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ABSTRACT
The authors developed a computerized algorithm that
estimates ‘who transmits to whom’dthat is, the likeliest
transmission paths during an outbreak of person-to-
person transmitted illness. This algorithm uses basic
information about natural history of the disease,
population structure, and chronology of observed
symptoms. To assess the algorithm efficacy, the authors
built a simulator with parameters describing the disease
and the population to simulate random outbreaks of
influenza. The algorithm’s performance was compared
with three reference methods that simulated how human
operators would handle such situations. For any size of
outbreak, the algorithm outperformed the reference
methods and provided a higher proportion of cases for
whom the source subject who transmitted infection was
identified. The authors also illustrated applicability of the
algorithm for describing outbreaks of influenza in nursing
homes. The use of this algorithm to draw transmission
maps in investigations of outbreaks with person-to-
person transmitted agents could potentially guide public
health measures regarding the control of such outbreaks.

INTRODUCTION
A timely investigation of an outbreak is critical in
order to implement the most appropriate control
measures. The investigation is based on a descrip-
tive and analytical phase, which includes describing
cases by time, place, and characteristics of infected
subjects. Traditionally, the time course of an
outbreak is depicted by drawing a histogram of the
number of cases by their dates of onset: the
epidemic curve. The epidemic curve provides
information on the transmission pattern of the
outbreak and helps identify the incubation period.1

In outbreaks of person-to-person transmitted
agents, a more detailed analysis can be accom-
plished by drawing a chart where each case is
represented in time, together with main related
events, including contacts with other cases. This
representation is sometimes called a transmission
map2 and can be particularly useful when the
outbreak occurs in closed environments. A trans-
mission map will reveal when interhuman trans-
mission might have been possible and eventually
will help identify individuals still contagious during
the time of the investigation.
Computerized algorithms have been developed in

the hospital setting to help epidemiologists or
infection control specialists in detecting and inves-
tigating outbreaks, and included expert systems to
detect and report nosocomial infections3 4 and

predictive models to identify patients at high risk
for colonization or infection with an antibiotic-
resistant pathogen.5 In the community setting,
a huge amount has been published regarding the use
of computerised algorithm to detect and track the
spread of infectious diseases.6e11

However, we are not aware of a tool that helps
identify ‘who transmits to whom’ during an
outbreak and to draw the likeliest pathway of
transmission between individuals. This informa-
tion may have important implications for
outbreaks monitoring and control.

MATERIAL AND METHODS
Our work aimed at identifying transmissions of an
infectious agent during an outbreak and building
the chronology of these transmissions. We devel-
oped a computerized algorithm (hereafter named
the WTW algorithm) that estimates the likeliest
transmission path among subjects and the dates of
transmission. The WTW algorithm uses basic
information about natural history of the disease,
and a dataset describing the population structure
and the chronology of observed symptoms.

Parameterization of the WTW algorithm
The WTW algorithm is presented in discrete time
and the time step is one day.
First, we define incubation and infectivity func-

tions for the disease (figure 1). The incubation
period is described by a function, incub (i, t), giving
the probability for subject i to have been infected t
days before the onset of his/her symptoms. Infec-
tivity is described by a function, infec (i, t), giving
the daily probability (a hazard function) that the
agent would be transmitted from an infectious (i)
to a susceptible subject according to the time since
infection (t).
We describe contacts between infected subjects

by filling matrices Ci;jðdÞ.
Ci;jðdÞ ¼ fci;jðdÞ;  i ˛ fSourcesg;
 j ˛ fSubjectsg;  d ˛ Dg

With:
< {Subjects}: the set of subjects known to have

been infected during the follow-up period
< {Sources}: the set including {Subjects} and

a dummy element representing infections coming
from subjects not listed in the studied population

< D: the set of dates describing the follow-up
period.
Entries ci;jðdÞ of these matrices describe the

intensity of contact between subjects i and j during
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date d. Their values weight intensity, frequency, and length of
contacts between subjects, during which transmission of the
infectious agent can occur. These values vary between 0 (no
contact, transmission between subjects excluded) and 1
(maximum intensity contact, optimal condition for a trans-
mission). These values may be collected for each individual
distinctly (eg, contact between subjects i and j occurred in
a single occasion at a given date), or for groups of individuals (eg,
physicians of a ward have an average level of contact with every
patient of the same ward during a given period of time).

Then, we define a set T of possible transmissions ti,j,d from
subject i to subject j at date d.

T ¼ fti;j;d; i ˛fSourcesg; j ˛fSubjectsg; d ˛ Dg

A probability of occurrence a priori p0ði; j; dÞ is assigned to
each transmission ti,j,d:

p0ði; j; dÞ ¼ infecði; d-diÞ$ci;jðdÞ$incub
�
j; dsj � d

�

+
d
+
i
infecði; d-diÞ$ci;jðdÞ$incub

�
j; dsj � d

�

With:
< di: the date of infection of subject i
< dsj: the date of symptoms onset of subject j
< infecði; d� diÞ; ci;jðdÞ; incubðj; dsj � dÞ, as described previously

infecði; d� diÞ is set to its maximum value when i is the
dummy element representing subjects not listed in the
observed case series).
Assuming that k infected subjects have been observed, we

developed an algorithm to find the element X* with coordinates
ðo1;X�; o2;X�.; ok;X�; d1;X�; d2;X�;.; dk;X�Þ, which minimises the
function f:

f : X ¼ ðo1; o2;.; ok; d1; d2;.; dkÞ/<þ

�log
� Q

s˛f1; 2; .; kg
p0ðos; s; dÞ

�

where os is the subject who transmitted infections to subject s at
date d.

The function f is applied to a finite set of coordinates, but the
number of possibilities is of order k ^ (k3maximum duration of
infectivity) and, even for small number of k, a combinatorial
method has to be used. The set of candidate solutions X to the
minimization of f is obtained by a modified branch and bound
algorithm.12 Briefly, the branch and bound algorithm is a general
method for finding optimal solutions of various optimization
problems (in our case, finding the minimum value of a function
f) with a systematic enumeration of all the candidate solutions.

It requires a splitting procedure (‘branching’) that, given a set of
candidate solutions, returns two or more smaller subsets whose
union covers the set, and a second procedure (‘bounding’) that
computes upper and lower bounds for the minimum value of f
within each subset. The key idea of this algorithm is that if the
lower bound for a subset A of candidate solutions is greater than
the upper bound for some other set B, then A may be safely
discarded from the search. The recursion stops when the current
candidate subset is reduced to a single element.
In our study, the result produced can be either a single

solution X* or a subset of solutions containing a chosen number
of the best solutions. Solutions estimate not only ‘who trans-
mits to whom’ but also the likeliest date of infection for each
subject.

Outbreak simulation
To assess the efficacy of the WTW algorithm we built a simu-
lator which used parameters describing the disease and the
population to randomly simulate outbreaks.
We used incubation and infectivity functions of influenza13:

incubation and infectivity were defined by g functions (median
2.2 and 3.0 days, SD 0.6 and 1.7 days, respectively).
We simulated 600 scenarios, in a population of 40 subjects

split into two to five groups, initially susceptible for the disease
and followed up for 50 days. For each pair of groups, a random
uniform value between 0 and 1 was drawn to describe average
level of contacts within or between groups. For each pair of
individuals, a random uniform value between 0 and 1 was drawn
to introduce heterogeneity in contacts at an individual level.
Entries of the Ci;jðdÞ matrices were set as the product of these
two values. We introduced temporal variations (6 5%, approx-
imately) of these entries between each time step.
Once the population was generated, the propagation of the

infectious agent was simulated assuming that all subjects were
susceptible. An index subject (defined as the first infected subject
in the studied population) was randomly selected then became
ill and infectious according to the defined incubation and
infectivity functions. At each date d, a probability ptransði; j; dÞ of
transmission between each infectious subject i and each
susceptible subject j was calculated.

ptransði; j; dÞ ¼ infecði; d-diÞci;jðdÞ

A transmission event was simulated if a random value drawn
from a continuous uniform distribution was lower than the
calculated probability. Thus, the same initial set of parameters
to describe the population could generate several different
outbreaks according to the random values generated during the

Figure 1 Incubation period and daily
infectivity. (A) Incubation period (time
from infection to onset of symptoms)
distribution. (B) Daily infectivity
following infection.
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simulation process. The simulation stopped when no infectious
subject remained.

Evaluation of the WTW algorithm
We defined three reference methods (see figure 2):
1. The ‘naive’ method (M1) sorted subjects from their dates of

onset of symptoms, and assigned a sequence of transmissions
identical to the sequence of cases: each subject was
supposedly infected by the previous one. Dates of infection
were chosen equal to the mean of two consecutive dates of
onset of symptoms. Note that this method failed to account
for incubation time, varying infectivity, and heterogeneity of
contacts.

2. The second method (M2) integrated as additional constraint
the fact that subject i cannot transmit infection before
a given amount of time corresponding to the latent period.
For the sake of simplicity in our example we assumed that
the latent period was similar to the incubation time, so that
the subject i could not transmit the infectious agent before
onset of his/her symptoms. The subject i at the origin of
infection was, thus, among those already symptomatic when
j was infected, the most lately infected. Note that this
method still failed to account for varying infectivity and
heterogeneity of contacts.

3. The third method (M3) took into account the period between
infection and the maximum infectivity of subject in addition
to the previous method. After assessing the most probable
date of infection according to subject j’s onset of symptoms,
subject i whose infectivity was the highest on this date
(according to the time after infection) was retained as source
of transmission. Note that this method did not account for
heterogeneity of contacts.
The performances of the WTW algorithm were compared

with the three reference methods. The WTWalgorithm was run
assuming that contacts by groups and at an individual level were
known. The first outcome measure was, for each scenario, the
proportion of infected subjects for whom the source subject (the
subject who transmitted infection) was properly estimated. A

second outcome measure was the mean absolute difference (in
days) between simulated and predicted dates of infections.

Application to real data
The WTW algorithm was applied to real data collected in
a cluster-randomized controlled trial evaluating the effectiveness
of staff influenza vaccination on mortality of nursing homes
residents.14 In this study, a detailed investigation of each
outbreak of influenza-like illness (ILI) was conducted. The
presence of type A influenza virus infections was confirmed by
rapid diagnostic tests (Quick View Influenza Test, Quidel Corp,
San Diego, CA, USA). In order to use the WTW algorithm,
contact matrices were parameterized according to characteristics
of groups (geographic area of the units and places of dining
rooms for residents, main places of work for staff teams) and
individual characteristics of residents (mobility dysfunctions,
dependency, and importance of daily needs for help from staff,
personal habits, and references of the other residents often met,
frequency of visits from family and dates of absence) and staff
(personal schedule, dates of awayness). The definitions of incu-
bation and infectivity functions used were those previously
described (figure 1).
Entries of the contact matrices regarding the dummy element

for subjects not listed in the observed cases series were entered
differently for members of the staff, who were supposed to
spend half of their time outside the nursing home and to meet
infectious individuals, and for residents, who had limited
contacts with other people outside the nursing home.

RESULTS
Simulated data
The proportion of infected subjects for whom the source subject
was identified was greater with the WTW algorithm than with
the other three reference methods (table 1). The proportion
decreased with the size of the outbreak, irrespectively of the
method used (figure 3). For outbreaks of size 2 to 10, 80% of
source subjects were correctly identified with method 1, 72%
with method 2, 85% with method 3, and 88% with the WTW

Figure 2 Illustration of reference
methods used to estimate source
subjects and dates of infections. The
mean incubation period is 1.5 days. The
maximum infectivity is obtained 3 days
from infection. (A) Data used by each
method consists in dates of onset and
end of symptoms for any subject
(rectangles). (B) The ‘naive’ method M1
assigned a sequence of transmissions
identical to the sequence of cases.
Dates of infection are chosen equal to
the mean of two consecutive dates. (C)
Method 2 integrates as additional
constraint the fact that subject i cannot
transmit infection during the latent
period (equal to the incubation time in
this example, 1.5 days). (D) Method 3
takes into account the period between
infection and the maximum infectivity of
subject (3 days from infection) in
addition to the previous method.
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algorithm. For larger outbreaks with 11 to 40 cases, the respec-
tive values were 27%, 34%, 38%, 43%. The mean absolute
differences between simulated and predicted dates of infections
were lower in the WTW algorithm and with method 3 than
with other methods.

When the 10 likeliest sequences of transmissions were selected
using the WTW algorithm, the source subject was properly
estimated at least once among this set of 10 solutions in 66% of
simulated infections on average and the source subject and dates
of infection were simultaneously adequately identified in 40% of
simulated infections.

Application to real data
The transmission maps of two out of the four outbreaks
investigated during the trial of influenza vaccination in nursing
home staff are shown in figure 4. These ILI clusters were
reported in two nursing homes between February 8 and March
13, 2007, in the control arm. In nursing home A, the index
patient was a staff member (AS5). He/she was presumably the
source of spreading of ILI among residents in units 3 (eg, resident
R682eprobability 0.996) and 2 (eg, resident 703eprobability
0.962) and other staff members (eg, member AS4eprobability
0.987), whereas the source of spreading in unit 1, was presum-
ably the infection of resident R749 by resident R703 (probability
0.454). Some other transmissions were more difficult to identify:
among the 10 likeliest solutions retrieved by the WTW algo-
rithm, infection of resident R705 by staff member AS3 (proba-
bility 0.198) was retained five times (including in the likeliest
solution), while infection by R682, R703, or R662 (probabilities
0.168, 0.124, 0.164, respectively) was retained in 3, 1, and 1
solution(s), respectively. According to the likeliest estimate, the
probabilities for each transmission retained in the transmission
map of nursing home A varied from 0.102 to 0.759, with a mean
value of 0.405.

In nursing home B, the index patient was a staff member but
was very unlikely to have transmitted infections to another
observed case (probabilities that AS2 was contaminated by AS1
or by someone not listed in the observed case series: 14.0% and
86.0%, respectively).

DISCUSSION
The WTW algorithm may be a helpful tool for investigating
outbreaks. Its relative performances may however depend on the
natural history of the disease under study. Although we chose to
simulate influenza outbreaks, with a latent period and an incu-
bation time that almost completely overlapped, we believe that

Table 1 Performances of the WTW algorithm and of other heuristically developed methods (see text
and figure 2 for explanation) to retrieve the source subject and the date of infection of cases during
simulated outbreaks

Simulations Size* 2e10 subjects 11e40 subjects Total
4 (2e6) 24 (19e31) 17 (4e27)

Number 200 400 600

Method M1 Sourcey 0.80 (0.67e1.00) 0.27 (0.18e0.35) 0.47 (0.22e0.67)

Datesz 1.19 (0.62e1.67) 2.10 (1.97e2.25) 1.77 (1.50e2.16)

Allx 0.52 (0.00e1.00) 0.00 (0.00e0.00) 0.19 (0.00e0.00)

Method M2 Sourcey 0.72 (0.50e1.00) 0.34 (0.26e0.40) 0.48 (0.29e0.60)

Datesz 0.62 (0.42e1.00) 0.66 (0.57e0.74) 0.65 (0.50e0.78)

Allx 0.38 (0.00e1.00) 0.00 (0.00e0.00) 0.14 (0.00e0.00)

Method M3 Sourcey 0.85 (0.67e1.00) 0.38 (0.29e0.45) 0.55 (0.33e0.75)

Datesz 0.35 (0.00e0.50) 0.39 (0.32e0.47) 0.38 (0.29e5.00)

Allx 0.58 (0.00e1.00) 0.00 (0.00e0.00) 0.22 (0.00e0.00)

WTW algorithm (best solution) Sourcey 0.88 (0.75e1.00) 0.44 (0.34e0.51) 0.60 (0.38e0.82)

Datesz 0.37 (0.00e0.52) 0.44 (0.37e0.51) 0.41 (0.32e0.50)

Allx 0.63 (0.00e1.00) 0.00 (0.00e0.00) 0.23 (0.00e0.00)

WTW algorithm (10 solutions) Sourcey 0.87 (0.75e1.00) 0.44 (0.34e0.51) 0.60 (0.38e0.83)

Datesz 0.40 (0.24e0.54) 0.44 (0.37e0.51) 0.43 (0.33e0.52)

All (any sol.){ 0.93 (0.97e1.00) 0.48 (0.37e0.56) 0.64 (0.42e1.00)

All (same sol.)** 0.73 (0.00e1.00) 0.09 (0.00e0.00) 0.27 (0.00e1.00)

*Number of infected subjects for each simulation: mean (IQR).
yProportion of infected subjects for whom the source subject was identified: mean (IQR).
zMean absolute difference between simulated and predicted dates of infections (in days): mean (IQR).
xProportion of simulations for which all the source subjects were identified: mean (IQR).
{Proportion of simulations for which all the source subjects were identified at least once among any of the 10 best solutions proposed
by the WTW algorithm: mean (IQR).
**Proportion of simulations for which all the source subjects were simultaneously identified at least once among the 10 best solutions
proposed by the WTW algorithm: mean (IQR).

Figure 3 Mean proportion of infected subjects for whom the source
subject was properly estimated, according to the number of infected
subjects in the simulations (by range of five subjects).
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the WTW algorithm should be even more powerful in investi-
gating outbreaks of diseases with a latent period shorter than the
incubation time (eg, measles, chickenpox.). In this case, it is
likely that a human operator would have a greater difficulty for
estimating a transmission map from data on observed symptoms
only. Moreover, the WTW algorithm includes parameters
describing encounters between subjects, which are major deter-
minants in the sequence of transmissions in diseases with long
periods of incubation or infectivity (eg, AIDS, viral hepatitis).

A critical question is how the algorithm would deal with
missing data and how robust it is to the degree of ‘missingness’
and the type of missing data. When precise information is
lacking on contacts, the algorithm can be easily adapted by
introducing uninformative constant values as entries in the
contact matrix. In a worst-case scenario in which no data on
contacts would be available for any subject, the results given by
the WTWalgorithm would be close to those given by method 3.
When unobserved cases are potential sources of transmissions,
the algorithm will attribute these potential sources to the
‘dummy element’ that represents subjects not listed in the
studied population.

The WTW algorithm can provide other estimates of the
natural history of the disease under study. Once a solution has
been obtained in terms of transmission path, calculation of the
serial intervaldthat is, the average time between onsets of
symptoms in index case and secondary cases, is straightforward.
By conducting a sensitivity analysis on incubation time and
infectivity, one could explore how departures from baseline
hypotheses regarding these parameters modify the likeliest
transmission path.

Finally, the WTW algorithm provides information on the
dynamics of an outbreak, and can help identify sources of

infection in order to take appropriate preventive measures. The
algorithm can be generalized to all contexts in which the three
componentseenatural history parameters, contacts, and
observed dates of eventsdcan be provided. In the field of human
medicine, users of the algorithm should be hygienists, and
epidemiologists devoted to outbreak investigations. It can be
used even with scarce data at the beginning of an outbreak to
give approximate estimations, whose accuracy will improve
throughout the outbreak, as new data become available. This
‘real-time’ use may contribute to identify spreaders or groups at
higher risk of transmission (according to previous infections). If
interventions are implemented to mitigate spreading (eg, isola-
tion of infected subjects), they can easily be introduced in the
algorithm (by varying matrix entries for these subjects) to help
real-time identification of new sources of infection. We believe
that our algorithm could help monitor outbreaks and therefore
complete previously existing computerized surveillance tools or
expert systems devoted to infections tracking.
The WTW algorithm could help guide public health decisions

during an outbreak, whether it occurs in a closed setting or in
the community. This algorithm uses data and gives estimations
individually for a limited number of subjects, and would not be
applicable in a wide community epidemic context. However, it
would be all the more useful as the outbreak occurs in a closed
population, where contacts with several potential sources of
infection could occur (and where the pathway of transmission is
difficult to derive manually), whereas, in the community,
contacts between a source and a susceptible subject are often
resumed to a binary indicator (yes/no) and the pathway of
transmission straightforward.
We encourage using such an algorithm to draw transmission

maps in investigation of outbreaks of person-to-person

Figure 4 Illustrations of the WTW algorithm: transmission maps and estimated probability for each transmission of influenza between cases during
outbreaks of influenza in two nursing homes. (A) Transmission map in nursing home A. (B) Estimated probability for each transmission (at dates
displayed in figure 4A) in nursing home A. (C) Transmission map in nursing home B. (D) Estimated probability for each transmission (at dates displayed
in figure 4C) in nursing home B.
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transmitted agents. To help use the WTWalgorithm, we provide
an online appendix with a step-by-step example.
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