of Y, Y0, A(?), and A(l) are not unique (see [11] for a slightly different 

This content downloaded from 129.219.51.236 on Tue, 2 Jul 2013 17:18:20 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1168 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

representation). We also define the (2m + 1)-dimensional vector a in such a way that 
the vth component of Y0 is an approximation to the solution y(xi + a,h) for v= 
1,2, , 2m, and the (2m + l)st component of Y is computed in order to fit y(xi + 
a2m+jh) (cf. [3]). It follows from the form of Y0 and Y that 

a = [-1,**, -1, O, *1,O,if. 

m times m times 

We have the following theorem. 
THEOREM 1 (Hairer and Wanner [3]). The method (2.1) has order s iffor all trees 

t with order p(t) s, it holds that 

(2.2) 402m+1(t)-a I= M 

where + (t) can be computed using the Kastlunger formula as follows. For the tree r 
consisting only of the root we have 

(2.3) 0 (7) = A(?)a + A" Iu, 
and if t = [tl t2,.. .tr] then 

(2.4)~~~~~~~~~ (p t) = A(?)a 10(t) + A"1)t,X( t), 

+(t) = p(t)0(t) ... (tr) 
Here, k2m+1(t) and a2m+l denote the (2m + 1)st components of 0(t) and a, respectively, 
and a p(t) and 0(t,) . . . 4(tr) denote componentwise multiplication. 

Observe that for our methods a2m+1 = 1. The order conditions up to order 4 
computed by using (2.2)-(2.4) are listed in Table 1, where u denotes the vector 
[1, **I, 1]T of appropriate dimension. These order conditions (in slightly different 
notation) were obtained before by Renaut [11] using the composition theorem of 
Hairer and Wanner [4]. In [10] the order conditions were obtained in a more elementary 
way using the Taylor series expansion. 

TABLE 1 
Order conditions for TSRK method. 

t p(t) Order condition 

T 1 (VT+WT)U = 1+0 

I [T] 2 2VT(c-u)+2wTc=1-0 

V [r2] 3 3vT(c-U)2+3WTC2= 1+0 

I [12]2 3 6(vT+wT )Ac-6vTc+3VTU = 1 + 0 

\V [r3] 4 4vT(c-U)3+4wTC3 = 1I0 

\> [r[ij] 4 8(vT + wT)(c. Ac)-4vT(u -3c+2c2+2Ac) = 1-0 

[27 2]2 4 12vTA(c - U)2+ 12wTAc2 4vTu = 1-0 

J [3'13 4 24( +w )A c-24vTAc+ 12v -4vTu = 1- 
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TWO-STEP RUNGE-KUTTA METHODS 1169 

TABLE 2 
Error coefficients for TSRK method of order 4. 

t a (t) e(t) 

T' [7 ] 1 1+60-5VT(C-U)4-5WTC4 

c2 [T2[T]] 6 1+6-lOvT (Ac (c u)2) lOwT (Ac -C2)+ 1OVT(C. (C-U)2)-5vT(c u)2 

U [T[ 2]] 4 1+ -15VT (A(c-u)2 *c) - 15wT(Ac2 *c)+ 15VT A(c -U)2 +5VTC-5vTu 

I [42 72] 4 1 + H-30(VT+WT)(A2C *c) +30vTA2c+30vT(Ac * c) 

-3OvTAc- 15VTC2 + 2OvTc-5vTu 

U [[r]2] 3 1+ 0 -20(VT+WTT)(Ac)2+40VT(Ac- c)-2OvTAc-20v TC2 +2OvTc -5vTu 

T [273]2 1 1 + 6 -2OvTA(c- u)3-2OwTAc3-5VTu 

j9 [24T]]2 3 1+0-40(VT+WT )A(Ac c)+40VTA2c+40v TAc2-6OvTAc+2OvTc-SvTu 

Y 
[7.2]3 1 1 + 0-60w TA2C2_60vTA2(C - U)2 +20VTc -SVTU 

[4]4 1 1+0 -120(v T+WT )A 3c+120vTA2c-6OvTAc+2OvTc-5VTU 

It also follows from [3, Thm. 1] that the local discretization error ee of two-step 
Runge-Kutta method (1.2) of order p is given by 

fe = 
hP 

1) E a(t)e(t)F(t)(y(xj)) + 0(h p+2), (p+l) teT 
p(t)=p+l 

h - 0. Here, a(t) is the number of ways of labelling t with a given totally ordered set 
V with # V= p(t) (see [1]), e(t) is the error coefficient defined by 

e(t) = a P"4i q52m+1(t), 

a2,+l = 1, and F(t)(y(xj)) is the elementary differential corresponding to the tree t. 
The function a (t) and error coefficients e(t) are listed in Table 2 for the method of 
order 4. The function 4(t) appearing in e(t) was computed using the Kastlunger 
formula given in Theorem 1. 

3. Stability analysis. In this section we will investigate stability properties of (1.2) 
with respect to the basic test equation 

(3.1) y'(x) = ay(x), x-O, 

where a is a complex parameter. Application of (1.2) to (3.1) leads to 
m 

Yi+l = (I - )yj + Oyi-I + at E (vj YJiil + wj YJ,), 
j=1 

(3.2) Yi-I_ = yi-, + at E aj, Y'-l 
s=1 

m 
YJ = yi + a E ajs Ysi 

s=1 
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1170 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

i=1, 2, ,N- 1, where a = ha. Putting Yi=[yl, y2 , Ym]T, the system (3.2) 
can be written in the form 

Y+j = (1 - O)y + Oyi-I + a (vTYi + wYi), 

Yi-I =yi-I u + atA Yi_-I 

Yi =yiu+ aAY. 

Hence, 

Yi_I = (I - aA) A<uyyi_, 

Yi=(I-aA) -I uyi, 

and substituting these expressions into the formula for yj+j we obtain 

(3-3) yj+j = R(a, O)yj + S(a, O)yi-, 

where 

(3.4) R(a, 0):= 1-0 + awT(I-aA)-1u, 

(3.5) S(a, 0):= 0 + avT(I-_aA)-Au. 

Since uw is the matrix of rank 1, the function R(a, 0) for 0 # 1 can be written in the 
form 

R(a, 0) = 1-0 + aWT(I-aA)-A u 

=(1-O) 1+1_ a T(I- A-lu] 

=(1-0)det(I+a0 (I_ - aAYuwT) 

det (I - A+ (a/(1 - 0))uwT) 
=(1-0)de det-(I-aA) u 

where the third equality follows from the identity for elementary matrices (see House- 
holder [5, eq. (4), p. 3]). Similarly, for S(a, 0) and 0 # 0 we obtain 

det (I - aA+ (a/ 0)uvT) 
S(, 0)=0 det (I- aA) 

To investigate stability properties of (1.2) with respect to (3.1) we must investigate 
the asymptotic behaviour of solutions to (3.3). This in turn is determined by the location 
of roots of the characteristic polynomial 

(3.6) 4(A)=A2-R(a, 0)A-S(a, 0). 

The stability region of the two-step Runge-Kutta method (1.2) is the set of all points 
a for which the roots of 4 are inside or on the unit circle with those on the unit circle 
being simple. The method is said to be A-stable if its stability region contains the 
negative half plane. We can determine the stability region of (1.2) by the boundary 
locus method as follows. Consider the family of equations 

(3.7) e2it -R(a, 0) e't - S(a, 0) = 0, 
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TWO-STEP RUNGE-KUTTA METHODS 1171 

for t E [0, 21-g]. The solution a = a(t) to (3.7) defines a curve or curves in the complex 
plane and the boundary of stability region of (1.2) is then, in general, a subset of the 
union of these curves. We can plot the curve a = a(t), t E [0, 217T], solving (3.7) by, for 
example, the secant method for tk = 2-,Tk/M, k =0, 1, * * *, M, where M is a positive 
integer. Observe that for t = 0 the equation (3.7) takes the form 

a(vT + wT)(I- aA)-Au = 0. 

Hence, a(0)=a,,=0 or a,0 is the solution to (vT+wT)(I-aA)A-lu=O. To compute 
an approximation a, to a(t,) we can use a0 and some point close to it as initial guesses. 
To compute an approximation ak, I to a(tk?l), k = 1, 2, ,M- 1, we use ak and 
ak-l +2(ak - ak-l) as initial guesses. Here, ak-I and ak are approximations to a (tkl) 
and a (tk), respectively. 

Stability regions obtained in this manner for two-step one-stage methods of order 
2 and two-step two-stage methods of order 4 are presented in ?? 4 and 5. 

4. Two-step one-stage methods of order 2. Consider the two-step one-stage implicit 
method of the form 

Y+i = (1 - 0)yj + Oyi-I + hvlf( Yi1) + hwIf( Y1), 

(4.1) YI_ Yi-i + hallf(Yi-I), 

Yi =yi+ha,1f(Yj), 

i = 1, 2, * , N- 1. This method has order 2 if the following conditions are satisfied: 

V1 + W1 = 1 + 0, 

2vI(aII - 1) +2w1a1I = 1 - 0 

(cf. ? 2). This system has a two-parameter family of solutions. Choosing 0 and all as 
free parameters we get 

V1= I (2a11(1+0)-I+0), 
(4.2) 

w42= 1(3 + 0 -2a,I(1 + 0)). 

To investigate whether the method (4.1) can attain order 3 consider the order conditions 

V1 +w1 = 1 + 0, 

2v1(a, -I1)+2w1a,1 = 1- 0, 

3vI(aII -1)2+3w1al2 = 1 + 0, 

6(vI + wI)a II- 6v1a,1 +3v1 1= + 0. 

Adding the second equation to the third and fourth and subtracting the resulting 
equations, we obtain 

3a21(v + W1)= 0 

Hence, a, I = 0 or v, + w, = 0. If a, I = 0 then v= 2, w, = 4, and 0 = 5 and this violates 
the zero-stability of the method (4.1). On the other hand, if v, + w, = 0 then v, = -1, 
w, = 1, all = 4, and 0 = -1, which again violates the zero-stability of the method (4.1). 
Therefore, the zero-stable method cannot have order 3. 
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1172 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

To investigate stability properties of (4.1) observe that the recurrence relation 
(3.3) takes the form 

(4.3) Yi+1= 1-0+ awl - a Yt,1- a 
aall 1aall 

Solving the equation 

A2_ 1 0+awl )A-0 av, =0 
1 - aal 1 1-aa1 

with respect to a, we get 

(A-1)(A + 0) 
w1A?v+?a11(A -1)(A+0)' 

or by expressing v, and w1 in terms of 0 and all (cf. (4.3)) it follows that 

2(A2-(1-_)A -0) 

2al1(A -1)2+(3+ 0)A -1+ 0 

Putting A = e', t E [0, 2X7-], it follows after straightforward although quite tedious 
calculations that 

ac(t) = 4(1 - 0)(2a,l - 1)(cos t _ 1)2/A 

+ i(2(2a11(1 + 0)-I + 0) sin 2t+4(2+ 0+ 02-2a11(1 + 0)) sin t)/A, 

where 

A = (2all cos 2t- (4all -3 - 0) cos t+2a1l -1 + 0)2 

+ (2all sin 2t - (4all -3 - 0) sin t)2 0 

It follows from the zero-stability of the method (4.1) that -1 < 0 _ 1. Assume first that 
-1 < 0 < 1. In this case it can be checked that if a1 > 4 then Re a (t) > 0 for t E (0, 2 7I). 
This means that the stability region of (4.1) contains the negative complex plane, or 
that the method (4.1) is A-stable. If 0 = 1 or a,1 = 4 then Re a (t) = 0 and after some 
calculations we obtain 

(4.4) a(t)=i 
sint if 0=1, 

all cos t - a,, + 1 

or 

(4.5) a(t) = 2i tan 2 if all=- 2 2 

Observe that (4.4) for all= 4 reduces to (4.5). It follows from (4.5) that if all= 4 then 
the boundary of the stability region of (4.1) is exactly the imaginary axis and this 
method is A-stable. In particular the method corresponding to 0 = 1 and a,, = I iS 
A-stable in spite of the fact that the polynomial p(A) = (A - 1)(A + 1) has both roots 
on the unit circle. Observe, however, that the characteristic polynomial ?(A) given by 
(3.6) in this case takes the form 

Hence, the solution {yi1I%=o to (4.3) is bounded but does not tend to zero as i -* o. 
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TWO-STEP RUNGE-KUTTA METHODS 1173 

If 0 = 1 and all =0 then it follows from (4.4) that a = i sin t, which means that 
the region of stability is empty. If 0 = 1 and a,, ? 0, then 

sin t 
all(cos t - (all - 1)/all) 

and the boundary of the stability region is the imaginary axis if and only if I (a,1- 
1)/ a1,, l' 1, which gives a, >12- 

In the above discussion we have proved the following theorem which characterizes 
the family of two-step one-stage methods of order 2 that are A-stable. 

THEOREM 2. The two-step one-stage Runge-Kutta method (4.1) with v1 and w1 
given by (4.2) is A-stable if and only if -1 < 0 _ 1 and a, _1 2- 

In Fig. 1 stability regions for the method (4.1) with v, and w, given by (4.2) are 
presented corresponding to 0 = 4 and a,1 = 0, 3, and 1. In the cases a1, = 0 and a11 = 
the stability regions are just the areas within the curves. In the two plots corresponding 
to all = 3 and a,, = 1 there are two roots of (3.6) greater than 1 inside the inner loops 
and one root greater than 1 inside the annulus-like regions. Therefore, the stability 
regions are outside the curves which confirms that A-stability is achieved when all_ 1. 
For 0= 4 and all= 4 the stability region is exactly the negative half plane. 

11=0 a11 1/4 

l n 0 | 

-2 -2*s o -1F 
-1-0.5 0 _ -0.5 0 

a,, =314 011=1 

5 _5 

-55 
0 2 4 6 8 0 2 4 6 8 

FIG. 1. Stability regions for implicit TSRK methods of order two for 0= 2. 

Two-step Runge-Kutta methods require only one stage to attain order 2. This 
means that the efficiency of these methods is comparable to that of the implicit midpoint 
method, backward differentiation formula of order 2, and trapezoidal rule. Since 
for al `' Itwo-step methods are A-stable (cf. Theorem 2), these methods also have 
stability properties similar to the above-mentioned methods. 

5. Two-step two-stage methods of order 4. Consider the two-step two-stage implicit 
method of the form 

2 

yi+l= (I - )yi + yi-I +h E ( vjf( Yi - 1)+ wjf( Yii) 
j=1 

2 

s=1 

2 

YJ =y,+h Y, ajsf(Ys), j=1,2 
s=1 
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1174 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

i =1, 2***, N- 1. For this method order conditions up to order 4 are 

T: Vi +1 wi ? + 0, 
i i 

[T] 2 : vi(ci- ) + 2 wici = I-0 

i, ,, i 

[72] 12ZVi(Cia(-1)2+1 WiCa2 = 1 + 0, 

ij ij 
32]2 V iCij _j 16 3 Wia C3 6f iC 3Er = 1 _ 0, 

[7 13: 4 E v +a0a1kc3?+4 i 
i i 

[TIT]]: 8 E viciaij cj + 8 E wiciaij cj - 8 i viaij cj 
i,j i1i i 

-8 vc+12 vici-4E vi = 1 -0, 
i i i 

[272 ]2: 12 E viaij (cj -1)2+ 12 , wiaij cj -4 E i = I - 0, 
i,j ij 

[3'r]3: 24E ajk Cjkk + 24 E wiaij ajk Ck 
i,j,k i,j,k 

- 24 E viaij cj + 12 E vici - 4 E Vi = 1 - 0. 
i,j i i 

Here and in what follows the summation ranges are from 1 to 2. Observe that if vi = 0 
and 0 = 0 these conditions reduce to order conditions up to order 4 for Runge-Kutta 
methods (cf. [1]). 

We will not try to solve the above system in full generality but impose some 
simplifying conditions. Assume first that 

12 (5.2) E a11 Cj=-1Ci i =1l 2, 

which are the familiar row simplifying conditions appearing in the theory of Runge- 
Kutta methods. Then it can be checked that the order conditions corresponding to 
[72], [2T212, and [73] are the same as those corresponding to [21]2, [3T]3, and [7[7]], 
respectively. The remaining five order conditions take the form 

Eviz+ wi=1+0, 

Z vi(ci-1 ) + E wici i i ~~~~2 
(5.3) 

E vi(ci-1 )2 + E WiCi2 =-, 
3, 

EViCij)3EWC31-0 i i 4 
E v1(c1-1)3?Z ,C, = - 

and 

(5.4) 12 Y viaij (cj -1)2 +12Ewjajcj2)-4Yvj=1-0. 
i,j i,j i 
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Eliminating 0 from (5.3) and (5.4) we obtain 

Zvi(3Zaij -cj)i+wi(3Zaijcj2-c3)=0, 

EVi (2 C3-6 C2 + 5ci - 1) +1 Ewj(2 C3 _Ci) = , 
i i ~~~~~~~~~~~~~~~~~~~~~~ 

E vj(34C2-6ci+2)?+ wj(3 C2-1)=0, 
i i 

E vi(2ci -1) +1 wi(2ci + 1) = 2. 
i i 

We have also >, aij = ci, i = 1, 2 (compare ? 1) and (5.2), which for cl # c2 lead to the 
following formulae for aij, i, j = 1, 2: 

C1(2C2-c1 ) C4 

2(C2-c1 ) (2(C2-c1 ) 

2 
C2 C2(C2-2cj) 

2(C2 - CX) 2(c2 - C1) 

It can also be checked that when cl -> c2 then 0-> -1 and in the limit the condition of 
zero-stability is violated. 

We have performed an extensive computer search looking for A-stable TSRK 
methods with minimal normalized error constant defined by 

G(cl, C2):= max {|Ie(t)j: t c T, p(t) = 5}/ + 01 

(cf. [10], [12]). Observe first that if the two-step Runge-Kutta method has the form 

C1 a,1 a12 

c A _ c2 a21 a22 
T 

v V1 V2 

W WT W2 

then interchanging cl and c2 leads to the new method of the form 

C2 a22 a21 
3 A cl a12 al1 

69 T 0 V2 V1 
W W2 WI 

with 3 = Pc, A = PAP, vj = Pv, and i = Pw, where P is the permutation matrix P= [? 0]. 
We have 0= 0 and 

R(a, 0)=1-0+ a (I-aA) -1u 

= 1-0 + awTP(I-aPAP)-lu 

=1-0+aw T(I-aA)A-lu = R(a, 0). 

Similarly, S(a, 0) = S(a, 0) and it follows that both methods have identical stability 
properties with respect to the test equation (3.1). Moreover, it is easy to check that 
both methods have identical error coefficients e(t) listed in Table 2. Therefore we can 
restrict the computer search to the subset {(cl, c2): cl > c2} of the cl - c2 plane. 
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1176 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

The results of this search are presented in Fig. 2 for 0 c, ?_ 2 and 0? c2 < c1. The 
region of A-stability extends to the right of cl 2 and the magnified region is presented 
in Fig. 3 for 1 c c1_?4 and 0.25_ c2 0.50, where we have used the symbol "+" to 
denote A-stable methods for which 0 c (-1, -0.9]. In Fig. 4the graphs of the normalized 
error constant G(cl, c2) are presented for 0.5_ cl- 3 and c2 = 253. This graph, as well 
as the others not presented here, indicates that the A-stable two-step Runge-Kutta 
methods of order 4 with the smallest normalized error constant G(c1, c2) correspond 
to the methods with smallest possible parameter cl. We have found experimentally 

2 

1.8 xxx 
xxx zero-stability, 0 e (- 1,- .9] xxxxxxxxxx 

r D _ ~~~~~~~~~~~~xxxxxxxxxxo 1.6 00000xoHc 

88? - zero-stability, 0 e (- .9, 1] xXXxx., 
XXXXXXXXXXOg o 

1 .4 -A-stability xxxxxxxxxi 8 

08xxxxxxxx8&11800000 
XXXXXXXXOOQOOOOOOOQp 

0 0 XXXXXXXX00Q00 
0 0XXXXXXXX00000 0 0 880 0.4 000000000 0 ooooooo 0 000 

0.2 x000xxxxx00 
XXXXXXX 0000 

xXxXx~~~~~~xxxxxxxxxxooooo??ooo?ooo80o xXxxxxxxOOOg880?oo? 

0 0.5 1 1.5 2 

00000oo 0 xx 0000 00 
000000000000000OOOOOX0QC>OOOOOOOOOQO 
0000000000000tOOOOX 

XXOOOOQ XXXOOOOOOOOOOOOOOOGOOOCOO 

0 00080 0080 00 oB30888o o oo000800000 

800000000000000000XXXX~Xx- g08 

0.0.? 00000000000o o 

000000008 0 05 l 2 

00800000 00000 00- - -r 
000008o 000 080880o0 

00000 000000000000 

C 1x 00000 0 000000 000 000 0 8888 88 .~___ 

000 . tt0000000000000000000000000F00000000000F00000F0000000H00000fr0300H 

00 88888~888?80000000 000 0000000 _ 5 
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0.35 0 00000 000 0g0 0 0 0 8OOO(>OOO OOOOOOO x 00 00000 

0oo0o t 000 0 

000000 000 0 0 
8000880 88 8 8888o 

OOOOOX ~ ~ ~ ~ xx X OOOOOOOOOODOO>OXOOOOOOOOOOOOOOOO>OOOO OOOQO9QOOO -?? 

0000000000000000000000000 0 

00 x x 0000000Q0000000000>000000000000000000000000000000000000 

0 xx 0080000000000 0 000000000000 | 

x0 0 880 000 88 
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Cl 

FIG. 3. Region of zero-stability and A-stability in c1 - c2 plane of implicit TSRK methods of order 4. 
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FIG,. 4. Normalized error constant G(c1, C2) for implicit TSRK methods of order 4 for c2 25 

that the method presented below: 

51 5151 2601 
32 9760 2440 

103 10609 73439 
256 156160 156160 

636886846889 61448158637 
1074516737280 134314592160 

16977449 
36697976 

21872982199 52658918227 
1074516737280 134314592160 

is close to optimal, its normalized error constant is G(cl, C2) 3.09. The region of 
absolute stability of this method is presented in Fig. 5. The stability region is outside 
the solid curve. In the region between the solid curve and the dashed curve the modulus 
of one root of (3.6) is less than 1 and the modulus of the other root is greater than 1. 
The moduli of both roots are greater than 1 inside the dotted curve. We have also 

251566 166 

-5 

-20 -107451 20 13035940 

FIG.1.0Regon7ofabsolte5stbilit6of7mplict3TSR7 methds2oforder40fo c33 45316 

FG .Rgoofabsolute stability of impictisR methodsi rsne nFg of order 4tblt frego 32 256 sid 
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denoted by an asterisk "*" the (common) poles of the stability functions R(a, 0) and 
S(a, 0), i.e., the roots of the equation 

det (I - aA) = det (A)a2-tr (A)a + 1 = 0. 

These curves were obtained using the boundary locus method described in ? 3. For 
the method (5.1) the solution to the equation 

a(vT+ wT)(I-caA)1u = 0 

is a =0 and 

1+0 
(v1 + w1)(a22- a12) + (V2+ W2)(all - a21) 

It is clear that the method cannot be A-stable if a given by the last formula is less 
than zero and this fact was used to increase the efficiency of the computer search 
described above. This computer search was performed using PRO-MATLAB on an 
Ardent Titan computer at the computer center of the Department of Mathematics, 
Arizona State University. 

6. Semi-implicit two-step two-stage methods of order 4. In this section we will try 
to construct semi-implicit TSRK methods (5.1), i.e., methods for which a12 =0. In this 
case cl = all and the order conditions take the form 

r: V1+ W1+V2+W2= 1+0, 

1-0 
[r]: v1(aII -1) + v2(c2 - 1)+ w1aI1+ W2C2 = 2 2 

[2] v1(a11-1)2+ v2(c2-1)2+ wa21+ wC2c= +0 

3, 

[2T]2: 2(vI + wj)al +2(V2+ W2)(a2Iaj1+a22C2) 

1+0 
- 2V2c2+ v+V2= 3 

[T3j: v1(al-1)3+v2(c2-1)3+wwal1+w2c2= 4 

[4[r]]: 2(vI + w,)a I I+ 2(v2+ w2)(a2lall + a22c2) - VI(I -3a,1+4al2) 

-v2(1 - 3c2+ 2c2+2a2,al1+2a22c2) = 4- 

[2r 12: 3vall(all -1)2+3v2(a2l(al -1)2+ a22(c2- 1)2)+3w1a 

+ 3 W2( a2ia l21 + a22 C2) - VI - V2 = 
I 0 

1 2 ~~~4 
[3T]3: 6(v1 + wl)a I I+6(v2+ w2)(aI1a21(a,, + a22)+ a22c2) 

1-0 
-6v1al I-6v2(ajja21 + a22c2)+3v1all+3v2c2- v - v2= 4 

Subtracting the order condition corresponding to [2T]2 from that corresponding 
to [r2] we get 

(6.1) (vl + wl)al1 + (V2+ W2)(2a,,a2l + a22-a21) = 0. 
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Subtracting the equation corresponding to [p3] from the equations corresponding to 
[Pr[r]], [2r2]2, and [3-r]3 we obtain 

(v1 + wl)a,1 + (V2+ w2)(a2l + a22)(2a1ja21 + a22 -a22) 

(6.2)22 2 
-(v.a2)- - v2(2a,,a21 + a222- a2I) = 0, 

2(vl + w,)aa, + (V2+ w2)(3a2,al I + (a2l + a22)2(2a22- a2l)) 
(6.3) 

-3(vjaj2l+V2(2a,ja21+ a22- a22)=0 

and 
5(v1 + wl)alI + (V2+ W2)(6ajja21(a1j + a22) 

(6.4) + (a2l + a22)(5aa22-2a21a22-a21)) 

-3(v,a 21 + v2(2a,,a2l + a 22- a?)) = 0. 

Subtracting (6.3) from (6.4) and three times (6.2) from (6.4) yields 

(v1 + wl)alI + (V2+ W2)(a22(a2l + a22)(a22- a21) 
(6.5) 

+ ajja21(aj1 + 2a22)) = 0, 

and 

(6.6) (vl + w,)al3 + (v2+ w2)(3a,Ia21(al, + a22) 

+(a2l + a22)(a222+ a22l- l22-3a,,a20)) = O 

Finally, subtracting (6.5) from (6.6) we obtain 

a21(a21-2a,j)(a21+ a22-all)(v2+ W2) = O. 

It can be checked that there are no zero-stable semi-implicit methods if a21 =0 or 
a21-2a11=0 or a21+a22- a,, = 0. If v2+w2=0, then by (6.1), v, + w, = 0 or a,, = 0. 
There are no zero-stable semi-implicit methods if v, + w, = 0 and assuming a11 =0 we 
obtain the following one-parameter family of methods: 

0 0 0 
4 2 2 

5-0 5-0 5-0 
6-1 +(6-5)2 (6-5)2 

2 48 48 
3+ 0 (6-5)2 (6-5)2 

2 48 48 

where -1 < 0 1. Observe that this is in contrast to the situation we encounter in the 
theory of Runge-Kutta methods where the unique two-stage Runge-Kutta method of 
order 4 is not semi-implicit (cf. [1]). 

The semi-implicit method (6.7) cannot be A-stable for any 0 c (-1, 1]. This can 
be easily seen from the following argument. The TSRK method is A-stable if 

k(A)=A2-R(a, 6)A-S(a, 0), 

where R(a, 0) and S(a, 0) are defined by (3.4) and (3.5), is a Schur polynomial for 
all a c C- := {a: Re (a) < 0}. By the Schur criterion a necessary condition for this is 
that IS(a, 0)1 < 1 for all a c C-. For the method (6.7) this inequality takes the form 

02-20+5 02+20+13 2 2 
0+ 2(-5) 12(-5) < 1+ 5 

This content downloaded from 129.219.51.236 on Tue, 2 Jul 2013 17:18:20 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1180 Z. JACKIEWICZ, R. RENAUT, AND A. FELDSTEIN 

Since 02 + 20 + 13 > 0 for all 0 this inequality cannot be satisfied for all a C - for any 
0c(-1, 1]. 

Denote by (,3(0), 0) the interval of absolute stability of the semi-implicit method 
(6.7). The function ,3(0), which was computed by bisection method, is plotted in Fig. 
6. This function changes slowly, approximately linearly, as 0 ranges from -1 to 
00 -0.25 and then quite rapidly as 0 ranges from 00 to zero. We have also plotted 
in Fig. 7 the normalized error constant of the method (6.7) defined by 

G(0):= max {je(t)j: t E T, p(t) = 5}/1l + 01. 

This error constant decreases rapidly as 0 ranges from -1 to approximately -0.5 and 
then decreases slowly as 0 ranges from -0.5 to 1. There is a tradeoff between the 
stability and error properties of semi-implicit methods (6.7) and by inspecting Figs. 6 
and 7 it follows that the values of 0 between -0.35 and -0.25 seem to be optimal. 
They correspond to the methods with relatively large interval of absolute stability and 
normalized error constant of moderate size. 

Although we have shown that the two-stage fourth-order semi-implicit methods 
cannot be A-stable, this result does not demonstrate that this method is not efficient 
for nonstiff problems. Consider, for example, the four-stage, fourth-order, one-step 

0 

-1 

- 3 . . .......................;, ........... 

-4V 

-0 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

FIG. 6. Ftinction /3 /3(0) for semi-implicit TSRK methods of order 4. 

8F\ 

1 8 -. ..... .. 

G 1 .. .. .. .. . .. ;.................. .. .. .. .. .... .,. . . . 

-1 -0.8 -0.0 -0.4 -0.2 0 0.2 0.4 0.8 0.8 0 

FIG. 7. Normalized error constant G(0) for semi-implicit TSRK methods of order 4. 
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explicit method. The truncation coefficients of this method are about the same size as 
those of the two-step method, while its interval of absolute stability is about one-half 
that of the optimal two-step method. The latter comparison means that we should 
regard the one-step method as requiring eight derivative evaluations to advance a step. 
Whether or not the two-step method costs more than this depends on the number of 
implicit stages to be solved and how many iterations are required to convergence. But 
from (6.7) we observe that only the calculation off( y2) is implicit, the value of f( Y2_1) 
already existing from the previous step. 

To evaluate the relative efficiency of the method (6.7) we tested it on a few 
examples. We compared, using as an initial estimate of the stage values, (a) f( y2) = 

f( Y2_1) and (b) f( y2) = 0. Although both choices gave good convergence, choice (a) 
was marginally more efficient. In each case, we iterated to convergence until two 
successive approximations differed by less than h5, which is proportional to the local 
truncation error of the fourth-order method. Observe that the minimum number of 
derivative evaluations to advance a step is just 2. For low precision we found that the 
average number of derivative evaluations to advance a step was also near 2. As the 
accuracy demanded is increased, this number increases slowly to around 4 for an 
accuracy of about 10-9. Hence the two-step method is between two and four times 
more efficient than the one-step method. Varying c1 and c2 which amounts to varying 
0 hardly affected the cost of the method. We observed that as 0 increased through the 
range [-1, 1] the number of iterations required, in most cases, increased only slightly. 
With one exception, this increase was more pronounced at high precisions than low 
precisions. In this latter case, as 0 increased through positive values, convergence was 
only achieved, if at all, after many iterations. For higher precision, convergence was 
achieved and the order of the method maintained. 

Next we will investigate whether the semi-implicit Runge-Kutta method of order 
3 can be embedded into (6.7). Order 3 Runge-Kutta methods of this type take the form 

C1 C1 0 
1 1 1 1C 

-+ 12 6 6-1 

(6.8) 2 2- -c1 

c2_c,+ 1 c2_1?C+ 

(cf. [1]). Comparing (6.7) and (6.8), it follows that these methods can form an embedded 
pair only if c1 =0 and 0 = -1, which violates the zero-stability of the method (6.7). 
However, embedded pairs of explicit continuous Runge-Kutta methods of order p - 1 
and explicit TSRK methods of order p for p = 2, 3, 4, and 5, were constructed recently 
by Jackiewicz and Zennaro [9]. 

7. Concluding remarks. In this paper we have studied the class of two-step Runge- 
Kutta methods for the numerical solution of ordinary differential equations. The order 
conditions and the formula for the principal part of the local discretization error are 
derived using the theory of Hairer and Wanner and the Kastlunger formula. These 
order conditions are listed up to order 4 (Table 1) along with error coefficients 
corresponding to the trees of order 5 (Table 2). A stability analysis with respect to the 
test equation y'= ay, where a is a complex parameter, of two-step one-stage methods 
of order 2 is presented and A-stable methods are characterized. For the solution of 
systems of ODEs arising from the semidiscretization of partial differential equations 
of parabolic type stability regions which extend far along the negative real axis are 
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required (see [12]-[14]). Thus A-stable methods may be useful in this context. Further- 
more, the semidiscretization of hyperbolic partial differential equations leads to a 
requirement of stability along the imaginary axis or in a region in the left half plane 
(see [10], [11]), and A-stable methods may again be useful. Two-step two-stage methods 
of order 4 are also studied. An extensive computer search was performed to find the 
methods which are A-stable and the region of A-stability was presented as a plot in 
cl - c2 plane. We investigated how much the normalized error constant varies across 
the region of A-stability and give an example of an A-stable method with a small error 
constant. Next, semi-implicit methods of order 4 are studied. These methods are not 
A-stable but have quite large interval of absolute stability for 0 C (-1, 0,), where 
00--0.25. The normalized error constant tends to infinity as 0 -> -1; however, for 0 
between approximately -0.35 and -0.25 the error constant is of moderate size and at 
the same time these methods have a relatively large interval of absolute stability. 
Numerical tests indicate that these methods are between two and four times more 
efficient than the one-step fourth-order four-stage explicit Runge-Kutta methods. 
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