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A DOMAIN DECOMPOSITION METHOD
BASED ON WEIGHTED INTERIOR PENALTIES

FOR ADVECTION-DIFFUSION-REACTION PROBLEMS∗

ERIK BURMAN† AND PAOLO ZUNINO‡

Abstract. We propose a domain decomposition method for advection-diffusion-reaction equa-
tions based on Nitsche’s transmission conditions. The advection-dominated case is stabilized using
a continuous interior penalty approach based on the jumps in the gradient over element bound-
aries. We prove the convergence of the finite element solutions of the discrete problem to the exact
solution and propose a parallelizable iterative method. The convergence of the resulting domain
decomposition method is proved, and this result holds true uniformly with respect to the diffusion
parameter. The numerical scheme that we propose here can thus be applied straightforwardly to
diffusion-dominated, advection-dominated, and hyperbolic problems. Some numerical examples are
presented in different flow regimes showing the influence of the stabilization parameter on the perfor-
mance of the iterative method, and we compare our method with some other domain decomposition
techniques for advection-diffusion equations.
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1. Introduction. The solution of large computational problems calls for efficient
linear solvers. Domain decomposition has proved to be an attractive way to allow for
parallel solving of large problems. A formulation for domain decomposition using a
generalization of Nitsche’s method for weak boundary conditions has been considered,
for instance, by Becker, Hansbo, and Stenberg [2, 24] and by Heinrich and Pietsch
[16] for the Poisson problem. This formulation was then generalized to the case of
advection-diffusion problems by Toselli [26] using SUPG-type stabilization and more
recently by Burman [5]. In this last case, continuous interior penalty stabilization
was used to make the method stable in all flow regimes. The interior penalty finite
element method for continuous approximation spaces was introduced by Douglas and
Dupont [12] and analyzed by Burman and Hansbo in [7] and by Burman in [5].

In this paper we will give a detailed analysis of the domain decomposition method
using Nitsche’s method. In particular we consider a fully parallel iterative split-
ting method for advection-diffusion-reaction problems, and we prove its convergence.
The present result also automatically carries over to discontinuous Galerkin interior
penalty formulations of advection-diffusion problems. Overlapping domain decom-
position methods for discontinuous Galerkin methods was considered by Lasser and
Toselli [19] and substructuring iterative methods for domain decomposition using
SUPG-type stabilized continuous approximation was considered by Rapin and Lube
[23]. For an overview of results on domain decomposition for nonsymmetric problems,
see Quarteroni and Valli [22] or Toselli and Widlund [27] and the references therein.
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The advantages of the method proposed in this paper are to allow for continuous and
discontinuous approximation with uniform stability properties with respect to the
Péclet number. The discontinuous formulation naturally leads to an iterative method
and allows for conservation locally in each subdomain. The continuous approxima-
tion, on the other hand, is better suited to handle different diffusive regimes since
the interior penalty stabilization parameter is independent of the diffusion parame-
ter. Numerical tests show that the proposed method is robust with respect to varying
coefficients. As a model problem we propose the advection-diffusion-reaction equation{

β · ∇u + σu−∇ · ε∇u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded open connected subset of R
d with a Lipschitz boundary ∂Ω,

d = 2 or 3 is the space dimension, β ∈ [W 1,∞(Ω)]d is a velocity field, ε ∈ L∞(Ω),
ε > 0, is a diffusion coefficient, and σ > 0 is the reaction coefficient, f ∈ L2(Ω). The
analysis extends to the case ε = 0 in the obvious way if the boundary conditions of the
continuous problem are modified and β is such that the problem remains well-posed.
We assume that the following coercivity condition holds:

σ − 1

2
∇ · β ≥ σ0 > 0.(1.2)

We define the associated parameter σ1 by

σ1 := ess supx∈Ω

|σ −∇ · β|2
σ0

.

Consider a decomposition of the domain Ω into the disjoint subdomains Ωi,
i = 1, . . . , N , with boundaries ∂Ωi and with corresponding shape regular disjoint
triangulations Th,i, such that Th = ∪N

i=1Th,i = ∪N
i=1Ω̄i = Ω̄. Note that we do not

suppose that neighboring meshes are conforming over the intersubdomain boundary.
The set of interior faces of each triangulation Th,i will be denoted by Fi. On each
triangulation we define a finite element space Vh,k,i associated with the subdomain
Ωi,

Vh,k,i := {vh : vh ∈ H1(Ωi); vh|K ∈ Pk(K) ∀K ∈ Th,i},

where Pk(K) denotes the space of polynomials of degree ≤ k on K and we let

Vh =
∑N

i=1 Vh,k,i. For every function vh ∈ Vh we introduce the restriction to sub-
domain Ωi, vh,i = vh|Ωi . To each subdomain boundary we associate the outward-
oriented normal ni. We will always assume that the solution is sufficiently smooth,
i.e., u ∈ H1(Ω) ∩ (∪N

i=1H
2(Ωi)), and we will assume (weak) continuity of fluxes be-

tween subdomains. Typically the diffusion parameter ε may be discontinuous over
some subdomain interface, provided the interface is smooth. Let hK denote the di-
ameter of an element K, and �K the radius of the largest inscribed ball in K. We
henceforth assume that for all meshes Th,i there holds

cT ≤ max
K∈Th,i

hK

�K
(1.3)

with the same positive parameter cT . We introduce a mesh parameter function
h̃(x)|K = hK and let h = maxK∈Th,i

hK . Moreover we shall assume that there exists
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a constant ρ > 1 such that for all elements K in Th,i, i = 1, . . . , N , we have

max
K′∈N (K)

hK′ ≤ ρ min
K′∈N (K)

hK′ ,(1.4)

where N (K) is the set of elements K ′ such that K̄ ∩ K̄ ′ 	= ∅. Property (1.4) is a
local quasi-uniformity property of the mesh. The jump [x]|E of a quantity x over a
face E will be defined by [x(ξ)]|E = limδ→0(x(ξ − nEδ) − x(ξ + nEδ)), where ξ ∈ E
and nE denotes a normal vector to the face E for interior faces where the normal is
fixed but arbitrary, while for faces on a subdomain boundary E ∈ ∂Ωi the normal
is outward oriented with respect to the subdomain Ωi and denoted ni. Subscripts
will be omitted when there is no ambiguity. For faces such that E ∩ ∂Ω 	= ∅ we
set [x(ξ)]|E ≡ limδ→0 x(ξ − nEδ). By {x(ξ)}|E we denote the average value of x
over face E, {x(ξ)}|E = limδ→0

1
2 (x(ξ − nEδ) + x(ξ + nEδ)). We will also use the

weighted average {x(ξ)}w|E = limδ→0(w
−x(ξ−nEδ)+w+x(ξ+nEδ)), where w− and

w+ are two positive weights such that w− + w+ = 1, and for faces on the bound-
ary ∂Ω we define {x(ξ)}|E = {x(ξ)}w|E = limδ→0 2x(ξ − nEδ). Furthermore we will
use the notation (x, y)X =

∫
X
x · y dx, 〈x, y〉∂X =

∫
∂X

x · y ds with the element-
wise counterparts (x, y)X,h =

∑
K∈X

∫
K
x · y dx and 〈x, y〉∂X,h =

∑
E∈∂X

∫
E
x · y ds.

Let ‖x‖X = (x, x)
1
2

X denote the L2-norm over X with the elementwise counterpart

‖x‖X,h = (x, x)
1
2

X,h. The norm of the space Hi(X) will be denoted ‖x‖i,X with
i = 0, 1, 2, . . . . The notations ‖x‖X and ‖x‖0,X are equivalent. The latter will be
used only where it is more appropriate. For other functional spaces the notation will
be made completely explicit. We will use c and C to denote generic positive constants
independent of hK but not necessarily of the local mesh geometry.

2. A domain decomposition method based on interior penalties. In this
section we will show how domain decomposition using Nitsche’s method leads to
a continuous/discontinuous Galerkin-type penalty method in a natural way. The
approximation is chosen to be continuous on each subdomain. We consider problem
(1.1) on Ω and by taking Vh as trial and test space we propose the finite element
method: find uh ∈ Vh such that

A(uh, vh) + J(uh, vh) + B(uh, vh) = (f, vh) ∀vh ∈ Vh,(2.1)

where

A(uh, vh) :=

N∑
i=1

(
((σ −∇ · β)uh, vh)Ωi + (ε∇uh,∇vh)Ωi − (uh, β · ∇vh)Ωi

)
,

J(uh, vh) :=

N∑
i=1

∑
E∈Fi

〈
γ̃1,i(hE)‖β · n‖L∞(E)[∇uh · n], [∇vh · n]

〉
E
,

B(uh, vh) :=

N∑
i=1

(〈
β · n+

i uh, [vh]
〉
∂Ωi

− 1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

− 1

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈
γbc{ε}w

h̃
[uh], [vh]

〉
∂Ωi

)
,
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and β ·n±
i := 1

2 (|β ·ni| ±β ·ni). The discretization of the advection term corresponds
to the standard upwind flux after integration by parts. Note that the bilinear form
A corresponds to a standard Galerkin formulation in each subdomain, supplemented
with boundary terms on the inner and outer boundaries that appear naturally in the
formulation to assure coercivity or consistency. We observe that terms associated with
nonhomogeneous boundary data do not appear since we consider u = 0 on ∂Ω. The
interior penalty stabilization term has been decomposed into one term controlling the
jumps in the gradient over interior faces of each subdomain Ωi, that is, J(uh, vh), and
the terms controlling the jump of the solution over interior boundaries of neighboring
subdomains, the upwind flux term and the penalty term 〈(γbc{ε}w/h̃)[uh], [vh]〉∂Ωi .
The stabilization parameter γ̃1,i(hE) = γip,ih

2
E depends only on the mesh geometry

of the subdomain triangulation Th,i.
Remark 2.1. If the triangulation of each subdomain consists of a single triangle,

then the formulation (2.1) is equivalent to a standard interior penalty discontinuous
Galerkin method for (1.1). This follows immediately by noting that the interior
penalty term on the gradient jumps vanishes since there are no interior faces in the
subdomains.

Remark 2.2. Recalling the framework for discontinuous Galerkin methods based
on interior penalties by Arnold et al. [1], we observe that the definition of the coupling
term B(uh, vh) can be made more general by introducing a parameter s that allows
us to switch between a symmetric and a nonsymmetric version. Precisely, we consider

B(uh, vh) :=

N∑
i=1

(〈
β · n+

i uh, [vh]
〉
∂Ωi

− 1

2
〈{ε∇uh · ni}w, [vh]〉∂Ωi

− s

2
〈{ε∇vh · ni}w, [uh]〉∂Ωi

+

〈
γbc{ε}w

h̃
[uh], [vh]

〉
∂Ωi

)
,

where the symmetric and the nonsymmetric cases are obtained by s = 1 and s =
−1, respectively. In this work we mainly consider s = 1, but for comparison the
nonsymmetric case will be addressed in section 4.

2.1. A priori error estimate. In this section we will prove that the finite
element solution obtained from formulation (2.1) converges to the exact solution of
(1.1). The a priori error estimate is proved using the techniques from [2] for the
Nitsche matching conditions combined with the technique of [5] for the interior penalty
stabilization. The main idea behind the stabilization based on the jump in the gradient
between adjacent elements is to introduce a least squares control over the part of the
convective derivative that is not in the finite element space. A key result is the
following lemma. For a proof of the underlying approximation result between discrete
spaces we refer to [18], and for a proof in the context of interior penalty stabilization
we refer to [6]. First we define the Oswald quasi-interpolant π∗

h (see [17]).
Definition 2.3. For each node xi, let ni be the number of elements containing

xi as a node. We define a quasi-interpolant π∗
h of degree k by

π∗
hv(xi) :=

1

ni

∑
{K : xi∈K}

v|K(xi) ∀v ∈ {v : v|K ∈ Pk(K)}.

Theorem 2.4 (stability). Let βh ∈ [Vh,1,i]
d be the Lagrange interpolant of β and

let uh ∈ Vh,k,i. Then there exists a constant γip,i ≥ c0 > 0, depending only on the
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local mesh geometry, such that

‖h̃ 1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ Ji(uh, uh)

with

Ji(uh, uh) =
∑
E∈Fi

∫
E

γip,ih
2
E‖βh · n‖L∞(E)[∇uh]2 ds.(2.2)

Remark 2.5. Clearly then ‖h̃ 1
2 (βh · ∇uh − π∗

h(βh · ∇uh))‖2
Ωi

≤ J(uh, uh) since
‖βh · n‖L∞(E) ≤ ‖β · n‖L∞(E).

We define a triple norm on each subdomain as

|||wh|||2i = ‖σ
1
2
0 wh‖2

Ωi
+ ‖ε 1

2∇wh‖2
Ωi

+ Ji(wh, wh)(2.3)

and the global triple norm, taking into account also the interface interaction terms,
as

|||wh|||2 =

N∑
i=1

(
|||wh|||2i + ‖δ(ε, β)[wh]‖2

∂Ωi

)
,(2.4)

where δ(ε, β) = γbc{ε}w

h̃
+ 1

2 |β · n|. In what follows, we will also make use of the

quantity δ+(ε, β) = γbc{ε}w

h̃
+ 1

2β · n+. The explicit dependence of δ and δ+ from
ε and β will be omitted later on when there is no ambiguity of notation. For the
continuity of the bilinear form we will also use the modified norm

|]wh[|2 =

N∑
i=1

(
‖σ

1
2
1 wh‖2

Ωi
+ ‖β‖L∞(Ω)‖h̃− 1

2wh‖2
Ωi

+ ‖ε 1
2∇wh‖2

Ωi
(2.5)

+ ‖(β · n)+
1
2wh‖2

∂Ωi\∂Ω + Ji(wh, wh)
)

+ ‖(h̃ε) 1
2∇wh · n‖2

∂Ωi
+ ‖δ(ε, β)wh‖2

∂Ωi
.

To prove convergence of the discrete solutions of formulation (2.1) to the exact solution
of (1.1) we will first prove three preliminary lemmas giving Galerkin orthogonality, co-
ercivity, and approximability. Existence of discrete solutions follows by the coercivity
and convergence and is proved in Theorem 2.12.

We first recall a trace inequality and the standard inverse inequality that we will
use repeatedly:

‖v‖2
0,∂K ≤ C

(
h−1
K ‖v‖2

K + hK ‖v‖2
1,K

)
∀v ∈ H1(K),(2.6)

‖∇v‖K ≤ Cinvh
−1
K ‖v‖K .(2.7)

For a proof of (2.6) we refer to [25, p. 26], and for a proof of (2.7) we refer to [9].
Lemma 2.6 (Galerkin orthogonality). Let u ∈ ∪N

i=1H
2(Ωi) be the exact solution

of (1.1) and uh the solution to (2.1). Then there holds

A(u− uh, vh) + B(u− uh, vh) + J(u− uh, vh) = 0 ∀vh ∈ Vh.

Proof. By assumption we have that [−ε∇u · n + β · nu] = [u] = 0 in the sense
of traces, and since u ∈ ∪N

i=1H
2(Ωi) there holds J(u, vh) = 0. Therefore using the
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equality [ab] = [a]{b}+{a}[b] and the fact that {ε∇u·n}w−β ·n+u = {ε∇u·n−β ·nu}
we have

A(u, vh) + B(u, vh) + J(u, vh)(2.8)

= A(u, vh) − 1

2

N∑
i=1

〈{ε∇u · n}w, [vh]〉∂Ωi
+

N∑
i=1

〈
β · n+u, [vh]

〉
∂Ωi

= A(u, vh) − 1

2

N∑
i=1

〈{ε∇u · n− β · nu}, [vh]〉∂Ωi

= A(u, vh) − 1

2

N∑
i=1

∫
∂Ωi\∂Ω

[(ε∇u · n− β · nu)vh] ds− 〈ε∇u · n− β · nu, vh〉∂Ω .

By an integration by parts in each subdomain we obtain

A(u, vh) =

N∑
i=1

{(ε∇u,∇vh)Ωi
− (u, β · ∇v) + ((σ −∇ · β)u, v)Ωi}

=

N∑
i=1

(−εΔu + β · ∇u + σu, vh)Ωi +

N∑
i=1

〈ε∇u · n− β · nu, vh〉∂Ωi

=

N∑
i=1

(f, vh)Ωi
+

1

2

N∑
i=1

∫
∂Ωi\∂Ω

[(ε∇u · n− β · nu)vh] ds + 〈ε∇u · n− β · nu, vh〉∂Ω .

It then follows from (2.8) that

A(u, vh) + B(u, vh) + J(u, vh) = (f, vh);

combining this equality with (2.1) completes the proof.
Lemma 2.7 (coercivity). For the formulation (2.1) there holds

c|||zh||| ≤ A(zh, zh) + B(zh, zh) + J(zh, zh) ∀zh ∈ Vh.

Proof. We essentially only need to show that the weakly imposed boundary and
interface conditions do not destroy coercivity. We have

A(zh, zh) + B(zh, zh) =

N∑
i=1

(∫
Ωi

(σ −∇ · β) z2
h dx + ‖ε 1

2∇zh‖2
Ωi

− (zh, β · ∇zh)Ωi

(2.9)

+
〈
β · n+zh, [zh]

〉
∂Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbcε

h̃
[zh], [zh]

〉
∂Ωi

)
.

Consider the third term on the right-hand side of (2.9). Integration by parts yields

(2.10)

N∑
i=1

(β · ∇zh, zh)Ωi
= −1

2
(∇ · β zh, zh)Ω +

N∑
i=1

1

2
〈β · n zh, zh〉∂Ωi

= −1

2
(∇ · β zh, zh)Ω +

N∑
i=1

1

4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

+
1

2
〈β · n zh, zh〉∂Ω .
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Applying (2.10) to the third term of (2.9) and using the equality a(a − b) = 1
2 (a2 −

b2 + (a− b)2) we get

N∑
i=1

(
−(zh, β · ∇zh)Ωi

+
〈
β · n+zh, [zh]

〉
∂Ωi

)
(2.11)

=

N∑
i=1

(
1

2
(∇ · β zh, zh)Ωi

− 1

4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈
β · n+, [z2

h]
〉
∂Ωi\∂Ω

+
1

2

〈
β · n+[zh], [zh]

〉
∂Ωi\∂Ω

)
.

By observing that
∑N

i=1
1
2

〈
β · n+, [z2

h]
〉
∂Ωi\∂Ω

=
∑N

i=1
1
4

〈
β · n, [z2

h]
〉
∂Ωi\∂Ω

we con-
clude that

(2.12)

N∑
i=1

(
−(zh, β · ∇zh)Ωi +

〈
β · n+zh, [zh]

〉
∂Ωi

)

=

N∑
i=1

(
1

2
(∇ · β zh, zh)Ωi

+
1

2
〈|β · n| zh, zh〉∂Ω +

1

2

〈
β · n+[zh], [zh]

〉
∂Ωi\∂Ω

)
.

We now consider the second, fifth, and sixth terms of (2.9). The nonsymmetric
boundary integral is split using a Cauchy–Schwarz inequality followed by Young’s
inequality and controlled by the symmetric terms in the following fashion:

(2.13)
N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)

≥
N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 2α‖(h̃ε) 1
2∇zh · n‖2

∂Ωi
+

〈(
γbc −

1

4α

)
{ε}w
h̃

[zh], [zh]

〉
∂Ωi

)
.

As a consequence of the trace inequality (2.6) and inverse estimates we have

‖(h̃ε) 1
2∇zh · n‖2

∂Ωi
≤ Ct‖ε

1
2∇zh‖2

Ωi
,(2.14)

and by choosing α = (4Ct)
−1 and γbc = 2Ct we conclude that

(2.15)

N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

− 〈{ε∇zh · n}w, [zh]〉∂Ωi
+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)

≥ 1

2

N∑
i=1

(
‖ε 1

2∇zh‖2
Ωi

+

〈
γbc{ε}w

h̃
[zh], [zh]

〉
∂Ωi

)
.

Combining the results of (2.9), (2.12), (2.15) and applying once again (2.14) and
recalling the condition (1.2), the lemma follows, with a constant c = 1

2 .
Remark 2.8. The constant Ct depends only on the mesh regularity and can be

given an explicit expression in the case of piecewise linear elements (see [2]); for high
order elements it can be computed by solving a small local eigenvalue problem (see
[15]).
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We will now proceed and prove approximability properties of the triple norm.
The L2-projection of u onto Vh will be denoted πhu and the nodal interpolation will
be denoted ihu. To avoid globally quasi-uniform meshes we need a stability estimate
for the L2-projection in weighted norms. This problem was considered in [13] and
more recently in [3]. In [3] the following weighted stability estimate was proven:

‖φ∗πhu‖Ω ≤ C‖φ∗u‖Ω,(2.16)

where φ∗ is a piecewise linear weighting function satisfying

|∇φ∗|K | ≤ ηh−1
K max

x∈K
φ∗(2.17)

for all K. Stability holds for η sufficiently small. We will use this stability result to
prove the following

Lemma 2.9. If the polynomial order of the finite element space is k and u ∈
Hk+1(Ω), then there holds, for ρ sufficiently small,∑

K∈Th,i

(h−1
K ‖(πhu− u)‖2

K + hK‖∇(πhu− u)‖2
K) ≤ C

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,K .(2.18)

Proof. First note that by adding and subtracting the nodal interpolant ihu in the
H1 contribution of (2.18) and applying a local inverse inequality we have∑

K∈Ti,h

hK‖∇(πhu− u)‖2
K(2.19)

≤ C
∑

K∈Ti,h

(C2
invh

−1
K ‖(πhu− ihu)‖2

K + hK‖∇(ihu− u)‖2
K).

Hence it is sufficient to consider the L2-part:
∑

K∈Ti,h
h
− 1

2

K ‖(πhu− u)‖2
K .

Take φ∗ = π∗
hh

− 1
2

K . We must prove that this function satisfies (2.17) and that η
can be made as small as needed by diminishing ρ. By the definition of the Oswald
interpolant and the local quasi-regularity (1.4) one readily verifies that for all K ∈ Th,i

max
x∈K

|∇φ∗| ≤ h−1
K

∣∣∣∣ max
K′∈N (K)

h
− 1

2

K′ − min
K′∈N (K)

h
− 1

2

K′

∣∣∣∣ ≤ h−1
K (ρ

1
2 − 1) min

K′∈N (K)
(h

− 1
2

K′ ).

Hence, using the inequality minK′∈N (K)(h
− 1

2

K′ ) ≤ minx∈K φ∗ we have |∇φ∗|K | ≤
(ρ

1
2 − 1)h−1

K minx∈K φ∗ on K, and therefore η(ρ) = (ρ
1
2 − 1) can be made arbitrarily

small by choosing ρ small. Applying now the weighted stability estimate we have∑
K∈Th

h−1
K ‖(πhu− u)‖2

K ≤ ρ
1
2 ‖φ∗(πhu− u)‖2

Ω

≤ 2ρ
1
2 (‖φ∗(πhu− ihu)‖2

Ω + ‖φ∗(ihu− u)‖2
Ω)

≤ C(ρ)‖φ∗(ihu− u)‖2
Ω ≤ C(ρ)

∑
K

h2k+1
K ‖u‖2

k+1,Ω.

Lemma 2.10 (approximability). Assume that the family of meshes Th,i is locally
quasi uniform with ρ such that Lemma 2.9 holds. Let u ∈ ∪N

i=1H
s(Ωi) with s ≥ k+1 ≥

2 and let πhu denote the standard L2-projection of u onto Vh; then we have that

|||πhu− u||| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
0 H(2, u)),
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where C is independent of σ, ε, β, and h but depends on the mesh geometry and

H(α, u) =

⎛
⎝ N∑

i=1

∑
K∈Th,i

h2k+α
K ‖u‖2

k+1,K

⎞
⎠

1
2

.

Proof. It follows from the stability of the L2-projection and standard interpolation

results that ‖σ
1
2
0 (πhu− u)‖Ωi

≤ σ
1
2
0 (

∑
K∈Th,i

h
2(k+1)
K ‖u‖2

k+1,K)
1
2 . We then write ξh =

πhu − ihu, where ih denotes the nodal interpolant, and note that ξh = πh(u − ihu).
By the H1-stability of the L2-projection on locally quasi-uniform meshes [4, 11] we
may write

‖∇ξh‖Ωi ≤ ‖∇(u− ihu)‖Ωi ≤ C

⎛
⎝ ∑

K∈Th,i

h2k
K ‖u‖2

k+1,K

⎞
⎠

1
2

.(2.20)

It immediately follows by means of the triangular inequality that

‖ε 1
2∇(u− πhu)‖2

Ωi
≤ Cε

∑
K∈Th,i

h2k
K ‖u‖2

k+1,K ,

and by an application of the inverse inequality and Lemma 2.9 we have∑
K∈Th,i

h3
K‖∇ξh‖2

1,Ω ≤ C
∑

K∈Th,i

hK‖∇ξh‖2
Ω ≤

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,K .(2.21)

Using the trace inequality (2.6) together with (2.20) and (2.21), it follows that

‖(εh̃)
1
2∇(πhu− u) · n‖2

∂Ωi
≤ C

∑
K∈Th,i

(
ε‖∇(πhu− u)‖2

K + εh2
K‖∇(πhu− u)‖2

1,K

)
≤ Cε

∑
K∈Th,i

h2k
K ‖u‖2

k+1,Ωi
.

Using once again (2.6), (2.20), and (2.21) we get in a similar fashion

J1(u− πhu, u− πhu)

≤ C
N∑
i=1

γip,i‖β‖L∞(Ωi)

∑
K∈Th,i

(
‖h̃ 1

2∇(u− πhu)‖2
K + ‖h̃ 3

2∇(u− πhu)‖2
1,K

)

≤
N∑
i=1

‖β‖L∞(Ωi)

∑
K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi
.

Finally we note that for the boundary term we have, using (2.6) and (2.20),

〈πhu− u, πhu− u〉∂Ωi
≤

∑
K:∂K∩∂Ωi 	=∅

h−1
K ‖πhu− u‖2

K + hK‖∇(πhu− u)‖2
K

≤
∑

K∈Th,i

h2k+1
K ‖u‖2

k+1,Ωi
,

which concludes the proof.



DOMAIN DECOMPOSITION BASED ON INTERIOR PENALTIES 1621

As an immediate consequence of the above result and Lemma 2.9 we have the
following.

Corollary 2.11. Under the same assumptions as in Lemma 2.10 we have that

|]πhu− u[| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
1 H(2, u)),

where C is independent of σ, ε, β, and h but depends on the mesh geometry.
Theorem 2.12 (convergence). Let u ∈ ∪N

i=1H
s(Ωi) with s ≥ k + 1 ≥ 2 be the

solution of (1.1) and let uh ∈ Vh be the solution of (2.1). Then the following a priori
error estimate holds:

|||u− uh||| ≤ C

(
ε

1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) +

(
σ

1
2
1 +

|β|W 1,∞(Ω)

σ0

)
H(2, u)

)
.

Proof. We decompose the error into two parts: η = u− πhu and ξh = πhu− uh.
It follows that u− uh = η + ξh. By Lemma 2.10 we know that

|||η||| ≤ C(ε
1
2H(0, u) + ‖β‖

1
2

L∞(Ω)H(1, u) + σ
1
2
0 H(2, u)),

and it is therefore sufficient to study ξh = πhu− uh. Using Lemma 2.7 we have

c|||ξh|||2 ≤ A(ξh, ξh) + B(ξh, ξh) + J(ξh, ξh),

and by Galerkin orthogonality

c|||ξh|||2 ≤ A(η, ξh) + B(η, ξh) + J(η, ξh).

After an integration by parts in the convective term and an application of the Cauchy–
Schwarz inequality in all other terms we have

c|||ξh|||2 ≤ |]η[| |||ξh||| + |(η, β · ∇ξh)|.

Using now the orthogonality of the L2-projection and Lemma 2.4 we may write

c|||ξh|||2 ≤ |]η[| |||ξh||| + |(η, βh · ∇ξh − π∗βh · ∇ξh)| + |(η, (β − βh) · ∇ξh)

≤ |]η[| |||ξh||| + ‖β‖L∞(Ω)‖h̃− 1
2 η‖J(ξh, ξh)

1
2 + |β|W 1,∞(Ω)‖η‖ ‖h̃∇ξh‖

≤ |]η[| |||ξh||| + Ci

|β|W 1,∞(Ω)

σ0
‖η‖ |||ξh|||.

The theorem now follows by the approximation Lemma 2.10 and Corollary 2.11.
Remark 2.13. The a priori error analysis carried out in this section holds true for

any admissible choice of the weights w+, w− (such that w+, w− > 0 and w++w− = 1)
that appear in the definition of {·}w as also proved in [16] and [24]. In the following
section we propose a definition of these weights according to the specific characteristics
of the problem at hand.

2.2. Optimal choice of the averaging weights. To make the notation sim-
pler, let us assume that only two subdomains Ωi are considered with corresponding
diffusivities εi, i = 1, 2. In this case, let ∂Ω1 \∂Ω be the interface between the subdo-
mains and let n1 be the outer normal with respect to Ω1. Then we define the weighted
average on the interface as {x(ξ)}w = limδ→0(w1x(ξ − n1δ) + w2x(ξ + n1δ)).

The regularity assumptions on the solution u can be expected to hold only as
long as εi ≥ ε0 > 0 in all the subdomains and the intersubdomain boundaries are
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β .n 1

β .n 1

Ω1 Ω2

>0

<0

Fig. 2.1. The model situation.

smooth enough. In case εi vanishes in a subdomain, the weights wi may be chosen
so as to guarantee that the matching conditions automatically recover the physically
correct behavior, relaxing the continuity of u but keeping the continuity of the fluxes.
It turns out that balancing the diffusive fluxes yields a numerical scheme with the
right asymptotic behavior if the diffusion coefficient vanishes in some subdomain. Let
us exemplify this on a model case. We consider a domain Ω split into two neighboring
subdomains Ω1 and Ω2 with a diffusion coefficient ε that is a regular function in each
subdomain, but discontinuous across the interface ∂Ω1 ∩ ∂Ω2. We choose the weights
w1 and w2 such that

wi(ξ) := lim
δ→0

ε(ξ + δni)

ε(ξ + δni) + ε(ξ − δni)
∀ξ ∈ ∂Ω1 ∩ ∂Ω2, i = 1, 2,(2.22)

where ni is the outward unit normal with respect to Ωi. We observe that such weights
always satisfy w1(ξ) + w2(ξ) = 1 for all ξ ∈ ∂Ω1 ∩ ∂Ω2. Moreover, in the case of
smooth diffusivity across the interface, our choice coincides with the classical one,
w1 = w2 = 1

2 . Furthermore, let us define ω(ξ) := w1(ξ)ε1(ξ) = w2(ξ)ε2(ξ). Our
choice of the weights implies that {εi∇uh ·ni}w = 2ω{∇uh ·ni}, which shows that our
method turns out to consider the arithmetic average of the gradients instead of the
arithmetic average of the diffusion fluxes in order to construct the consistency term.
Using these weights the coupling term between Ω1 and Ω2 becomes

B(uh, vh) =

2∑
i=1

(〈
β · n+uh, [vh]

〉
∂Ωi\∂Ω

− 〈ω{∇uh · n}, [vh]〉∂Ωi\∂Ω

−〈ω{∇vh · n}, [uh]〉∂Ωi\∂Ω +

〈
γbc2ω

h̃
[uh], [vh]

〉
∂Ωi\∂Ω

)
.

Consider the case when ε1 goes to zero; then only the upwind flux term remains.
One may readily verify that the coupling term B(uh, vh) corresponds to the weak
formulation of the conditions

−ε2∇u2,h · n1 + β · n1u2,h = β · n1u1,h on ∂Ω1 \ ∂Ω, where β · n1 > 0,

u1,h = u2,h and − ε2∇u2,h · n1 = 0 on ∂Ω1 \ ∂Ω, where β · n1 < 0,

which were proposed for the hybrid elliptic-hyperbolic coupling in Gastaldi and Quar-
teroni [14] (see also [10]). By the symmetry of the weights the same holds in the case
ε2 = 0. The convergence analysis of the iterative method and numerical experience
also indicates that this choice of w1 and w2 is the only viable one for the iterative
algorithm.

3. An iterative splitting method. To introduce and analyze the iterative
method we will restrict the discussion to the case of two subdomains Ωi, i = 1, 2,



DOMAIN DECOMPOSITION BASED ON INTERIOR PENALTIES 1623

with interface ∂Ωi \ ∂Ω 	= ∅. Nevertheless, the generalization to the multidomain
case is straightforward and will be addressed later on. We denote with uh,i ∈ Vh,k,i

the restriction on Ωi of the global numerical solution. For the sake of simplicity, we
also identify with uh,i the function on Ω that is obtained by extending uh,i to zero
outside Ωi. If we consider the formulation (2.1) and decouple the subdomains by using
some approximation uk

h,j of uh,j with j 	= i as boundary data from the neighboring

subdomain with respect to Ωi, we obtain the iterative scheme. Given uk
h,1, u

k
h,2, for

k = 1, 2, . . . , find uk+1
h,1 ∈ Vh,1 such that

(3.1)

A(uk+1
h,1 , vh,1)+ B̃(uk+1

h,1 , uk
h,2, vh,1)+J(uk+1

h,1 , vh,1)+S(uk+1
h,1 , uk

h,1, vh,1) = (f, vh,1)

and uk+1
h,2 ∈ Vh,2 such that

(3.2)

A(uk+1
h,2 , vh,2)+B̃(uk+1

h,2 , uk
h,1, vh,2)+J(uk+1

h,2 , vh,2)+S(uk+1
h,2 , uk

h,2, vh,2) = (f, vh,2),

where

S(uk+1
h,i , uk

h,i, vh,i) =
∑

E∈Gh

〈
γit

h̃
(uk+1

h,i − uk
h,i), vh,i

〉
E

are the terms that stabilize the iterations and the trace mesh is defined by

Gh = {E 	= ∅ : E = ∂Ki ∩ ∂Kj ; ∀Ki ∈ Th,i; ∀Kj ∈ Th,j ; i 	= j},

and we recall that h̃(x)|E = hE for all E ∈ Gh.
The stabilization term S(uk+1

h,i , uk
h,i, vh,i) corresponds to iteration relaxation and

is mandatory to get good convergence properties. If S is omitted, we cannot prove
convergence of the triple norm. In fact explicit control of the error in the jump over
the interface is lost, and numerical experience shows very poor convergence as well
for S = 0. Moreover, we note that the stabilization term is consistent in the sense
that S(uh,i, uh,i, vh,i) = 0. Finally, we have denoted with B̃(uh,i, uh,j , vh,i), i, j = 1, 2,
j 	= i, the interface/boundary penalty bilinear form after the iterative splitting, which
is defined as follows:

B̃(uh,i, uh,j , vh,i) = 〈β · n+
i uh,i, vh,i〉∂Ωi\∂Ω + 〈β · n−

i uh,j , vh,i〉∂Ωi\∂Ω

− 〈wiεi∇uh,i · ni + wjεj∇uh,j · ni, vh,i〉∂Ωi\∂Ω − 〈εiwi∇vh,i · ni, uh,i − uh,j〉∂Ωi\∂Ω

+

〈
2
γbc{ε}w

h̃
(uh,i − uh,j), vh,i

〉
∂Ωi\∂Ω

+

〈
γbcε

h̃
uh,i, vh,i

〉
∂Ωi∩∂Ω

+ 〈β · n+uh,i, vh,i〉∂Ωi∩∂Ω − 〈εi∇uh,i · n, vh,i〉∂Ωi∩∂Ω − 〈εi∇vh,i · n, uh,i〉∂Ωi∩∂Ω.

Since the data on Ωj are taken at the earlier iteration for both domains the two
problems are decoupled and can be solved in parallel.

The present setting can easily be generalized to the case of several subdomains.
Let Ω̄ = ∪N

i=1Ω̄i be the partition in N subdomains and let Γij = ∂Ωi ∩ ∂Ωj be the
corresponding interfaces. Then, since the definition of A and J are already general
with respect to N , problems (3.1) and (3.2) do not need to be modified in the multido-
main case, provided that the definition of B̃(uh,i, uh,j , vh,i) is adapted by replacing

〈·, ·〉∂Ωi\∂Ω with
∑N

i,j=1 〈·, ·〉Γij
. Thanks to the generality of the construction of Gh
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the term S(uh,i, uh,i, vh,i) remains unchanged. Moreover, in the multidomain case,
the system of equations (3.1)–(3.2) should be complemented with one equation for
each new subdomain. Although the formal generalization to the multidomain case is
straightforward, we do not consider it here in order to reduce the notational complex-
ity in the analysis of the iterative method.

Lemma 3.1. The subproblems (3.1) and (3.2) are well-posed in Vh,i with respect
to the norm ||| · |||i.

Proof. The proof is an immediate consequence of Lemma 2.7 restricted to one
subdomain.

We define the splitting error as ekh = uh − uk
h, where uh is the solution to the

finite element formulation of (2.1) and uk
h is the solution after k iterations of (3.1)

and (3.2). We will now state and prove the main result of this section.
Theorem 3.2. The iterative method defined by problems (3.1) and (3.2) con-

verges when the relaxation parameter γit is chosen big enough. More precisely, there
exists a positive constant c (that is, the coercivity constant of Theorem 2.7) such that

c
∞∑
k=1

∣∣∣∣∣∣ekh∣∣∣∣∣∣2 ≤
∑
i=1,2

(
c

2

∥∥∥ε 1
2
i ∇e0

h,i

∥∥∥2

Ωi

+
∥∥∥(δ+)

1
2 e0

h,i

∥∥∥2

∂Ωi\∂Ω
+

∥∥∥∥
(
γit

h̃

) 1
2

e0
h,i

∥∥∥∥
2

∂Ωi\∂Ω

)(3.3)

Proof. By subtracting the decoupled formulation given by (3.1) and (3.2) from
the formulation (2.1) we have

A(ek+1
h,1 , vh,1) + B̃(ek+1

h,1 , ekh,2, vh,1) + J(ek+1
h,1 , vh,1) + S(ek+1

h,1 , ekh,1, vh,1) = 0(3.4)

and

A(ek+1
h,2 , vh,2) + B̃(ek+1

h,2 , ekh,1, vh,2) + J(ek+1
h , vh,2) + S(ek+1

h,2 , ekh,2, vh,2) = 0.(3.5)

We now choose vh,i = ek+1
h,i to obtain

A(ek+1
h , ek+1

h ) + B̃(ek+1
h,1 , ekh,2, e

k+1
h,1 ) + B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ) + J(ek+1

h , ek+1
h )

+
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i ) = 0.

Proceeding now by adding and subtracting B(ek+1
h , ek+1

h ) we may write

(3.6) A(ek+1
h , ek+1

h ) + B(ek+1
h , ek+1

h ) + J(ek+1
h , ek+1

h ) +
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i )

= B(ek+1
h , ek+1

h ) − B̃(ek+1
h,1 , ekh,2, e

k+1
h,1 ) − B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ).

The first three terms on the left-hand side will be controlled by the coercivity
Lemma 2.7, while the term that stabilizes the iterations can be rewritten as follows:

(3.7)
∑
i=1,2

S(ek+1
h,i , ekh,i, e

k+1
h,i ) =

∑
i=1,2

∑
E∈Gh

〈
γit

h̃
(ek+1

h,i − ekh,i), e
k+1
h,i

〉
E

=
1

2

∑
i=1,2

[∥∥∥∥
(
γit

h̃

) 1
2

ek+1
h,i

∥∥∥∥
2

∂Ωi\∂Ω

−
∥∥∥∥
(
γit

h̃

) 1
2

ekh,i

∥∥∥∥
2

∂Ωi\∂Ω

+

∥∥∥∥
(
γit

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

]
.
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It remains to bound the interface residual of the right-hand side:

R(ekh,1, e
k+1
h,1 , ekh,2, e

k+1
h,2 ) = B(ek+1

h , ek+1
h )−B̃(ek+1

h,1 , ekh,2, e
k+1
h,1 )−B̃(ek+1

h,2 , ekh,1, e
k+1
h,2 ).

The residual R is different from zero only on the interface of the subdomains and
consists of three parts:

(A) the advective interface flux term from the advection term;
(B) the symmetric interface flux term from the Laplacian;
(C) the interface penalization term.

We now rearrange the terms for the three above-mentioned cases.
(A) The advective interface fluxes:

∑
i,j=1,2
i 	=j

[
〈β · n+

i e
k+1
h,i , ek+1

h,i − ek+1
h,j 〉∂Ωi\∂Ω − 〈β · n+

i e
k+1
h,i , ek+1

h,i 〉∂Ωi\∂Ω

− 〈β · n+
i e

k
h,i,−ek+1

h,j 〉∂Ωi\∂Ω

]
=

∑
i,j=1,2
i 	=j

[
〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω+〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,i 〉∂Ωi\∂Ω

]
.

We observe that

〈β · n+
i (ekh,i − ek+1

h,i ), ek+1
h,j − ek+1

h,i 〉∂Ωi\∂Ω

≤ 1

4μi
‖(β · n+

i )
1
2 (ekh,i − ek+1

h,i )‖2
∂Ωi\∂Ω + μi‖(β · n+

i )
1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

and

〈β · n+
i (ekh,i − ek+1

h,i ), ek+1
h,i 〉∂Ωi\∂Ω

=
1

2
‖(β·n+

i )
1
2 ekh,i‖2

∂Ωi\∂Ω−
1

2
‖(β·n+

i )
1
2 ek+1

h,i ‖2
∂Ωi\∂Ω−

1

2
‖(β·n+

i )
1
2 (ek+1

h,i −ekh,i)‖2
∂Ωi\∂Ω.

By combining these results we obtain

(3.8)∑
i,j=1,2
i 	=j

[
〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,j − ek+1
h,i 〉∂Ωi\∂Ω+〈β · n+

i (ekh,i − ek+1
h,i ), ek+1

h,i 〉∂Ωi\∂Ω

]

≤
∑
i=1,2

[
μi‖|β · ni|

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω +

1 − 2μi

4μi
‖|β · ni|

1
2 (ekh,i − ek+1

h,i )‖2
∂Ωi\∂Ω

+
1

2
‖(β · n+

i )
1
2 ekh,i‖2

∂Ωi\∂Ω − 1

2
‖(β · n+

i )
1
2 ek+1

h,i ‖2
∂Ωi\∂Ω

]
.

(B) The boundary part of the Laplacian operator may then be written as

− 1

2

∑
i,j=1,2
i 	=j

[
2〈{ε∇ek+1

h · ni}w, ek+1
h,i − ek+1

h,j 〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni + ω∇ekh,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ek+1

h,i · ni, e
k+1
h,i − ekh,j〉∂Ωi\∂Ω

−〈ω∇ekh,i · ni + ω∇ek+1
h,j · ni,−ek+1

h,j 〉∂Ωi\∂Ω − 〈ω∇ek+1
h,j · ni, e

k
h,i − ek+1

h,j 〉∂Ωi\∂Ω

]
,
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which can be rewritten as follows:

−1

2

∑
i,j=1,2
i 	=j

[
〈ω∇ek+1

h,j · ni, e
k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

− 〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

+ 〈ω∇(ekh,i − ek+1
h,i ) · ni, e

k+1
h,j − ekh,j〉∂Ωi\∂Ω

+ 〈ω∇(ek+1
h,j − ekh,j) · ni, e

k+1
h,i − ekh,i〉∂Ωi\∂Ω

]
,

where we recall that w1ε1 = w2ε2 = ω. For this choice of the averaging weights the
first four terms vanish, precisely:

∑
i,j=1,2
i 	=j

[
〈ω∇ek+1

h,j · ni, e
k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

]
= 0.

By means of the Cauchy–Schwarz and Young inequalities, we have for the fifth term

〈ω∇(ekh,i−ek+1
h,i )·ni, e

k+1
h,j −ekh,j〉∂Ωi\∂Ω =

∑
E∈Gh

〈ω 1
2∇(ekh,i−ek+1

h,i )·ni, ω
1
2 (ek+1

h,j −ekh,j)〉E

≤
∑

E∈Gh

2
[
h

1
2

E‖ω
1
2∇(ekh,i − ek+1

h,i ) · ni‖E · h− 1
2

E ‖ω 1
2 (ek+1

h,j − ekh,j)‖E
]

≤
∑

E∈Gh

[
αihE‖ω

1
2∇(ekh,i − ek+1

h,i ) · ni‖2
E + (αihE)−1‖ω 1

2 (ek+1
h,j − ekh,j)‖2

E

]
.

Then, by virtue of trace and inverse inequalities (see Remark 2.8), there exists a
positive constant Ct such that

∑
E∈Gh

hE‖ω
1
2∇(ekh,i − ek+1

h,i ) · ni‖2
E ≤ Ct‖wi‖L∞(∂Ωi\∂Ω)‖ε

1
2
i ∇(ekh,i − ek+1

h,i )‖2
Ωi

≤ Ct‖wi‖L∞(∂Ωi\∂Ω)

[
‖ε

1
2
i ∇ekh,i‖2

Ωi
+ ‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

]
.

We proceed analogously for the term 〈ω∇(ek+1
h,j − ekh,j) · ni, e

k+1
h,i − ekh,i〉∂Ωi\∂Ω.

Summing up all the contributions we obtain that

(3.9) − 1

2

∑
i,j=1,2
i 	=j

[
2〈ω∇(ekh,i − ek+1

h,i ) · ni, e
k+1
h,j − ekh,j〉∂Ωi\∂Ω

+ 〈ω∇ek+1
h,j · ni, e

k+1
h,i 〉∂Ωi\∂Ω − 〈ω∇ekh,j · ni, e

k
h,i〉∂Ωi\∂Ω

−〈ω∇ek+1
h,i · ni, e

k+1
h,j 〉∂Ωi\∂Ω + 〈ω∇ekh,i · ni, e

k
h,j〉∂Ωi\∂Ω

]
≤

∑
i=1,2

[
αiCt‖wi‖L∞(∂Ωi\∂Ω)

(
‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

+ ‖ε
1
2
i ∇ekh,i‖2

Ωi

)

+
‖wiεi‖L∞(∂Ωi\∂Ω)

αi
‖(h̃)−

1
2 (ek+1

h,i − ekh,i)‖∂Ωi\∂Ω

]
.
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(C) For the interface penalization term we get

∑
i,j=1,2
i 	=j

[〈(
γbc{ε}w

h̃

)
(ek+1

h,i − ek+1
h,j ), ek+1

h,i − ek+1
h,j

〉
∂Ωi\∂Ω

−
〈(

γbcω

h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

−
〈(

γbcω

h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

]
.

By means of algebraic manipulations we obtain〈(
γbcω

h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

=

〈(
γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,j − ek+1

h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,i − ek+1

h,j

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j

〉
∂Ωi\∂Ω

+

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥
2

∂Ωi\∂Ω

.

By virtue of the particular choice of the weights that gives 2ω = {ε}w and by
means of standard inequalities we observe that〈(

γbcω

h̃

)
(ek+1

h,i − ekh,i), e
k+1
h,j − ek+1

h,i

〉
∂Ωi\∂Ω

+

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j − ek+1

h,j

〉
∂Ωi\∂Ω

≤ 1

4μi

[∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,j − ekh,j)

∥∥∥∥
2

∂Ωi\∂Ω

]

μi

[∥∥∥∥
(
γbcω

h̃

) 1
2

[ek+1
h ]

∥∥∥∥
2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

[ek+1
h ]

∥∥∥∥
2

∂Ωi\∂Ω

]

=
1

4μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

+ μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥
2

∂Ωi\∂Ω

and that ∑
j=1,2

〈(
γbcω

h̃

)
(ek+1

h,j − ekh,j), e
k+1
h,j

〉
∂Ωi\∂Ω

=
1

2

∑
j=1,2

[∥∥∥∥
(
γbcω

h̃

) 1
2

ek+1
h,j

∥∥∥∥
2

∂Ωi\∂Ω

−
∥∥∥∥
(
γbcω

h̃

) 1
2

ekh,j

∥∥∥∥
2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbcω

h̃

) 1
2

(ek+1
h,j − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

]

=
1

2

[∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ek+1
h,i

∥∥∥∥
2

∂Ωi\∂Ω

−
∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ekh,i

∥∥∥∥
2

∂Ωi\∂Ω

+

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

]
.
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Summing up all the terms of the residual (C) we have

∑
i=1,2

[〈(
γbc{ε}w

h̃

)
(ek+1

h,i − ek+1
h,j ), ek+1

h,i − ek+1
h,j

〉
∂Ωi\∂Ω

(3.10)

−
〈(

γbc{ε}w
h̃

)
(ek+1

h,i − ekh,j), e
k+1
h,i

〉
∂Ωi\∂Ω

−
〈(

γbc{ε}w
h̃

)
(ek+1

h,j − ekh,i), e
k+1
h,j

〉
∂Ωi\∂Ω

]

≤
∑
i=1,2

[
1 − 2μi

4μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

(ek+1
h,i − ekh,i)

∥∥∥∥
2

∂Ωi\∂Ω

+ μi

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

[ek+1
h ]

∥∥∥∥
2

∂Ωi\∂Ω

+
1

2

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ekh,i

∥∥∥∥
2

∂Ωi\∂Ω

− 1

2

∥∥∥∥
(
γbc{ε}w

h̃

) 1
2

ek+1
h,i

∥∥∥∥
2

∂Ωi\∂Ω

]
.

By putting together (3.8), (3.9), (3.10) we obtain the following inequality:

(3.11) R(ekh,1, e
k+1
h,1 , ekh,2, e

k+1
h,2 )

≤
∑
i=1,2

[
αiCt‖wi‖L∞(∂Ωi\∂Ω)

(
‖ε

1
2
i ∇ek+1

h,i ‖2
Ωi

+ ‖ε
1
2
i ∇ekh,i‖2

Ωi

)
+ μi‖δ

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

+
1 − 2μi

4μi
‖δ 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω +
‖wiεi‖L∞(∂Ωi\∂Ω)

αi
‖h̃− 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

+
1

2
‖(δ+)

1
2 ekh,i‖2

∂Ωi\∂Ω − 1

2
‖(δ+)

1
2 ek+1

h,i ‖2
∂Ωi\∂Ω

]
.

It should be noted that the right-hand side of (3.11) consists of terms that are either
telescoping or of one of the following forms:

• terms containing ∇ek+1
h,i ;

• terms containing a part [ek+1
h ];

• terms containing a part ek+1
h,i − ekh,i.

The first and second contributions will be controlled by the triple norm, and the
last type of contributions will be controlled by the relaxation terms of (3.7). More
precisely, by replacing (3.11) and (3.7) in (3.6) we obtain

∑
i=1,2

[
c‖σ

1
2
0 e

k+1
h,i ‖2

Ωi
+ cJ(ek+1

h,i , ek+1
h,i )(3.12)

+

(
γit
2

−
‖wiεi‖L∞(∂Ωi\∂Ω)

αi

)
‖h̃− 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

− 1 − 2μi

4μi
‖δ 1

2 (ek+1
h,i − ekh,i)‖2

∂Ωi\∂Ω

+ (c− αiCt‖wi‖L∞(∂Ωi\∂Ω))‖ε
1
2
i ∇ek+1

h,i ‖2
Ωi

− αiCt‖wi‖L∞(∂Ωi\∂Ω)‖ε
1
2
i ∇ekh,i‖2

Ωi

+ c‖δ 1
2 [ek+1

h ]‖2
∂Ωi∩∂Ω + (c− μi)‖δ

1
2 [ek+1

h ]‖2
∂Ωi\∂Ω

+
1

2
‖(δ+)

1
2 ek+1

h,i ‖2
∂Ωi\∂Ω − 1

2
‖(δ+)

1
2 ekh,i‖2

∂Ωi\∂Ω

+
1

2

∥∥∥(γit
h̃

) 1
2

ek+1
h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(γit
h̃

) 1
2

ekh,i

∥∥∥2

∂Ωi\∂Ω

]
≤ 0.
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Then we choose the coefficients of Young’s inequality, αi and μi, as follows:

αi <
c

2Ct‖wi‖L∞(∂Ωi\∂Ω)
, e.g., αi =

c

4Ct‖wi‖L∞(∂Ωi\∂Ω)
; μi < c, e.g., μi =

c

2
;

and as a consequence of that, the relaxation parameter γit becomes

(3.13) γit ≥
8Ct‖wi‖L∞(∂Ωi\∂Ω)‖wiεi‖L∞(∂Ωi\∂Ω)

c

+
max[1 − c, 0]

2c

(
γbc‖{ε}w‖L∞(∂Ωi\∂Ω) + ‖β · nh̃‖L∞(∂Ωi\∂Ω)

)
, i = 1, 2.

This allows us to rewrite (3.12) as follows:

c

2

∣∣∣∣∣∣ek+1
h

∣∣∣∣∣∣2+ ∑
i=1,2

[
c

4

∥∥∥ε 1
2
i ∇ek+1

h,i

∥∥∥2

Ωi

− c

4

∥∥∥ε 1
2
i ∇ekh,i

∥∥∥2

Ωi

+
1

2

∥∥∥(δ+)
1
2 ek+1

h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(δ+)
1
2 ekh,i

∥∥∥2

∂Ωi\∂Ω

+
1

2

∥∥∥(γit
h̃

) 1
2

ek+1
h,i

∥∥∥2

∂Ωi\∂Ω
− 1

2

∥∥∥(γit
h̃

) 1
2

ekh,i

∥∥∥2

∂Ωi\∂Ω

]
≤ 0.

Finally, summing up from k = 0 to k = M − 1, we obtain

c

M−1∑
k=0

∣∣∣∣∣∣ek+1
h

∣∣∣∣∣∣2 +
∑
i=1,2

(∥∥∥(δ+)
1
2 eMh,i

∥∥∥2

∂Ωi\∂Ω
+
∥∥∥(γit

h̃

) 1
2

eMh,i

∥∥∥2

∂Ωi\∂Ω

)

≤
∑
i=1,2

( c

2

∥∥∥ε 1
2
i ∇e0

h,i

∥∥∥2

Ωi

+
∥∥∥(δ+)

1
2 e0

h,i

∥∥∥2

∂Ωi\∂Ω
+
∥∥∥(γit

h̃

) 1
2

e0
h,i

∥∥∥2

∂Ωi\∂Ω

)
,

which implies (3.3).
Remark 3.3. The general statement (3.13) implies the following choices of γit.
When εi > 0 for i = 1, 2 we have c = 1

2 and γbc ≥ 2Ct in order to ensure coercivity.
Then we insert γbc = 2Ct into (3.13) and obtain

γit ≥ 2Ct

(
1 + 8‖wi‖L∞(∂Ωi\∂Ω)

)
‖wiεi‖L∞(∂Ωi\∂Ω) + ‖β · nh̃‖L∞(∂Ωi\∂Ω), i = 1, 2.

For sufficiently small h̃ this expression can be summarized as γit � γbc‖ε‖L∞(Ω).
When ε1 = 0 and ε2 > 0 (or vice versa) we have w1 > 0 and w2 = 0. As a result of
that the formula above becomes

γit ≥
1

2
‖β · nh̃‖L∞(∂Ωi\∂Ω), i.e.,

γit
h

≥ 1

2
‖β · n‖L∞(∂Ωi\∂Ω).

When ε1 = ε2 = 0 the coercivity constant becomes c = 1. As a result of that (3.13)
requires γit ≥ 0.

4. Numerical results. All the numerical experiments presented in this section
were obtained using the FreeFem++ library (http://www.freefem.org/ff++/index.htm).

4.1. Approximation and convergence properties of the iterative split-
ting method. In this section we analyze the convergence of the iterative splitting
method with respect to the mesh size h = maxi=1,2 maxK∈Th,i

hK , the number of
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Table 4.1

Convergence study with respect to h for conforming meshes.

Two subdomains, h = 0.1.

P1 FEM P2 FEM

ε = 1 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 2.44 10−2 5.82 10−1 3.37 10−4 5.05 10−2

h 5.59 10−3 2.65 10−1 4.62E-005 1.26 10−2

Order 2.19 1.17 2.95 2.07

ε = 10−3 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.65 10−2 5.97 10−1 8.88 10−4 6.04 10−2

h 3.64 10−3 2.73 10−1 1.02 10−4 1.47 10−2

Order 2.24 1.16 3.21 2.10

ε = 0 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.69 10−2 6.13 10−1 9.95 10−4 6.32 10−2

h 3.80 10−3 2.82 10−1 1.23 10−4 1.57 10−2

Order 2.22 1.16 3.10 2.07

Four subdomains h = 0.08.

P1 FEM P2 FEM

ε = 1 ‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖0,Ω ‖u− uh‖1,Ω

2h 1.50 10−2 4.48 10−1 1.76 10−4 3.25 10−2

h 3.38 10−3 2.06 10−1 1.65 10−5 7.68 10−3

Order 2.15 1.12 3.42 2.08

subdomains N , and the value of the penalty parameters γit, γbc, and γip,i, i = 1, 2,
for different values of the diffusion parameters εi and of the transport field β. To this
aim, we consider problem (1.1), where σ = 1 is fixed and f is chosen so that the exact
solution is

u(x, y) = exp(xy) sin(πx) sin(πy),(4.1)

on a domain Ω = ]0, 1[× ]0, 1[ that has been split into N = n2 subdomains such that
Ω̄ = ∪N

i=1Ω̄i = ∪n
i1,i2=1[(i1 − 1)/n, i1/n]× [(i2 − 1)/n, i2/n], obtaining a checkerboard

partition of size H = 1/n. The simplest case of two subregions Ω̄1 = [0, 1
2 ] × [0, 1]

and Ω̄2 = [ 12 , 1] × [0, 1] is also addressed. For each subdomain, we introduce N
quasi-uniform meshes Th,i that can be either conforming or nonconforming on their
interfaces, but for the tests presented here we consider conforming discretizations.
For the comparison of different cases we choose u0

h,i = 0 for i = 1, . . . , N and consider
a convergence test on the triple norm of the incremental error, namely, the iterations
are stopped if |||uk+1

h − uk
h|||/|||uk+1

h ||| ≤ tol.
First of all, we aim to verify with numerical experiments the infinitesimal order

with respect to h provided by Theorem 2.12. Table 4.1 shows that the optimal order
of convergence is preserved for both linear and quadratic conforming elements. From
now on, we will denote for simplicity ‖ · ‖1,Ω ≡ (

∑N
i=1 ‖ · ‖1,Ωi)

1
2 .

Second, we aim to investigate the influence on the convergence rate of the itera-
tive method of the parameters γbc and γit that appear in (3.1), (3.2). We study the
number of iterations that the method needs to satisfy a tolerance tol = 10−6 on the
relative incremental error for several combinations of γbc and γit. Table 4.2 suggests
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Table 4.2

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 and on
a quasi-uniform mesh of size h = 0.1 and a partition in two subdomains. Several combinations of
the parameters γbc and γit in the case of the symmetric (right) and skewsymmetric coupling term
(left) are addressed. In this case ε = 1 and β = [1, 1].

γit/γbc 2 100 2 101 2 102 2 10−2 2 10−1 2 100 2 101 2 102

2 10−3 100 802 >1000 36 25 107 809 >1000

2 10−2 101 803 >1000 34 25 107 810 >1000

2 10−1 109 809 >1000 25 23 116 816 >1000

2 100 188 873 >1000 107 116 195 880 >1000

2 101 874 >1000 >1000 809 815 880 >1000 >1000

2 102 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000

-7

-6

-5

-4

-3

-2

-1

 0

 0  50  100  150  200  250  300  350  400

lo
g1

0(
In

cr
. e

rr
.)

N. iter.

Diffusive regimen

4 subdomains
9 subdomains

16 subdomains

-7

-6

-5

-4

-3

-2

-1

 0

 0  2  4  6  8  10  12  14  16

lo
g1

0(
In

cr
. e

rr
.)

N. iter.

Transition regimen

4 subdomains
9 subdomains

16 subdomains

Fig. 4.1. Convergence history of the iterative method for ε = 1.0 (right) and ε = 10−3 (left)
for the numerical tests on the coarse grids of Table 4.3.

that an effective choice is to consider the small values of γbc, provided that the discrete
problems (3.1), (3.2) remain well-posed according to Lemma 2.7. Recalling Remark
2.2, we analyze separately the symmetric and the nonsymmetric versions of the cou-
pling term B(uh, vh). In the symmetric case, Lemma 2.7 requires that γbc = 2Ct.
In this case, Table 4.2 shows that the theoretical estimate obtained in Remark 3.3 is
too restrictive for diffusion-dominated problems. Indeed, much smaller values of the
estimated ones ensure better convergence properties. On the contrary, the numerical
experiments presented in Table 4.5 suggest that the estimate of Remark 3.3 is effective
for advection dominated problems. For the nonsymmetric case the limitations on γbc
necessary for obtaining positivity of the discrete bilinear form change completely, in
agreement with the analysis of interior penalty discontinuous Galerkin methods; see
[1]. Indeed, only the restriction γbc > 0 is necessary. In this setting, the convergence
properties of the iterative algorithm are much improved. Conversely, the approxima-
tion properties of the scheme are compromised since the discrete problem (2.1) is not
adjoint consistent, and thus it does not enjoy optimal approximation properties in
the L2-norm (see [1] for a complete discussion). For the relaxation parameter γit we
observe that in this case the choice γit � γbc � 2 10−1 is effective.

The key point of this section is the characterization of the dependence of the
convergence properties from the maximal mesh element size h and the number of
subdomains N for different values of ε and β. More precisely, we analyze the diffusion
dominated regimen (ε = 1), the transition regimen (ε = 10−3), and the hyperbolic
regimen (ε = 0). Indeed, Figure 4.1 and Table 4.3 show that the behavior of the
method differs form one regimen to another. First of all, although Theorem 3.2 does
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Table 4.3

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 for several
configurations of the partition in subdomains and several values of ε. γbc = 2, γit = γbc‖ε‖L∞(Ω),
and β = [1, 1] are fixed.

H, N 1/2, 4 1/3, 9 1/4, 16

h 0.13 0.06 0.12 0.06 0.12 0.07

ε = 1 237 445 309 579 388 723

Order h −0.85 −0.91 −1.08

Order H – −0.65 −0.77

ε = 10−3 12 14 14 17 16 20

Order h −0.21 −0.28 −0.39

Order H – −0.48 −0.56

ε = 0 4 4 6 6 8 8

Order h 0 0 0

Order H – −1 −1

Table 4.4

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 for
different combinations of β and ε and for the case of 16 subdomains and h = 0.12. γbc = 2,
γit = γbc‖ε‖L∞(Ω) are fixed.

ε = 1 ε = 10−3 ε = 0

β = [1, 1] 388 16 8

β = [1, 0] 389 16 5

β = [0, 1] 389 16 5

not characterize the convergence behavior of the iterative method (3.1)–(3.2), Figure
4.1 puts into evidence that the incremental error is reduced according to the law
Ck, where k is the iteration index and the constant 0 < C < 1 is the convergence
rate. Following this assumption, the number of iterations needed to satisfy a suitable
tolerance on the incremental error is directly proportional to the convergence rate.
As a consequence of that, Table 4.3 shows that in the diffusion-dominated regimen
the convergence rate is inversely proportional to h and H. Following the heuristic
motivations that are presented in [22] and [27], the inverse dependence on H can
be explained observing that an iterative method that only exchanges information
between neighboring subregions necessarily requires a number of steps to converge that
is at least equal to the diameter of the dual graph corresponding to the subdomain
partition, which is equivalent to O(H−1) when the diameter of Ω is unitary. The
dual graph is constructed by introducing a vertex for each subregion and an edge
between two subregions that share an interface. The inverse dependence on h is a
consequence of (3.13) (see also Remark 3.3) which states that the relaxation term
must be proportional to ‖ε‖L∞(Ω)/h. Accordingly, by refining the mesh by a factor
two, the number of iterations is doubled. Always in agreement with Remark 3.3
and with the fact that the relaxation term is allowed to vanish together with ε, the
convergence rate of the method is less sensitive with respect to h for the transition
case and completely insensitive with respect to the mesh size in the hyperbolic case.
Indeed, when ε = 0 the number of iterations is only inversely dependent on H, and it is
exactly equivalent to the number of steps that are needed to propagate the information
along the diagonal of the checkerboard mesh defined by the subdomains, since the
transport field is oriented along the diagonal. Furthermore, Table 4.4 suggests that
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these results do not deteriorate if the orientation of the transport field β is modified.
Indeed, this is an advantage of the method proposed here with respect to the family of
nonoverlapping domain decomposition methods arising from transmission conditions
of Robin type, whose convergence may turn out to be slow when the transport field is
tangential to the interface [21]. This benefit is due to the use of the upwind flux for the
advection term. As a consequence of that, the corresponding transmission conditions
are not symmetric with respect to β, in contrast to what happens for the family
of methods inspired by transmission conditions of Robin type. Finally, we observe
that in the hyperbolic case a multiplicative (Gauss–Seidel) iterative scheme is more
preforming than the additive (Jacobi) method. For instance, since the subdomains in
the checkerboard partition have been numbered by rows, when the transport field β is
oriented in the vertical direction the multiplicative algorithm converges in 2 iterations,
irrespectively of h and H.

4.2. Comparison of iterative methods. In order to assess the performance
of the iterative method based on Nitsche’s transmission conditions (denoted with a in
Table 4.5 and defined by problems (3.1) and (3.2)) we compare it with the nonover-
lapping Schwarz method proposed in [20] (denoted with b) and with the overlapping
Schwarz method (denoted with c). For this comparison, we consider the test case
proposed in the previous section where the domain Ω has been split into two sub-
domains, Ω1 = [0, 1

2 ] × [0, 1] and Ω2 = [ 12 , 1] × [0, 1]. In the case of the overlapping
Schwarz method we also introduce two overlapping domains, Ω∗

1 = [0, 1
2 + 1

2δ]× [0, 1],
Ω∗

2 = [ 12 − 1
2δ, 1] × [0, 1], and corresponding discretizations T ∗

h,i, i = 1, 2. Let V ∗
h,i be

the finite element spaces defined on these meshes. Then, given u0
h,i, for k = 1, 2, . . .

we look for uk
h,i ∈ V ∗

h,i, i = 1, 2, such that

A(uk+1
h,1 , vh,1) + J(uk+1

h,1 , vh,1) = (f1, vh,1) ∀vh,1 ∈ V ∗
h,1, ûk+1

h,1 = uk
h,2 on ∂Ω∗

1 ∩ Ω∗
2,

A(uk+1
h,2 , vh,2) + J(uk+1

h,2 , vh,2) = (f2, vh,2) ∀vh,2 ∈ V ∗
h,2, ûk+1

h,2 = uk
h,1 on ∂Ω∗

2 ∩ Ω∗
1,

uk+1
h,i =

1

2
ûk+1
h,i +

1

2
uk
h,i i = 1, 2.

Recalling that the convergence of the overlapping Schwarz method can be accel-
erated by increasing the thickness of the overlapping region, that is, δ, we consider
three cases, δ = h̄, δ = 2h̄, and δ = 4h̄, where h̄ is the characteristic size of the
quasi-uniform discretizations of Ω∗

1 and Ω∗
2. The comparison with these cases will

give a measure of the convergence performance of our method.
In Table 4.5, we compare the convergence and the approximation properties of

these methods for the diffusion-dominated, the transition, and the hyperbolic regi-
mens. The analysis of this table immediately shows that the method that we propose
here is effective for the advection dominated and the hyperbolic regimens. In this
case Nitsche’s method a provides in general the best performances both for the con-
vergence and the approximation properties for a fixed tolerance on the incremental
error tol = 10−6 and a given quasi-uniform mesh with h = 0.05.

In the diffusion-dominated case, the convergence of method a in the symmetric
case is partially slowed down by the relaxation term. We have already observed that
the choice γit = γbc‖ε‖L∞(Ω), motivated by the theoretical estimate derived in Remark
3.3, is not optimal. Indeed, the number of iterations needed to fulfill a tolerance of
10−6 on the incremental error is reduced from 354 to 190 if the parameter γit is
divided by a factor of 100. In any case, this correction does not make method a
with s = 1 (see Remark 2.2) competitive with method b in the diffusion-dominated



1634 ERIK BURMAN AND PAOLO ZUNINO

Table 4.5

The number of iterations necessary to converge with respect to a tolerance tol = 10−6 and the
approximation error on a given quasi-uniform mesh characterized by h = 0.05 and a partition in 2
subdomains. Several instances of the iterative algorithms a, b, and c are considered. The instance of
algorithm a with symmetric coupling terms is denoted with s = 1, while the nonsymmetric version
is denoted with s = −1.

Diffusion dominated regimen ε = 1, β = [1, 1].

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = 1, γbc = 2, γit = γbc‖ε‖L∞(Ω) 354 1.38 10−3 1.32 10−1

a, s = 1, γbc = 2, γit = 10−2γbc‖ε‖L∞(Ω) 190 1.38 10−3 1.32 10−1

a, s = −1, γbc = 2 10−1, γit = 2 10−1 43 1.93 10−3 1.25 10−1

a-hybrid 108 1.37 10−3 1.32 10−1

b 96 1.37 10−3 1.32 10−1

c, δ = h̄ 210 3.25 10−3 1.27 10−1

c, δ = 2h̄ 115 2.35 10−3 1.28 10−1

c, δ = 4h̄ 65 2.02 10−3 1.36 10−1

Transition regimen ε = 10−3, β = [1, 1], γbc = 2, and γit = γbc‖ε‖L∞(Ω).

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = 1 12 8.76 10−4 1.33 10−1

a, s = −1 13 8.75 10−4 1.33 10−1

b 17 1.03 10−3 1.47 10−1

c, δ = h̄ 46 1.00 10−3 1.37 10−1

c, δ = 2h̄ 56 1.27 10−3 1.41 10−1

c, δ = 4h̄ 42 1.21 10−3 1.51 10−1

Hyperbolic regimen ε = 0, β = [1, 1], γbc = 2, and γit = 0.

Method N. iter. ‖u− uh‖0,Ω ‖u− uh‖1,Ω

a, s = ±1 2 9.48 10−4 1.40 10−1

b 57 2.44 10−3 2.96 10−1

c, δ = h̄ 52 1.10 10−3 1.45 10−1

c, δ = 2h̄ 59 1.48 10−3 1.52 10−1

c, δ = 4h̄ 45 1.39 10−3 1.63 10−1

case. Conversely, we observe that the convergence properties of the nonsymmetric
version of method a is very satisfactory, while the approximation error in the L2-
norm reflects the suboptimality of this method. By comparing the properties of the
symmetric and the nonsymmetric versions of method a, we observe that it may be
possible to blend the benefits of the two methods by setting up a hybrid strategy
(see Table 4.5, method a-hybrid). This consists in applying method a with s = −1,
γbc = γit = 2 10−1 until the tolerance equal to 10−6 is satisfied on the relative
incremental error. As reported in Table 4.5, this procedure requires 43 iterations.
Then, starting from the discrete solution computed in this way, we apply method
a with s = 1, γbc = 2, γit = 2 10−1 in order to improve the approximation error.
This method requires 65 additional iterations to converge, and it reduces the L2

approximation error of the nonsymmetric case from 1.93 10−3 to 1.37 10−3, which
is equivalent to the error of the symmetric case. Since it is accurate and converges
rapidly, the hybrid method outperforms both the symmetric and the nonsymmetric
versions of method a. In the diffusive case, the hybrid method turns out to be almost
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equivalent to method b. These considerations promote further studies of the hybrid
method and suggest investigating in detail whether the nonsymmetric formulation
might be applied as a preconditioner for the symmetric case. Finally, a heuristic
comparison with the overlapping Schwarz methods c suggests that method b behaves
as an additive overlapping Schwarz algorithm with a relatively generous overlap of
magnitude δ = 2h̄ ≡ 6% of the diameter of Ω. On the other hand, the symmetric
Nitsche’s method a is almost equivalent to the overlapping method with small overlap
δ = h̄ ≡ 3%.

From the point of view of computational cost we observe that the scheme (3.1)–
(3.2) requires more effort for the construction of the finite element matrix correspond-
ing to the coupling terms B(uh, vh) than the family of Robin–Robin methods. Indeed,
for the Robin–Robin methods the coupling matrix is easily constructed since it cor-
responds to a mass matrix on the degrees of freedom at the interface. Moreover in
our case the bandwidth of the coupling matrix is increased because of the presence
of first order derivatives in the coupling terms. This drawback is balanced by the
fact that basic Robin–Robin iterative splitting methods preserve the optimal approx-
imation properties of Lagrangian finite elements only if a superpenalty technique is
applied; see [8]. This technique, however, compromises the convergence properties of
the iterative algorithm.

4.3. Approximation of problems with discontinuous coefficients. In this
section, we apply the numerical scheme (3.1)–(3.2) for the approximation of advection
diffusion problems with discontinuous coefficients. To this purpose, the domain Ω has
been split into two subdomains, Ω1 = [0, 1

2 ] × [0, 1] and Ω2 = [ 12 , 1] × [0, 1] with
ε(x) = 1.0 for x ∈ Ω1 and ε(x) = 2 10−2 for x ∈ Ω2. In the case σ = 0 and f = 0,
the exact solution on each subregion Ω1,Ω2 can be easily expressed as an exponential
function with respect to the x coordinate independently from the y coordinate. The
global solution u(x, y) is provided by choosing the value at the interface x = 1

2 in
order to ensure the following matching conditions:

lim
x→ 1

2
−
u(x, y) = lim

x→ 1
2
+
u(x, y) and lim

x→ 1
2
−
−ε(x)∂xu(x, y) = lim

x→ 1
2
+
−ε(x)∂xu(x, y).

More precisely, we set u(0, y) = 1, u(1, y) = 0, and by consequence of the matching
conditions, we obtain

u

(
1

2
, y

)
=

[
u(0, y) exp( β

2ε1
)

1 − exp( β
2ε1

)
+

u(1, y)

1 − exp( β
2ε2

)

][
exp( β

2ε1
)

1 − exp( β
2ε1

)
+

1

1 − exp( β
2ε2

)

]−1

.

As a result of that, the exact solution in each subdomain can be expressed as

u1(x, y) =
u( 1

2 , y) − exp( β
2ε1

)u(0, y) + [u(0, y) − u( 1
2 , y)] exp(βxε1 )

1 − exp( β
2ε1

)
,

u2(x, y) =
u(1, y) − exp( β

2ε2
)u( 1

2 , y) + [u( 1
2 , y) − u(1, y)] exp(

β(x− 1
2 )

ε2
)

1 − exp( β
2ε2

)
.

The resulting function is represented in Figure 4.2. We aim to compare on the test
problem defined above the accuracy of the scheme (3.1)–(3.2) with linear elements,

precisely Vh =
∑2

i=1 Vh,1,i (denoted by A) with the classical lagrangian linear elements
over the whole domain Ω (denoted by B). We point out that in both cases the



1636 ERIK BURMAN AND PAOLO ZUNINO

Fig. 4.2. The nodal interpolant on a very refined mesh of the exact solution u of the test problem
at hand (left). The numerical approximation uh obtained with method A (middle) and method B
(right) in the case of the discretization characterized by h1 = 0.1.

Table 4.6

The quantitative comparison of the accuracy of methods A and B. The L2-norm, ‖uh −u‖0,Ω,
the H1-norm, ‖uh − u‖1,Ω, and the maximum norm, ‖uh − u‖L∞(Ω), are displayed.

‖u− uh‖0,Ω ‖u− uh‖1,Ω ‖u− uh‖L∞(Ω)

h Method A Method B Method A Method B Method A Method B

0.1 1.81 10−2 2.78 10−2 2.07 1.78 2.13 10−1 1.71 10−1

0.05 6.98 10−3 8.95 10−3 1.31 1.06 1.07 10−1 6.32 10−2

0.026 2.56 10−3 2.66 10−3 7.49 10−1 5.82 10−1 1.40 10−1 2.34 10−2

continuous interior penalty stabilization method with γip,i = 2 10−2 has been applied
to cure the instability of finite elements in the case of advection-dominated problems.
We compare the two schemes on a family of quasi-uniform triangulations on Ω1 and
Ω2 that are conforming at the interface of the subdomains and are characterized
by a decreasing maximal element size h1 = 0.1, h2 = 0.05, and h3 = 0.026. The
quantitative analysis of the accuracy is based on the following indicators: the L2-
norm of the error, ‖uh − u‖0,Ω; the H1-norm, ‖uh − u‖1,Ω, which is well defined
since u ∈ H1(Ω); and the maximum norm, ‖uh − u‖L∞(Ω). The quantitative data
are reported in Table 4.6, while a visual comparison is given in Figure 4.2. The
analysis of the results suggests that the scheme (3.1)–(3.2) performs well for the
approximation of problems with discontinuous coefficients when the mesh size is not
small enough to fully resolve the boundary layers arising in the neighborhood of
the region of discontinuity. The benefit of the scheme presented here with respect
to the application of classical Lagrangian elements over Ω emerges if we consider
the L2-norm. For the mesh size h1 method A provides numerical solutions that
are smoother than method B (see Figure 4.2), where spurious oscillations appear in
the neighborhood of the boundary layer that arise because of the discontinuity of ε.
However, we observe that the L∞ error of method B is smaller than in the case of
method A, since for this method L∞ errors arise when the very steep boundary layer
across the discontinuity of ε is approximated with a jump. Finally, the analysis of the
H1-norm of the errors suggests that method B seems to be more prone to approximate
the gradients of the solution in the boundary layer, although this benefit is effective
when the computational mesh becomes fine enough to reasonably approximate the
boundary layer.

5. Concluding remarks. In conclusion, the discretization scheme and the as-
sociated iterative method that we have proposed here turn out to be appealing for
advection-dominated problems and in the case of discontinuous coefficients. Indeed,
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in these cases the method is competitive from the point of view of both computational
effort and accuracy. A key role for the good properties when treating such problems
is played by the average weights and the upwind treatment of the advection term in
the interior penalty strategy applied for the coupling of the subdomains.
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