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ABSTRACT
Background: Analysis of exhaled breath, especially of
volatile organic compounds (VOCs), is of increasing
interest in the diagnosis of lung cancer. Compared with
other methods of breath analysis, ion mobility spectro-
metry (IMS) offers a tenfold higher detection rate of
VOCs. By coupling the ion mobility spectrometer with a
multicapillary column as a pre-separation unit, IMS offers
the advantage of an immediate twofold separation of
VOCs with visualisation in a three-dimensional chroma-
togram. The total analysis time is about 500 s compared
with gas chromatography/mass spectrometry (GC/MS) of
about 1 h. It therefore seemed reasonable to test IMS in
breath analysis.
Methods: In a pilot study, 32 patients with lung cancer
were subjected to a breath analysis by IMS. Their IMS
chromatograms were compared with those of 54 healthy
controls. An IMS that was built for special clinical
application was used to identify characteristic peaks of
VOCs which might be relevant for the diagnosis of lung
cancer in exhaled air of 10 ml volume.
Results: By a combination of 23 peak regions within the
IMS chromatogram, patients with lung cancer, including a
patient with carcinoma in situ, were classified and
differentiated from healthy persons with an error rate of zero.
Conclusion: Breath analysis by IMS can detect a
discriminating combination of VOCs in patients with lung
cancer. By pattern recognition without the need for
chemical analysis of the underlying VOCs, IMS has the
potential to facilitate lung cancer diagnosis.

It would be desirable to be able to diagnose
pulmonary disorders and assess their activity by
analysis of breath. A number of different methods
such as exhaled breath condensate,1 the electric
nose2–4 and the measurement of volatile organic
compounds (VOCs) by gas chromatography/mass
spectrometry (GC/MS) have been studied,5–9 espe-
cially in chronic obstructive pulmonary disease
(COPD), asthma, lung cancer and interstitial lung
disease, but the ideal method has not yet been found.

The success of any method depends on the
recognition of discriminating substances that can
be used as biomarkers. This, however, needs an
overview of the composition of VOCs in the
exhaled breath, which then permits the selection
of discriminating compounds. Horvath et al,1 who
summarised the general requirements for breath
analysis in the recommendations of the American
Thoracic Society/European Respiratory Society
(ATS/ERS), concluded that the ideal test should
produce a ‘‘breathogram’’. This breathogram can
be obtained by ion mobility spectrometry (IMS).10–16

In contrast to other analytical methods, IMS
enables the detection and separation of all VOCs
in exhaled breath and their visualisation in a
three-dimensional so-called IMS chromatogram.
The diagnostic approach to breath analysis with
IMS is based on the measurement of a disease-
specific combination of VOC peaks, allowing
diagnosis by pattern recognition without the
need for chemical identification of the underlying
VOCs. These methodological advantages raise the
question of whether IMS is superior to other
methods of breath analysis such as GC/MS
analysis of VOCs5–9 or the electronic nose.2–4

IMS is based on the ionisation of gaseous
metabolites which are separated by short impulses
(about 10–100 ms) in drift tubes with lengths of
only a few centimetres at ambient pressure (fig 1).
The very small electric current (nA to pA)
generated at a Faraday plate forms the spectrum
of the running time of the ions. The combination
of IMS with gas chromatographic columns guar-
antees the pre-separation of gaseous metabolites
before entering the drift tube.

Unfortunately, IMS does not identify unknown
compounds in a gas. However, the main advantages
of IMS are its ability to detect very low concentra-
tions of compounds (ng/l to pg/l, ppmv to pptv

range) without any pre-concentration and the short
time for analysis: a spectrum takes less than 50 ms,
a complete breath analysis less than 500 s.

Because of the relative simplicity of the techni-
que, and encouraged by our first results in the
detection of airway infections17 and sarcoidosis,18 19

IMS was used in this feasibility and pilot study to
evaluate its potential for the non-invasive diagnosis
of lung cancer.

METHODS
From 1 July 2004 to 30 November 2004, breath
analysis with IMS was performed in healthy employ-
ees of the Institute for Analytical Sciences (ISAS) and
in voluntary patients of the Hemer Lung Hospital
with a cytological or histological diagnosis of lung
cancer. In this pilot study, which was designed to
generate preliminary data and a training set of VOC
profiles, no distinctions regarding, for example,
smoking history or COPD were made. Furthermore,
patients with lung cancer were not differentiated by
stage or histological type of tumour.

Ion mobility spectrometer
For breath analysis, an ion mobility spectrometer
developed by the ISAS was used (fig 2). In this
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spectrometer a 550 MBq 63Ni b-radiation source was applied for
the ionisation of the carrier gas (air). It was connected to a polar
multicapillary column (MCC, type OV-5, Sibertech Ltd,
Novosibirsk, Russia) used as the pre-separation unit. In this
MCC the analytes of exhaled breath were sent through 1000
parallel capillaries, each with an inner diameter of 40 mm and a
film thickness of 200 nm. The total diameter of the separation
column was 3 mm. The relevant MCC parameters are listed in
table 1.

Sampling gas collection
The study subjects were asked to exhale through a mouthpiece
connected to a Teflon bulb and the exhaled breath was passed
through an unheated sampling loop. A miniaturised suction
pump (type G6/02-850163, ASF Thomas, Wülfrath, suction rate
350 ml/min) was connected to the outlet of the loop to obtain a
homogeneous breath sample flow. At the end of exhalation, thus
providing a mainly alveolar sample, an electric six-way valve was
switched and 10 ml of gas in the sample loop was directed to the
MCC for chromatographic separation of breath compounds.
After passing through the MCC, the pre-separated analytes
entered the ionisation chamber of the IMS (fig 3). In this chamber
the carrier gas molecules were ionised by the 63Ni b-radiation
source and fast ion-molecule reactions, forming ionised molecules
of the analytes by different types of collisions including charge

transfer reactions. A further separation of the ions formed took
place in the electrical field within the drift tube.

The ionised analytes were detected on a Faraday plate at the
end of the drift region. For the determination of blind values (ie,
environmental VOCs), samples of room air were analysed
before analysing exhaled breath to check for interfering
measurement characteristics. Further data interpretation was
based on the difference between the chromatograms. Figure 4
shows a typical IMS chromatogram and a single spectrum of
exhaled breath from a healthy person.

Analysis of IMS chromatograms
The raw IMS data were first treated by a baseline correction so
that intensity values varied around zero in areas of pure noise.
The time axes were then transformed to adjust for different
instrument and environmental factors such as length of the
drift tube or ambient pressure, after which the single measure-
ments were subjected to a peak localisation procedure.

The set of peak positions found in the whole sample of
measurements was then analysed together in a cluster
procedure. The resulting clusters were the basis for a definition
of typical peak areas (fig 5) of the analysed data set. New peak
variables derived from these peak areas were defined as the
mean intensity in the areas, which was calculated by going back
to the original single measurements (see detailed description by
Bader et al23). In this way, different numbers of variables were

Figure 1 Working principle of an ion
mobility spectrometer. Left: ionisation
and reaction region to form ions of the
analytes. Right: drift chamber to separate
the ions formed. The gas inlet is the
entrance point of the carrier gas air with
all molecules including the metabolites;
the drift gas is a pure gas flowing towards
the ions drifting to avoid entrance of non-
ion at the ion shutter; the gas outlet is the
outlet of the carrier and the drift gas; the
aperture grid protects the Faraday plate;
the drift rings stabilise the electric field
within the drift region.

Figure 2 Ion mobility spectrometer at the Hemer Lung Clinic including
the mouthpiece, the multicapillary column/ion mobility spectrometer
(MCC/IMS), the temperature control unit for the MCC and the bottles
with synthetic air.

Table 1 Characteristics of ion mobility spectrometer
(IMS)

Parameter 63Ni-IMS

Ionisation source 63Ni (510 MBq)

Electric field strength 326 V/cm

Length of drift region 12 cm

Diameter of drift region 15 mm

Length of ionisation chamber 15 mm

Shutter opening time 10 ms – 1 ms

Shutter impulse time 20, 100 ms

Drift gas Synthetic air (20.5% O2 (4.5),
79.5% N2 (5.0))

Drift gas flow 100 … 300 ml/min

Temperature 24uC (room temperature)

Pressure 101 kPa (ambient pressure)

Multicapillary column OV-5, polar

Column temperature 30uC

Lung cancer

Thorax 2009;64:744–748. doi:10.1136/thx.2008.099465 745

 on M
arch 28, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thx.2008.099465 on 21 January 2009. D

ow
nloaded from

 

http://thorax.bmj.com/


tested for their ability to form a differentiating cluster step by
step. For each set of variables a possible validation set was built.
Smoking history, tumour cell type and stage of cancer were not
influential in the development of the model.

Statistical methods
The data were processed by different statistical methods. All
steps of the analysis were performed with the software package
R.20 First, the LOWESS method was used to apply a baseline
correction to the data as it offers the desired amount of
robustness. For peak localisation, a merging regions algorithm
was used to distinguish between different peak areas.21 For the
clustering of peak positions, the results of Ward’s method were
used as starting values for the k means method to obtain a
stable but well-adjusted clustering.

Before the final application of linear discriminant analysis for
separation of the two groups of patients with lung cancer and
controls, a multiple t test procedure was used to identify
differentially expressed variables and thus reduce the complex-
ity of the discrimination task.22 23

To evaluate the classification results, the error rate was
estimated by ‘‘leave one out’’ cross-validation. A single

observation from the original sample was used as the validation
data, while the remaining observations served as training data
for development of the model. The ‘‘leave one out’’ procedure
incorporated multiple testing as well as discriminant analysis.
The resulting set of variables included in the model remained
stable while the coefficients of the discriminant rule were, of
course, slightly changed. The established rule was then used to
check the correctness of the resulting classification. The number
of wrong assignments gives a reliable estimation of the actual
error rate.23 By executing a stepwise selection based on the
standardised discriminant coefficients and the estimated error
rate, the model was further optimised.

RESULTS
A total of 32 patients (24 men, 8 women) with histologically
proven lung cancer were studied before the initiation of
treatment. Their mean (SD) age was 65.1 (9.6) years, body
weight 74.9 (13.7) kg and height 169.4 (8.3) cm. Seven patients
had small cell lung carcinoma (SCLC), 24 patients had non-
small cell lung carcinoma (NSCLC) including 1 patient with
carcinoma in situ, 1 patient had a mixed tumour with NSCLC
and SCLC and 5 patients had undifferentiated carcinoma. The
tumour stage ranged from Tis to T4N3M1 (stage 0: 1 patient,
stage 2: 3 patients, stage 3: 9 patients, stage 4: 17 patients).
Seventeen patients were ex-smokers, 6 patients had never
smoked and 7 patients were current smokers. Fifty-four healthy
persons without cancer (39 men and 15 women; 12 smokers and
42 non-smokers) served as controls. Their mean (SD) age was 46
(12) years, body weight 81 (16) kg, height 181 (9) cm.

By applying the peak pattern analysis as described above, a set
of 23 variables was differentially expressed between the classes
to a multiple test level of 0.001%. Based on these variables, a
linear discriminant analysis was conducted. By applying the
‘‘leave one out’’ method to the 32 patients and 54 healthy
controls, all patients with lung cancer (including the patient
with carcinoma in situ) and all healthy persons were classified
correctly (fig 6). This yielded negative and positive predictive
values of 100%. The error rate estimated by the ‘‘leave one out’’
method was zero. The separation of both groups was

Figure 4 Typical ion mobility spectrometry (IMS) chromatogram as
heat map. Inset: single spectrum on the retention time of 3 s (dashed line
in the heat map). The signals related to acetone (blue quadrangle), the
reactant ion peak (RIP) and ethanol (green quadrangle), humidity and
ammonia (black quadrangle) are marked on the heat map and the
corresponding single spectrum; the individual mobilities are also shown.

Figure 5 Differential expressed variable areas (typical peak areas).

Figure 3 Sampling starting with carrier gas inlet (1, from the
mouthpiece) using a six-port valve (2) to introduce 10 ml of breath into
the multicapillary column (MCC, 3) for pre-separation, followed by
entrance of pre-separated breath compounds into the ionisation region of
the ion mobility spectrometer (IMS, 4) and outlet (5).
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independent of the smoking status (fig 7). Non-smokers and
smokers were present in both the lung cancer and control
groups. No clustering occurred on the discriminant value scale
for smokers or non-smokers, either in the left part related to
lung cancer or in the right part related to the control group.

DISCUSSION
Our data show that IMS can produce a discriminating
combination of VOC peaks in patients with lung cancer. The
expression of a constellation of 23 VOC peak areas allowed the
classification of patients into those with a tumour and healthy
subjects with an accuracy of 100%. The error rate estimated by
the ‘‘leave one out’’ method was 0%.

The ‘‘leave one out’’ method was used for cross-validation; a
single observation from the original samples was used as the
validation data and the remaining observations served as the
training data. In addition, the number of VOC peak areas was
reduced in a stepwise selection to reduce model complexity and
optimise the error rate. By considering 23 VOC peak areas and
applying the ‘‘leave one out’’ method to 32 patients and 54
controls, all were classified correctly. This means that, in all
cases, the ‘‘leave one out’’ patient was classified correctly when
the model was built on the base of 23 VOC peak areas, while
the prediction error was .0% when more VOC peak areas were
included in the model. The next step will be to validate the
model developed by the 23 VOC peaks and trained with data
from 32 patients and 54 controls in larger populations using
blinded data.

These results show that breath analysis by IMS has the
potential to facilitate lung cancer recognition with a high degree
of accuracy, as was reported for GC/MS analysis,5 8 electric
nose,2–4 coloric array systems24 or even dogs specially trained for
the detection of patients with lung cancer,25 reaching sensitiv-
ities and specificities of 71.4–99.0%.

The correct classification even of the patient with a
carcinoma in situ by IMS may indicate that the VOC
composition is not influenced by the tumour volume and stage
itself, but that it probably represents an expression of metabolic
processes influenced by the tumour. This assumption is
supported by data from Deng et al26 who found increased
concentrations of hexanal and heptanal in exhaled breath as
well as in blood from patients with lung cancer. To confirm
this, further studies are needed in patients with carcinoma in
situ and in patients before and after complete tumour resection.

First examinations by Gordon et al of the value of VOCs in
the detection of lung cancer showed nearly 300 different VOC

peaks in GC/MS profiles of exhaled breath from patients with
lung cancer.5 The capture of VOCs by sorbent traps followed by
solid-phase micro-extraction or thermal desorption and GC/MS
determination, as described by Phillips et al and other
investigators,5–9 and the electric nose2–4 have remained the
methods used in breath analysis. These methods use the cluster
formation of VOCs for the diagnosis of lung cancer.3 5 6 8 9

However, the determination of special discriminating clusters
is limited using the electric nose or GC/MS analysis. No method
of VOC analysis has yet been able to determine a consistent
tumour-specific VOC pattern.

Furthermore, the comparison of subgroups (smokers vs lung
cancer, COPD vs lung cancer, healthy persons vs COPD) was
based on different VOCs such as acetone, methyl-ethyl-ketone,
n-propanol,5 pentane, 2-methylpentane, 2,4-dimethylpentane,7

different alkanes and methylated alkanes,8 methylpentane and
isoprene9 or alcohols and different disulphides.3 Interestingly,
even after tumour resection, Poli et al found a decrease in VOCs
(isoprene and decane) that had not been tumour-specific in the
primary diagnostic approach.9

In contrast to these methods, the methodological properties
of IMS—which provides a complete breathogram with more
than one million data points and a tenfold lower detection limit
of VOCs—appear superior, especially because the distinct
separation of all VOCs by retention time and mobility (drift
time) and the determination of their concentration creates a
three-dimensional topography of VOCs in exhaled breath. This
unique VOC classification explains the higher probability of
finding a disease-specific and discriminating VOC peak combi-
nation that allows diagnosis by pattern or cluster recognition
without the need for chemical analysis of the underlying VOCs.

The central question of the present study—whether IMS can
detect a specific combination of VOC markers in the exhaled
breath of patients with lung cancer that differentiates them
from healthy persons with a high degree of accuracy—is
answered by the data shown. Previous studies have either
compared patients with lung cancer with healthy persons, or
healthy persons with patients with lung cancer, asthma,
pulmonary arterial hypertension or COPD, as well as smokers
and non-smokers.3 4 8 9 This makes the studies and their results
difficult to compare with our study.

Since the most significant question concerns the existence of
a malignancy, our IMS study was designed only to determine
whether patients with lung cancer have a VOC pattern that
separates them from controls, regardless of concomitant
(especially pulmonary) disorders. Smoking status did not affect
the discrimination of the two groups, as might have been
suspected at first. This result supports the data of Philips et al8

who showed that smoking, histology and TNM classification
had no influence on the discrimination by VOCs.

Figure 6 Result of linear discriminant analysis (6, patient with
carcinoma in situ).

Figure 7 Influence of smoking status on the discriminant values shown
in fig 6. bc, bronchial carcinoma.
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The IMS study has certain limitations. It included and
compared patients with lung cancer with healthy controls but
did not address the further prospective classification of patients
with lung cancer and healthy controls based on the pre-selected
combination of VOCs. This difference in study design may
explain the higher accuracy compared with former studies on
breath analysis.2–5 8 24 25

The patients with lung cancer were not matched to patients
without lung cancer, and we did not include a further control
group with other lung disease. The discriminating cluster of
VOCs is therefore not necessarily a tumour-specific one.
Furthermore, in most of the patients the tumour was at an
advanced stage. Further studies are needed to discriminate
between different kinds of lung disease and different stages of
lung cancer. These studies need blinding with respect to
diagnosis to minimise bias. Proper selection of the control
group and the classification of subgroups (smoking status,
COPD, medication) are also necessary.

However, our pilot study was primarily focused on the
possibility of using IMS as an analytical method and its
advantages. We intended to show that IMS, as a new method
in breath analysis, can produce discriminating patterns of
VOCs. These positive results could not be expected in advance.

The IMS pattern does not yield direct information about the
underlying analytes. However, the original intention in IMS
diagnostics is the separation of patient groups by discriminating
pattern recognition. This is consistent with Gordon et al5 who
regarded knowledge about chemical identity as unnecessary for
peak classification. However, in a second step that is compar-
able to other methods of breath analysis, determination of the
VOCs is possible by additional mass spectrometric analysis. The
stepwise relation of analysed VOCs to a defined peak position
in a chromatogram opens the way to a three-dimensional ‘‘IMS
cartography of exhaled breath’’. After this process has been
finished, the peak position allows correlation with the original
VOC. If it is possible to find disease-specific and diagnostic
analytes or combinations of analytes, exhaled breath might
exclusively be tested for these VOCs. In addition, the
identification of these VOCs may give further information
about the tumour biology and underlying metabolic processes.

In conclusion, breath analysis by IMS in patients with lung
cancer and healthy controls provided a classification of both
groups with an accuracy of 100% using a combination of 23
discriminating peak regions. The immediate twofold separation
of VOCs that allows their visualisation in a three-dimensional
chromatogram represents an important advantage of IMS over
other methods. As the IMS procedure is based on pattern
recognition, mass spectrometric analysis is not required. Data
acquisition times of only 15 min offer good pre-conditions for
the clinical use of IMS in breath analysis, especially if future
computerised peak distribution analysis facilitates and accel-
erates further evaluation. For a reliable diagnosis and separation
of lung cancer from other disorders, further measurements and
an evaluation of the discriminating pattern in a larger group of
patients are necessary.
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15. Ruzsanyi V. Analyse flüchtiger Metaboliten in der Ausatemluft mittels
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