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Abstract

We modify existing models of bacteriophage growth on an expo-
nentially growing bacterial population by including (1) density de-
pendent phage attack rates and (2) loss to phage due to adsorption to
both infected and uninfected bacteria. The effects of these modifica-
tions on key pharmacokinetic parameters associated with phage ther-
apy are examined. More general phage growth models are explored
which account for infection-age of bacteria, bacteria-phage complex
formation, and decoupling phage progeny release from host cell lysis.

Keywords: phage therapy, infection-age structure, multiple adsorptions, bacteria-
phage complex, passive therapy, active therapy, proliferation threshold.

1 Introduction

As pathogenic bacteria have increasingly become resistant to our arsenal of
antibiotics, there has been renewed interest in the use of bacteriophages to
control bacterial infections [13, 11, 12, 14, 15, 23]. Bacteriophages, phages
for short, are viruses which prey on bacteria. Almost as soon as they were
discovered there was interest in using them to control infections and bacterial
contamination. The history of early attempts to use them for such purposes
during the last century is fascinating [13, 12, 6]. It is not hard to see the
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potential in phage therapy for unlike chemotherapy, which simply results in
the death of a susceptible bacteria, phage therapy results in the death of the
host cell and the release of hundreds more lethal phage. The author found
the review articles [13, 12] on phage therapy useful.

Mathematical modeling has long played a significant role in the study of
phage-bacterial interactions for ecological reasons [2, 22, 17, 9] as well as for
medical ones [3, 11, 12, 10, 14, 15, 23]. See also the additional references
in these papers. The reasons for this are obvious–among them being the
difficulty of carrying out controlled experiments in vivo and the novelty of a
self-replicating therapeutic agent.

It will be useful to briefly review the life cycle of a virulent phage and
some of the associated terminology for later use. Typically, phage specialize
to attack only one or a few strains of bacterial host whose cell surface contains
an appropriate binding site. Phage attach to a preferred binding site, then
inject their genetic material, DNA or RNA depending on the phage, and
perhaps some enzymes into the cell which thereafter is called an infected
cell. In the case of virulent (also called lytic) phage, the infected host cell
machinery is then immediately co-opted to make new phage particles which
are subsequently released in a burst when phage enzymes cause the host cell
to lyse and the cycle repeats. The latent period is the time between phage-
host binding and subsequent release of phage at cell lysis, usually on the
order of 20 minutes to an hour depending on the host-phage system. The
burst size, ranging between several to thousands, is a measure of the average
number of phage progeny resulting from a single infected host cell and also
depends on the host-phage system.

This paper addresses some issues that seem not to have been explored in
the mathematical modeling of bacteriophage growth that may be important
in phage therapy. First, one finds that mass action kinetics, e.g. bxv, where x
denotes concentration of uninfected bacteria and v is concentration of phage,
is invariably used to model both the phage attack rate on uninfected bacteria
and the rate of loss of free phage due to attachment [9, 10, 14, 15, 23].
Heinemann et al. [23] experimentally measured the “adsorption rate” b in
the context of the rate of loss of phage (number of adsorbed phage per free-
phage per bacterium per minute) and found a wide variation of values and
noted that it decreased as the sum of phage and bacterial densities (x+y+v)
increased, where y is the density of infected bacteria.

In this paper, we will argue that the phage attack rate and the rate of
phage loss due to attachment are distinct. As the former involves attachment
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and injection of the one primary (first to inject) phage while the latter takes
account of all secondary phage that attach to a cell, this should not be
unexpected. We propose that the phage attack rate deviates from bxv when
phage densities are large due to higher likelihood of multiple phage binding
to a cell between the time of initial binding and lysing and therefore to
a lower impact per phage particle. Mathematically, this will be achieved
here not by making b dependent on the densities but by adding an extra
multiplicative term to the phage attack rate which depends on the phage
density. Specifically, our analysis leads to the reduced phage attack rate

bxv

FN(cv)
, c = b/ρ (1)

where 1/ρ denotes the injection time, the time between binding of a phage
to a host bacteria and subsequent injection of genetic material into the host,
N denotes the number of binding sites for phage per host, and

FN(u) = 1 +
u

1 + u
+

u2

(1 + u)(2 + u)
+ · · ·+ uN

(1 + u)(2 + u) · · · (N − 1 + u)N

Observe that FN(u) > 1 so the attack rate is strictly less than bxv. Despite
appearances, FN(u) depends rather weakly on N ; F3(u) is a good approx-
imation of F100(u) on 0 < u < 5. To lowest order, FN(u) ≈ 1 + u so the
effect of the term cv in (1) is non-negligible precisely when bv × 1

ρ
is non-

negligible compared to one. bv/ρ gives the number of potential irreversible
phage attachments that could be formed with a typical host cell during the
injection time. A rough estimate of c = O(10−8) for a strain of E. coli and
phage implies that the term cv in (1) is significant when v ≥ O(107), well
within the range used in experimental and theoretical studies.

Secondly, it seems to us that the rate of loss of phage is underestimated
in existing models and moreover that the effect of this underestimation may
be significant for bacteriophage therapy. For example, if we assume that
phage cannot detect the state (uninfected or infected) of the host cell to
which it binds then one should not ignore the loss of phage due to “wasted
attacks” on already infected hosts. We take into account that a host cell
has a multiplicity of potential phage binding sites on its surface, more than
one of which may be simultaneously bound by phage. This leads, with good
approximation, to the expression

−bv(x + y) (2)
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for the rate of phage loss due to attachment. As a result our model differs
from others in the literature in that the phage loss rate due to attachment
differs from the phage attack rate on host.

Finally, most existing models assume either an exponentially distributed
latent period [14, 15], leading to ordinary differential equations, or assume a
fixed-length latent period which results in delay differential equations [9, 10,
23]. Here, in an appendix, we explore a more general model where infected
cells are structured by age-since-injection and where the release rate of phage
progeny may be either a continuous “budding off” or an abrupt burst at host
lysis typical of virulent phage. We also allow for variable phage progeny size
by decoupling cell death from the release of progeny. This structured model
may lead to ordinary differential equations, to delay equations, or to more
general integro-differential equations depending on whether the infected cell
mortality rate is independent of age-since-injection, sharply dependent on it,
or a more smooth nonconstant function of it. However, much of our effort is
devoted to a delay differential equation model resulting from the assumption
of a fixed-length latent period followed by a discrete burst of phage. This
model is similar to ones considered by Lenski and Levin [10] and by Beretta
and Kuang [2] except for the modifications already noted. Our treatment of
the initial conditions and their effect during the initial latent period is more
natural than in [10, 2] and it facilitates the consideration of a proliferation
threshold for phage therapy.

We show that the density dependent attack rate (1) and the modified
rate of phage loss due to attachment (2) result in a potentially significant
modifications in key pharmacokinetic quantities associated with active phage
therapy first identified by Payne and Jansen [14, 15]. Unlike passive therapy
which relies on a massive dose of phage to kill bacteria in only one phage
generation, active therapy does not need such large dose since it relies on
second and third generation phage for its success. Payne and Jansen argued
for the existence of a threshold number of uninfected host cells required to
support the amplification in phage numbers from one phage generation to
the next (phage reproductive number exceeds one). This idea has generated
some controversy in the field [7, 8, 13, 16] due to a misunderstanding of
its meaning. However, it is certainly valid for the mathematical models of
phage growth treated in [14, 23]. We derive a threshold condition for phage
proliferation which reduces to one comparable to Payne and Jansen’s when
total bacterial density is not too large but changes character when densities
become large.
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2 Phage Growth on an Exponentially Grow-

ing Host Population: Fixed-Length Latent

Period

In the appendix we derive a general model of phage growth which includes
the one described below as a special case. Here, we make the following
assumptions:

(a) bacteria first injected by phage at time t− τ lyse (die) at time t.

(b) uninfected host cells grow at rate a; infected cells do not grow.

(c) free phage, those unattached to host cells, decay or washout at rate m.

(d) bacteria are removed by washout or death unrelated to phage at rate
p.

(e) phage do not distinguish between infected and uninfected cells in regard
to attachment and injection.

(f) the rate of release of phage progeny from an infected host of infection-
age (time since injection) s ∈ [0, τ ] is η(s). In particular, it is indepen-
dent of the number of phage injections.

In other words, we assume the latent period has duration precisely τ
units of time as in [2, 23, 10]; this is relaxed in the more general model
in the appendix. As we are primarily motivated by applications to phage
therapy where one is interested in treating the initial phase of a bacterial in-
fection which, in the worst case, is characterized by an exponentially growing
pathogen, the model equations do not include density effects on host growth
such as in [10, 2]. Payne and Jansen [14, 15] assume that infected host grow
at the same rate as uninfected ones but we follow Heinemann et al. [23] and
Abedon et al. [1] who suggest that infected host cells do not grow. According
to (f), the integral

L =

∫ τ

0

η(s)ds

gives the phage progeny from an infected host assuming that it survives the
latent period. The general release rate η(s) easily accommodates both what
is sometimes called “budding” of phage progeny from a living host cell as well
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as a “burst” of phage progeny released at cell lysis. Assumption (e) is used
by Schrag and Mittler in [18] in an ecological setting. We are unaware of any
evidence supporting or refuting it. Our assumption in (f) that the number
of progeny is independent of the number of phage injections is consistent
with observations of Stent [20], pg 74, who remarks that “latent period and
burst size do not, however, depend in any very striking way on the number of
phage particles with which each bacterial cell has been infected”. However,
he later mentions lysis inhibition that occurs in the infected host of certain
T-even phage where superinfection late in the latent stage may substantially
prolong the latent stage and enhance the burst size. See also [1]. Hypothesis
(d) is rather standard [14, 23].

Let x denote the density of uninfected host bacteria, the density of phage-
infected bacteria by y, and phage density by v. The expression (1) is used
for phage attack rate rather than the usual mass action rate bxv for the
reasons described in the introduction. The corresponding loss rate for phage
due to attachment to host cells is modeled by (2) to account for wasted
attachments following (e) above. We stress that both these rates are derived
in the appendix.

Initial conditions at time t = 0 must take account of the infection-age of
the infected cells since these cells may have been infected at different times in
the past. Moreover, it is reasonable to assume that the initial set of infected
cells were obtained in a manner independent of the initial set of uninfected
cells and phage. Therefore, we prescribe the initial uninfected host density
x(0), the initial phage density v(0), and the initial distribution of infected
cells:

U0(s), 0 ≤ s ≤ τ

where s denotes the age since infection (injection). Thus, for 0 < c < d < τ ,∫ d

c
U0(s)ds denotes the number of infected cells with infection-age between c

and d. These cells, infected at times between t = −d and t = −c will, if not
washed out, lyse at times between τ − d and τ − c.

In our view, the manner in which initial data are formulated here is more
natural than that in [2] where the past history of phage and uninfected host
cells are prescribed over a latent period, assuming that the initial population
of infected cells at t = 0 arise through infection of the initial host population
by the initial phage.
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For the initial latent period, the equations of the model are given by:

dx

dt
= ax− bxv

FN(cv)
− px

y(t) =

∫ t

0

bx(t− s)v(t− s)

FN(cv(t− s))
e−psds + e−pt

∫ τ−t

0

U0(s)ds, 0 ≤ t ≤ τ

dv

dt
= −b(x + y)v −mv +

∫ t

0

bx(t− s)v(t− s)

FN(cv(t− s))
e−psη(s)ds (3)

+e−pt

∫ τ−t

0

U0(s)η(s + t)ds

Observe that infected cells at time t < τ arise either from cells infected after
t = 0 or from surviving cells from the founding population U0. The first
integral in the equation for y gives the number of cells infected after t = 0
which survive washout to be alive at time t. The second gives the survivors
from the founding population still alive at time t; clearly these must have
had age less than τ − t in order to be alive at time t. A similar analysis
explains the two integrals in the equation for phage: the first integral gives
phage progeny issuing from cells infected after t = 0, the second integral
giving phage progeny issuing from survivors from the founding population of
infected cells.

In all our simulations and in most experimental setups, the founding pop-
ulation of infected cells is taken to vanish, U0 = 0, simplifying the equations
during the initial latent period. Indeed, the natural initial conditions for
phage therapy correspond to administering a dose of phage to an exponen-
tially growing bacterial population that has not been exposed to phage and
therefore there are initially no infected host of any age of infection. This does
not mean that our care in formulating the initial conditions is wasted since
we will have reason to consider nonzero U0 in our later discussion related to
phage therapy.

After the latent period, the founding population of infected cells have all
lysed and the equations are simpler:

dx

dt
= ax− bxv

FN(cv)
− px

y(t) =

∫ t

t−τ

bx(s)v(s)

FN(cv(s))
e−p(t−s)ds, t > τ (4)

dv

dt
=

∫ τ

0

e−ps bx(t− s)v(t− s)

FN(cv(t− s))
η(s)ds− b(x + y)v −mv
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Figure 1: Plot of FN(u) versus u for N = 1, 3, 100.

Key properties of the function FN(u) are given in the lemma below, proved
in the appendix. As Figure 1 shows, these functions depend rather weakly
on N for small u.

Lemma 1. The functions FN : [0,∞) → [1,∞) satisfy the following:

1. d
du

u
FN (u)

> 0 and d
du

FN(u) > 0.

2. u
FN (u)

→ N as u →∞

3. F∞(u) ≤ FN+1 ≤ FN(u) ≤ F1(u) = 1 + u

where

F∞(u) = 1 +
∞∑

n=1

n∏
i=1

u

i + u

The biological implications of these assertions are not surprising. The
fact that FN(u) > 1 for u > 0 means that the attack rate (1) is smaller
than the corresponding mass action rate bxv. According to assertion 3.,
it increases with N , the number of host binding sites; more sites means the
potential for more attached phage which decreases the time to injection. The
first assertions ensure that the phage attack rate increases with increasing
phage density v. The second indicates that the maximum effect of phage on
the specific growth rate of bacteria (x′/x) is bN/c. Observe that F3(2) ≈
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F100(2) > 2 so the attack rate is less than half the corresponding mass action
rate bxv when cv > 2.

For t > τ , the y equation can be differentiated to yield

y′ =
bxv

FN(cv)
− e−pτ bxτvτ

FN(cvτ )
− py (5)

where xτ = x(t − τ), vτ = v(t − τ). As noted above, the natural initial
conditions for phage therapy are to administer a dose of phage to an expo-
nentially growing bacterial population which has not previously been exposed
to phage. Thus, U0 ≡ 0 and the differentiated form of the y equation during
the initial latent period differs from (5) in that the second term is removed.

Well-posedness issues related to our system (3)-(4) can be treated using
results in [5]. Corollary 2.2 of Chapt. 12 can be used to prove the existence
and uniqueness of a maximally defined continuous solution corresponding to
nonnegative initial data if, for example, U0 is integrable and η is essentially
bounded. Easy arguments give that the solution is nonnegative and a prior
bounds show that it is globally defined.

If the rate of phage progeny release is highly peaked about the age at lysis
τ , it is reasonable to assume that cells produce L-phage exactly on reaching
age τ :

η(s) = Lδ(s− τ) (6)

where δ(r) is the Dirac impulse function with unit mass concentrated at
r = 0. In that case, the equation for phage simplifies to the following, for
the latent period,

dv

dt
= −b(x + y)v −mv + Le−ptU0(τ − t), 0 < t ≤ τ (7)

and thereafter

dv

dt
= Le−pτ bxτvτ

FN(cvτ )
− b(x + y)v −mv, t > τ (8)

2.1 Remarks on Long Term Dynamics

In contrast to ecologically motivated theoretical studies of phage growth
where attention has been paid to long term dynamics [2, 17], there has been
very little consideration of long term dynamics of phage growth models aimed
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at understanding phage therapy [14, 23]. This is probably due to a tacit as-
sumption that the equations are only valid until such time as an immune
response is mounted. Indeed, the hypothesis of exponential bacterial growth
captures this focus on the short term dynamics.

Returning to the general system (3)-(4) with budding rate η, if a > p,
which we assume hereafter, then the trivial equilibrium point (x, y, v) =
(0, 0, 0) is an unstable saddle point. For if there are no virus or infected cells,
then the uninfected cells grow at the exponential rate a − p > 0. If, on the
other hand, there are no uninfected cells, then any free virus and infected
cells are removed at an exponential rate. Therefore, it is plausible that no
solution starting with x(0) > 0 can satisfy x(t) → 0, t → ∞. We wish to
stress that this fact is common to all models of virulent phage growth in
the literature not just the one treated here. It is possible to overlook this
observation on viewing the simulations reported here and in [14, 23]. Below
we give a proof which carries over to these other models with only minor
changes.

Proposition 1. If a > p, then no solution of (4) with x(0) > 0 can satisfy
x(t) → 0, t →∞.

Proof. The assertion is obvious if bN/c ≤ a − p since then x′/x ≥ 0. Here-
after, assume that bN/c > a − p. If x(t) → 0 as t → ∞ for some non-zero
solution of (4) then necessarily y(t) → 0 as well. It can then be seen that
v must remain bounded. By standard arguments, this and the convergence
of x(t) implies that x′(t) → 0 and therefore, since x(t) 6= 0, v(t) → VI > 0
where VI is the unique positive root of bv

FN (cv)
= a−p guaranteed by Lemma 1.

The convergence of v(t) implies v′(t) → 0 but this immediately leads to the
contradiction that v → 0.

Proposition 1 should not be construed as implying that phage therapy is
doomed to failure. Obviously, our deterministic model breaks down at low
densities of bacteria but aside from this, therapy can be successful if, even
with large initial bacterial populations, there are feasible phage doses that
will result in a bacteria levels decreasing to a small fraction of pre-treatment
levels.

Because we assume that bacteria grow exponentially, rather than, say,
logistically as in [2] or controlled by nutrient limitation as in [11, 10], there
is no “phage-free” equilibrium with host cells at some positive level and no
phage or infected cells.
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If bN
c

> a− p and

(a− p)

∫ τ

0

e−psη(s)ds > bVI

(
1− (a− p)τ

(1− e−pτ )

pτ

)
(9)

where the quotient (1−e−pτ )
pτ

= 1 when p = 0, then there exists a unique

positive steady state (X, Y, V ). The analytical determination of the stability
properties of the positive steady state via linearization is very challenging.
See Beretta and Kuang [2] for some partial results. Simulations of our system
extending for hundreds of hours duration, not shown here, are oscillatory in
nature and characterized by long periods with cell densities well below one
cell per milliliter. We conclude that the asymptotic behavior of the model
system has limited relevance for phage growth.

2.2 Parameter Values for Simulations

Measurements of Heinemann et al. [23] found that the adsorption rate for
phage T4 growing on an E. coli strain averaged 1.5 × 10−8ml/min which
translates to the per hour rate in Table 1. Similar values can be found in
[14, 20].

Phillips et al. [4] observe that the waiting time following phage binding
to host for initiation of injection is random, ranging from seconds to minutes.
Their data reasonably fit an increasing but saturating exponential function
with time constant t0 which ranges from 79 seconds to 166 seconds. As they
find that the injection process takes roughly 10 seconds, it is reasonable to
take our injection time 1/ρ to be 2 minutes.

This leads to a value c = b/ρ = 3 × 10−8ml which means that the term
cv appearing in (1) is significant, i.e., cv = O(0.1) when v > 0.3 × 107. In
the numerical simulation shown in Figure 2, we take v(0) = 108 (compare
with Payne and Jansen [14] who use even 109 initial phage in simulations)
so cv(0) = 3.

In his monograph, Stent [20] describes experiments of Schlesinger who
measured the “adsorption capacity” of E. coli for WLL phage by adding
phage to a suspension of bacteria and noting when additional phage could
no longer become attached. He found that this threshold occurred at about
300 phage per bacterium. Although the adsorption capacity may differ from
the number of binding sites for a variety of reasons, the experiment suggests
that the number of binding sites satisfies N = O(102). The lack of sensitivity
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parameter value
a 0.3 /hr
b 9× 10−7ml/hr
c 3× 10−8ml
L 150
m 1.8 /hr
p 0
τ .43 hr
N 100
ρ 30/hr

Table 1: System parameters

of the attack rate (1) to N suggests that N = 100 should give sufficient
accuracy.

Parameter values used in our simulations are displayed in Table 1. Those
not described above were taken from [14, 23]. Our simulations are restricted
to the special case that a burst of L phage are produced from an infected cell
at lysis. Therefore, equations (7) and (8) were used. Initial data were taken
following Payne and Jansen.

Assuming that U0(s) ≡ 0, the simulated system is:

dx

dt
= ax− bxv

FN(cv)
− px

dy

dt
=

bxv

FN(cv)
−H(t− τ)e−pτ bxτvτ

FN(cvτ )
− py (10)

dv

dt
= H(t− τ)Le−pτ bxτvτ

FN(vτ )
− b(x + y)v −mv

where H(t− τ) denotes the heaviside function and y(0) = 0 (reflecting that
U0 ≡ 0) unless mentioned otherwise. Numerical solutions were computed
using the dde23 delay differential equation solver on Matlab.

Thick lines in Figure 2 displays the time series simulating phage therapy
over an hour time frame. A notable feature of the time series is the sharp
discontinuity in the derivative of solution components at the time of the first
latent period, roughly 26 minutes or 0.43 hours, caused by the burst of fresh
phage. Cell concentrations below one cell per milliliter should be viewed
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Figure 2: x(0) = 106, y(0) = 0, v(0) = 108. Dashed lines correspond to
c = 0.

as the absence of cells; this occurs for uninfected cells at approximately 0.6
hours. For comparison purposes, the dashed lines show the result of replacing
both the attack rate (1) and rate of phage loss (2) by the traditional mass
action term bxv, keeping initial data the same. Note that the traditional
mass-action rate results in a substantially quicker reduction in uninfected
host over the first two latent periods and a reduction in infected cells over
the second latent period. Uninfected cells essentially vanish at 0.2 hours
and infected cells at 0.6 hours. Virus levels appear to be affected to a lesser
degree. We conclude that the effect of our modifications in phage attack rate
and phage loss rate is to significantly lengthen host cell survival, at least for
initial data used here. As viral densities appear to be less affected by our
modifications, it is probably the case that the modified attack rate is most
significant.

3 Implications for Phage Therapy

Payne and Jansen [14, 15] discovered some key pharmacokinetic parameters
related to in vivo phage therapy against bacterial infection using a very simple
model of phage growth. Of course, effects of an immune response to phage
and to bacteria are ignored for these calculations, assuming that they kick
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in at a later time.
As noted above, in the context of our deterministic model, successful

phage therapy can at best mean that bacterial levels are driven to a suffi-
ciently low level that the immune system easily finishes them off. Successful
phage therapy requires at minimum that uninfected bacterial density de-
creases. Our equations imply that

x′ < 0 ⇔ v > VI (11)

where VI is the unique positive root of bv
FN (cv)

= a− p (see Lemma 1). Payne

and Jansen [14] refer to their VI , obtained by setting c = 0 in ours, as the
“inundation threshold” value. For the parameter values in Table 1, VI =
3.3× 105.

Note that there is no guarantee that if one starts out with (11) holding
that it will continue to hold. In fact, Proposition 1 implies that x′ < 0 cannot
hold indefinitely. Therefore, merely arranging for initial phage densities to
exceed the inundation threshold does not ensure “successful treatment”.

Payne and Jansen identify two phage therapy strategies: passive therapy
and active therapy. Passive therapy is the attempt to substantially knock
down the bacterial population with the initial dose of phage, ignoring con-
tributing effects of subsequent phage generations. Active therapy, presum-
ably requiring a much smaller initial dose of phage, relies on the proliferation
potential of phage reproduction to build up phage densities to levels sufficient
to eventually drive down bacterial levels.

3.1 Passive Therapy

Payne and Jansen’s derivation of an explicit minimal phage dose for successful
passive therapy, i.e. reaching x(t) = O(1), in [14] relies on the simplicity of
their model. Indeed, there are excellent reasons for simple models and the
ability to perform explicit calculations is one of them. Our model, which
includes additional features such as the unproductive loss of phage due to
phage attacking uninfected bacteria that are already bound to phage and
to wasted phage attacks on infected cells, does not permit easy calculations.
These additional features are most likely to be non-negligible at the required
large phage doses used in passive therapy.

It is not clear that the notion of minimal dose for passive therapy is well-
defined for our model. Here, we take passive therapy to mean that bacterial
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density is reduced to a suitably small fraction of its initial size within the
initial latent period. We take this obviously restrictive view of passive
therapy only for analytical convenience; it is not, however, at great variance
from the rather subjective definition of passive therapy–not to rely on follow-
on generations of phage for success.

It seems obvious on biological grounds that if we fix the initial uninfected
bacterial density x(0) and assume as usual that y(0) = 0 but vary the initial
phage dose v(0), then larger doses will lead to smaller uninfected bacterial
levels. However, this is far from obvious from a mathematical viewpoint.
The next result establishes this point and provides a theoretical basis for the
concept of minimal dose for passive therapy.

Proposition 2. Let (x(t), y(t), v(t)) and (x̄(t), ȳ(t), v̄(t)) be two solutions of
(10) with x(0) = x̄(0) and y(0) = ȳ(0) = 0. If v(0) < v̄(0) then x̄(t) < x(t)
and x̄(t) + ȳ(t) < x(t) + y(t) on 0 < t ≤ τ .

For every θ ∈ (0, 1) and every U > 0 there exists V = V (U) > 0 such that
if (x(t), y(t), v(t)) is a solution of (10) with x(0) + y(0) ≤ U and v(0) ≥ V ,
then

x(τ)

x(0)
≤ e(a−p−(bN/c)θ)τ (12)

In words, bigger phage doses result in smaller bacteria levels over the first
latent period. In addition, for any initial bacterial density, there is a phage
dose which will reduce bacterial density at the end of the first latent period
by a factor that can be taken as close to e(a−p−(bN/c)τ as desired. Recall that
we are assuming a− p− (bN/c) < 0. Indeed, for the parameters of Table 1 it
is approximately −1290. Therefore, e(a−p−(b/c)θ)τ ≈ exp(−1290) if θ ≈ 1. We
do not claim that the required doses are medically feasible or even that there
are the required number of phage in the universe. The proof of Proposition 2
is provided in the appendix.

3.2 Active Therapy

In their consideration of active treatment, Payne and Jansen give an intuitive
argument for the existence of a threshold bacterial density such that phage
numbers are amplified over each successive phage generation only if bacterial
density exceeds threshold. We can apply this intuitive reasoning to our model
as well although we arrive at a somewhat different threshold for phage am-
plification. According to our delay model, a cohort of y0 newly infected cells,
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i.e. U0(s) = y0δ(s) where δ is the Dirac impulse concentrated at zero so all
cells have infection-age zero, gives rise to y0Le−pτ phage τ units of time later
when the surviving members of this cohort of infected host have lysed. These
phage survive 1

b(x+y)+m
hours during which they infect host at rate bx

FN (cv)
per

phage. We conclude that the y0Le−pτ phage produce Le−pτ bx
(b(x+y)+m)FN (cv)

y0

second generation infected cells. The amplification factor (of y0) is therefore

R0 = Le−pτ bx

(b(x + y) + m)FN(cv)

The condition for amplification of infected cells, and hence, the condition for
proliferation of phage is that R0 > 1:

Le−pτ bx

(b(x + y) + m)FN(cv)
> 1 (13)

Unlike the proliferation threshold derived in [14], ours does not lead to a
threshold condition for uninfected bacteria alone. However, as active therapy
should not require such large phage doses that cv is significant, it may be
reasonable in some cases to assume cv ¿ 1 in which case FN(cv) ≈ 1 and we
may ignore this factor. For parameter values in Table one, if v < 107 this is
a good approximation. Immediately below, we assume this approximation is
valid.

Our proliferation condition involves both infected and uninfected host.
If b(x + y) is small relative to m, we arrive at a threshold bacterial density
for phage proliferation that is comparable to the one obtained in [14] and
corrects the one given in [23]:

x > Xp ≈ m

bLe−pτ
(14)

However, if b(x + y) is large relative to m, then (13) yields a threshold on
the fraction of uninfected cells

Le−pτ x

x + y
> 1

In summary, the proliferation threshold computed from our model is more
complex than that of Payne and Jansen since it involves all three quantities
x, y, v. If cv ¿ 1, it reduces to one similar to theirs, a lower bound on
uninfected bacteria, when total bacterial density is not too large but gives a
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lower bound for the fraction of uninfected bacteria when the total bacterial
density is large. For parameter values in Table 1, m

bLe−pτ ≈ 13, 500; b(x+y) ¿
m if x + y < 104.

We provide two simulations where active therapy can be clearly identified.
Initial data in Figure 4 yield a value R0 ≈ 7 well above unity. Bacteria
initially grow before phage gain control after the initial latent period. Figure
5 can be compared to Payne and Jansen’s Figure 1(c) in [14] which shows
passive therapy. We chose parameter values to correspond to those in that
figure: a = 0.3, b = 10−6, τ = 0.83, L = 100, m = 1.8, p = 0 with our value
of N and c = b/ρ = 0.33 × 10−7. Initial data were chosen as in their figure
as well except that our starting time corresponds to their tφ. It must be
kept in mind that our model differs from theirs in the attack rate as well
as our assumption that infected host do not grow. Our simulation agrees
qualitatively with theirs although our peak bacterial density exceeds theirs
by a factor of three.
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Figure 3: Active therapy with x(0) = 105, v(0) = 106.

3.3 Summary of Conclusions for Phage Therapy

We have explored a mathematical model of virulent phage growth on an
exponentially growing bacterial population, system (10), which differs from
previous models in two ways: (i) the density-dependent phage attack rate
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Figure 4: Compare to Payne and Jansen Figure 1(c): x(0) = 2117, v(0) =
100

(1) is used in place of the mass action rate, and (ii) the loss rate of phage
due to attachment (2) includes all bacterial cells not just uninfected ones.
Our simulations, particularly Figure 2, appear to be most strongly influenced
by the modification (i), leading to significantly lengthened host cell survival.
However, (ii) played a role in the calculation of the proliferation threshold
(13) for active therapy which has a more complicated character than the
simpler one deduced in [14]. Finally, in Proposition 2 we established that
passive therapy works: for any initial bacterial population there is a phage
dose that can reduce the host population to an insignificant fraction of its
initial level within the first latent period. Although the dose may be imprac-
tically large and the restriction to a single latent period unduly restrictive,
our result establishes the principle. It remains to be seen whether any of
these effects are important for phage therapy.

In the following appendix, we show how (i) and (ii) arise from a careful
modeling of bacteria-phage complexes consisting of a single host and a num-
ber of attached phage. The modeling framework we introduce there may be
more important in the long run than the conclusions described above since
it leads to much more flexibility in modeling phage release and host cell
survival.
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4 Appendix

We explore several modeling issues in this appendix which may be of inter-
est for general bacteriophage-host interactions. First, we construct a model
where infected host are structured by injection-age and where various com-
plexes consisting of a host cell and one or more attached phage are explicitly
included. We assume that each cell has a fixed number N of binding sites
and where host cells can have multiple attached phage. Finally, the age-
structured infected cell population is reduced to integro-differential equa-
tions. Two cases lead to relatively simple equations: (1) the case where
infected cell death rate by lysis is zero until time τ after which it is infinite,
equivalent to fixed-length latent period, and (2) the lysis rate is constant
meaning an exponentially distributed latent period. The first case leads to
the model considered in previous sections while the second case leads to
simpler ordinary differential equations similar to ones in [14].

4.1 Phage-Host Complex Formation

We call a host cell infected when a phage has injected genetic material into
it; until then it is called uninfected. Furthermore, a phage ceases to exist
once it has injected its genetic material.

The time between injection and lysis is on the order of 20 minutes or so,
depending on the host-phage system. We will keep track of this “infection
age” of infected cells. Denote by Y (t, s) the distribution of infected cells of
age s at time t. The integral

∫ a2

a1

Y (t, s)ds

then gives the number of infected (post-injection) cells that were injected
between t− a1 and t− a2 and

Y =

∫ ∞

0

Y (t, s)ds

gives the size of the infected class of cells.
Assume that each host cell has N potential phage binding sites. Then we
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partition uninfected host X, infected host Y , and phage V as follows:

X(t) =
∑

i

Ci
x(t)

Y (t, s) =
∑

i

Ci
y(t, s)

V (t) = v(t) +
∑

i

i

(
Ci

x(t) +

∫ ∞

0

Ci
y(t, s)ds

)

Ci
x (Ci

y) denotes the concentration of uninfected (infected) cells having i
attached phage, for 0 ≤ i ≤ N , and v(t) denotes the concentration of un-
adsorbed phage. In the case of infected cells, we stress that the age variable
s denotes time since injection, not time in a particular compartment. All
sums are over the range 0 ≤ i ≤ N .

Recall that a host cell is infected once an attached phage injects and a
phage ceases to exist once it injects.

We assume that a host complex with i < N attached phage may adsorb
an additional phage at the rate bvC i

z where z = x, y. The rate constant
b, the adsorption rate, is assumed independent of i and whether the host
complex is infected (z = y) or uninfected (z = x). Let ν(s) denote the
death (lysis) rate of infected cells of age s and let η(s) denote the rate of
release of phage from an infected cell of age s. Here, we explore the case that
both are independent of the number of attached phage. Recall that ρ is the
injection rate, equivalently, 1/ρ is the average time between phage binding
and subsequent injection of genetic material. The model equations are as
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follows:

X ′ = aX − ρ

N∑
i=1

iCi
x − pX

(Ci
x)
′ = aC i

x + bvC i−1
x − (iρ + bv)Ci

x − pCi
x

(
∂

∂t
+

∂

∂s
)Ci

y(t, s) = bCi−1
y v + (i + 1)ρCi+1

y − (iρ + bv)Ci
y − (p + ν(s))Ci

y

Ci
y(t, 0) = ρ(i + 1)Ci+1

x (t)

(
∂

∂t
+

∂

∂s
)Y (t, s) = −(ν(s) + p)Y (t, s) (15)

Y (t, 0) = ρ

N∑
i=1

iCi
x(t)

v′ =

∫ ∞

0

Y (t, s)η(s)ds−mv

−bv

N−1∑
i=0

(
Ci

x +

∫ ∞

0

Ci
y(t, s)ds

)

where CN+1
x = CN+1

y = 0 and where for i = N , the loss term−bvCN
z , z = x, y

in the equations for CN
z is dropped since all binding sites are filled so no more

attachments are allowed.
Some comments are in order as these equations may not at first appear

transparent. Total uninfected host are lost due to injection of a complex
Ci

x(t) by one of its attached phage, which then becomes a newly infected
host Ci−1

y (t, 0) with one less attached phage. The rate of injection is ρiCi
x

since any one of the i attached phage may inject. This accounts for the loss
term −iρCi

x(t) in the equation for X and the boundary condition for C i
y(t, s)

and Y (t, s) at s = 0. The injection of an infected host simply reduces the
number of attached phage by one. Figure 6 shows the flow between the
compartments Ci

x and Ci
y. Free phage are lost due to attachment to host

cells.
Initial conditions for (15) consist of specifying nonnegative values for

X(0), C i
x(0), v(0) and nonnegative functions Ci

y(0, s) and Y (0, s) = U0(s)
defined for s ≥ 0.

We intend to employ a quasi-steady state analysis in order to remove the
equations for the host/phage complexes. Before doing so it is convenient to
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Figure 5: Transfer Diagram between Complexes for equations (15): ρ denotes
injection rate, bv denotes adsorption rate.

integrate the equation for Ci
y with respect to infection age, yielding

(C i
y)
′ = −

∫ ∞

0

(ν(s)+p)Ci
y(t, s)ds−(iρ+bv)Ci

y+bvC i−1
y +(i+1)ρ(C i+1

y +Ci+1
x )

Hereafter, unless specifically mentioned, Ci
y denotes

Ci
y(t) =

∫ ∞

0

Ci
y(t, s)ds

We assume that irreversible binding and injection are fast compared to
such processes as growth and washout of host and the latent period. There-
fore we ignore these slower processes in the equations for complexes Ci

x and
Ci

y in (15). Setting the time derivatives to zero in the Ci
x and Ci

y equations
yields:

0 = bvC i−1
x − (iρ + bv)Ci

x, 1 ≤ i ≤ N

0 = bvC i−1
y + (i + 1)ρ(C i+1

x + Ci+1
y )− (iρ + bv)Ci

y

where we employ the conventions used in (15).
Adding the first N equations for the Ci

x and then adding all 2N equations
yields

N∑
i=1

iCi
x = bvC0

x/ρ, C1
x + C1

y = bv(C0
x + C0

y )/ρ

Then straightforward calculations give the distribution of phage occupancy
of host cell binding sites:

Ci
x + Ci

y =
(bv/ρ)i

i!
(C0

x + C0
y ) (16)
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meaning phage are distributed according to a Poisson distribution with pa-
rameter (mean and variance) bv/ρ. We also have

Ci
x = C0

x

i∏
j=1

u

j + u
, 1 ≤ i ≤ N − 1, CN

x =
u

N
CN−1

x , u = bv/ρ (17)

We must express all quantities in terms of the variables X, Y, v used in
equations (15). We summarize the results of doing so below.

Proposition 3. The phage attack rate is

−ρ

N∑
i=1

iCi
x = − bvX

FN(cv)
, c = b/ρ

where

FN(u) = 1 +
u

1 + u
+

u2

(1 + u)(2 + u)
+ · · ·+ uN

(1 + u)(2 + u) · · · (N − 1 + u)N

The rate of loss of free phage due to attachment satisfies

−bv

N−1∑
i=0

(Ci
x + Ci

y) = −bv(X + Y )

(
1−

uN

N !∑N
i=0

ui

i!

)

where Y = Y (t) =
∫∞

0
Y (t, s)ds.

Proof. In order to relate x to X we use (17):

X =
∑

i

Ci
x

= C0
x(1 +

u

1 + u
+

u2

(1 + u)(2 + u)

+ · · ·+ uN

(1 + u)(2 + u) · · · (N − 1 + u)N
)

= C0
xFN(u)

Similarly, using (16),

X + Y =
N∑

i=0

(Ci
x + Ci

y) = (C0
x + C0

y )
N∑

i=0

ui

i!
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Finally,

N−1∑
i=0

(Ci
x + Ci

y) = X + Y − (CN
x + CN

y )

= (X + Y )− uN

N !
(C0

x + C0
y )

= (X + Y )

(
1−

uN

N !∑N
i=0

ui

i!

)

≈ X + Y

In view of the above result and the quasi-steady state analysis, our system
(15) reduces to:

X ′ = aX − bvX

FN(cv)
− pX

(
∂

∂t
+

∂

∂s
)Y (t, s) = −(ν(s) + p)Y (t, s) (18)

Y (t, 0) =
bvX

FN(cv)

v′ =

∫ ∞

0

Y (t, s)η(s)ds−mv

−bv

(
X(t) +

∫ ∞

0

Y (t, s)ds

)

Our analysis above shows that the parameter c in (1) is given by

c =
b

ρ
= b× adsorption time

We may solve for Y (t, s) by integrating along characteristics:

Y (t, s) =

{
R(t− s)e−pse−

R s
0 ν(u)du, t > s

U0(s− t)e−pte−
R s

s−t ν(u)du, t < s

}

where R(t) = bvX
FN (cv)

. The total infected cell population, Y (t) =
∫∞
0

Y (t, s)ds,
is easily computed:

Y (t) =

∫ t

0

R(t− s)e−pse−
R s
0 ν(u)duds +

∫ ∞

0

U0(s)e
−pte−

R s+t
s ν(u)duds
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and similarly for the equation for phage:

v′ = −bv(X + Y )−mv +

∫ t

0

R(t− s)e−psη(s)e−
R s
0 ν(u)duds

+e−pt

∫ ∞

0

U0(s)η(s + t)e−
R t+s

s ν(u)duds

System (18) can now be replaced by the equation for X together with
the equations above for Y and v. Below we consider two special cases for the
lysis rate ν.

4.2 Fixed-Length Latent Period

The special case

ν(s) =

{
0, s < τ
∞, s > τ

}

leads to

e−
R s
0 ν(u)du = χ[0,τ ](s), e−

R s+t
s ν(u)du =

{
1, s + t < τ
0, s + t > τ

}

where, for a set B, χB(z) = 1 if z ∈ B, otherwise χB(z) = 0.
Hence

Y (t) =

∫ min{t,τ}

0

R(t− s)e−psds +

∫ ∞

0

U0(s)e
−ptχ{s+t<τ}(t, s)ds

=

∫ min{t,τ}

0

R(t− s)e−psds + χ[0,τ ](t)

∫ τ−t

0

U0(s)e
−ptds

Equivalently,

Y (t) =

{ ∫ t

0
R(t− s)e−psds +

∫ τ−t

0
U0(s)e

−ptds, t < τ∫ τ

0
R(t− s)e−psds, t > τ

}

The equation for phage becomes

v′ = −bv(X+Y )−mv+

∫ min{τ,t}

0

R(t−s)e−psη(s)ds+e−ptχ[0,τ ](t)

∫ τ−t

0

U0(s)η(s+t)ds
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Equivalently,

v′ =
{
−bv(X + Y )−mv +

∫ t

0
R(t− s)e−psη(s)ds + e−pt

∫ τ−t

0
U0(s)η(s + t)ds, t < τ

−bv(X + Y )−mv +
∫ τ

0
R(t− s)e−psη(s)ds, t > τ

}

If
η(s) = Lδ(s− τ)

Then

v′ =
{ −bv(X + Y )−mv + Le−ptU0(τ − t), t < τ
−bv(X + Y )−mv + LR(t− τ)e−pτ , t > τ

}

These, together with the equation for X from (18), are the equations consid-
ered in section 2.

4.3 Exponentially Distributed Latent Period

In case of an exponentially distributed latent period, ν(s) ≡ ν, easy compu-
tations yield expressions for the infected:

Y (t) =

∫ t

0

R(s)e−(p+ν)(t−s)ds + e−(p+ν)t

∫ ∞

0

U0(s)ds

or, on differentiation,

Y ′ = −(p + ν)Y + R(t), Y (0) =

∫ ∞

0

U0(s)ds

The phage equation becomes:

v′ = −bv(X+Y )−mv+

∫ t

0

R(s)η(t−s)e−(p+ν)(t−s)ds+e−(p+ν)t

∫ ∞

0

U0(s)η(s+t)ds

If η(s) ≡ Lν then v satisfies:

v′ = −bv(X + Y )−mv + νL

(∫ t

0

R(s)e−(p+ν)(t−s)ds + e−(p+ν)t

∫ ∞

0

U0(s)ds

)

= −bv(X + Y )−mv + νLy

These, together with the equation for X from (18), can be compared to
those of Payne and Jansen [14].
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4.4 Proof of Lemma 1

Straightforward calculation yield that

FN+1(u) = FN(u)− uN+1

(1 + u) · · · (N + u)N(N + 1)

and that FN(u)/u → 1/N as u →∞.
We show that u

FN (u)
is monotonically increasing by showing it has a pos-

itive derivative. Since we may write

u

FN(u)
=

u

F1(u)

F1(u)

F2(u)
· · · FN−1(u)

FN(u)

it suffices to show that u
F1(u)

and Fn(u)
Fn+1(u)

have positive derivatives for n ≥ 1.
u

F1(u)
= u/1 + u is clearly increasing.

d

du

Fn(u)

Fn+1(u)
=

d

du

Fn+1(u) + g(u)

Fn+1(u)

=
g(u)

uFn+1(u)

(
ug′(u)

g(u)
− uF ′

n+1(u)

Fn+1(u)

)

where

g(u) =
un+1

(1 + u)(2 + u) · · · (n + u)(n + 1)n

Straightforward computation gives:

ug′(u)

g(u)
= 1 +

n∑
i=1

i

i + u

and

uF ′
n+1(u) =

u

1 + u

(
1

1 + u

)
+

u2

(1 + u)(2 + u)

(
1

1 + u
+

2

2 + u

)
+ · · ·

+
un

(1 + u)(2 + u) · · · (n + u)

(
1

1 + u
+

2

2 + u
+ · · ·+ n

n + u

)

+
un+1

(1 + u)(2 + u) · · · (n + u)(n + 1)

(
1 +

1

1 + u
+

2

2 + u
+ · · ·+ n

n + u

)
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On dividing this expression by Fn+1(u) we see that it can be viewed as a con-
vex combination of the quantities in parentheses in the previous expression
and therefore it lies between the minimum and maximum of the quantities
in parentheses. But the maximum is clearly inside the last parenthesis which
exactly agrees with ug′(u)

g(u)
. We conclude that

ug′(u)

g(u)
− uF ′

n+1(u)

Fn+1(u)
> 0

4.5 Proof of Proposition 2

Setting u = x + y in our system (10), we obtain the system

dx

dt
= ax− bxv

FN(cv)
− px

du

dt
= ax− pu, 0 ≤ t ≤ τ (19)

dv

dt
= −buv −mv

This is a monotone system of differential equations whose forward flow pre-
serves the order relation

(x̄, ū, v̄) ≤K (x, u, v) ⇔ x̄ ≤ x, ū ≤ u, v ≤ v̄ (20)

See Chapt.3, sec. 5 of [19]. As the Jacobian matrix of the right hand side is
irreducible, it follows that for 0 < t ≤ τ

(x̄(0), ū(0), v̄(0)) <K (x(0), u(0), v(0)) ⇒ (x̄(t), ū(t), v̄(t)) ¿K (x(t), u(t), v(t))

where <K means at least one strict inequality in (20) while ¿K means all
inequalities are strict. The first assertion of Proposition 2 is an immediate
consequence of the previous inequality.

As for the second assertion of Proposition 2, we need some elementary
estimates. Inequality u′ ≤ (a− p)u leads to u(t) ≤ u(0)e(a−p)t so there exists
M ≥ 1 such that u(t) ≤ Mu(0), 0 ≤ t ≤ τ . Similarly, v′ ≥ −[bMu(0) + m]v
leads to v(t) ≥ Kv(0), 0 ≤ t ≤ τ where K = e−(bMu(0)+m)τ . If 0 < θ < 1,
then

cv

FN(cv)
≥ cKv(0)

FN(cKv(0))
≥ θN

by taking v(0) sufficiently large. Hence, x′
x
≤ a− p− (bN/c)θ.
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