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The field of pancreatic stellate cell (PSC)
biology is very young, as the essential in-
vitro tools to study these cells (ie, methods
to isolate and culture PSC) were only
developed as recently as in 1998. Nonethe-
less, there has been an exponential increase
in research output in this field over the past
decade, with numerous research groups
around the world focusing their energies

into elucidating the biology and function of
these cells. It is now well established that
PSC are responsible for producing the
stromal reaction (fibrosis) of two major
diseases of the pancreasdchronic pancrea-
titis and pancreatic cancer. Despite expo-
nentially increasing data, the methods for
studying PSC remain variable. Although
within individual laboratories methods are
consistent, different methodologies used by
various research groups make it difficult to
compare results and conclusions. This
article is not a review article on the func-
tions of PSC. Instead, members of the
Pancreatic Star Alliance (http://www.
pancreaticstaralliance.com) discuss here
and consolidate current knowledge, to
outline and delineate areas of consensus or
otherwise (eg, with regard to methodolog-
ical approaches) and, more importantly, to
identify essential directions for future
research.

PANCREATIC STELLATE CELLS
Hepatic stellate cells (HSC) were first
described by Karl von Kupffer in 1876;
however, similar cells in the pancreas were
first observed in the 1980s.1e3 In 1998,
Apte et al4 and Bachem et al5 isolated and
cultured PSC.4 5 In the normal pancreas,
PSC are located in close proximity to the
basal aspect of pancreatic acinar cells. In
sections immunostained for the marker
desmin (a cytoskeletal protein), quiescent
PSC can be seen as cells with a central cell
body and long cytoplasmic projections

extending along the base of adjacent
acinar cells similar to that of pericytes in
the mammary gland. In health, PSC exist
in their quiescent phenotype and exhibit
the presence of abundant vitamin
A-containing lipid droplets in their cyto-
plasm. It is estimated that quiescent PSC
form 4e7% of all parenchymal cells in the
normal pancreas.4 5 During pancreatic
injury, resident PSC transform into an
activated phenotype that secretes exces-
sive amounts of the extracellular matrix
(ECM) proteins that comprise fibrous
tissue. Recent evidence suggests that
a small proportion of activated PSC may
also be derived from circulating bone
marrow (BM)-derived cells that home to
the pancreas during pancreatic injury.

STELLATE CELL SYSTEM AND THE ORIGIN
OF PSC AND HSC
In the human body, the stellate cell system
consists of retinoid-storing cells in various
organs, including the liver, pancreas, lung,
kidney, intestine, spleen, adrenal gland,
ductus deferens and vocal cords showing
a perivascular location with a distribution
typical of a pericyte.6 7 However, the origin
of stellate cells is still being debated.
Mesenchymal,8e10 endodermal11 12 as well
as neuroectodermal13e15 origins are
suggested. Neuroectoderm and mesoderm
were considered as two potential origins of
HSCdthese cells and PSC share numerous
characteristics as indicated by morpholog-
ical, functional and gene expression
studies. Expression profiling of PSC, HSC
and fibroblasts has demonstrated that PSC
and HSC are distinctly different from
fibroblasts, but share many homologies
including the expression of genes related to
ECM proteins, contractility, retinoid
metabolism (although lower retinoid
content in PSC compared with HSC) and
growth factors.16 In fact, both cells (in
comparison with fibroblasts) have more
similarities than differences.17 It is there-
fore possible that HSC and PSC share
a common origin.
The neuroectoderm proposal for the

origins of HSC was refuted by a study by
Cassiman et al,10 who used a genetic cell
lineage mapping technique with
Rosa26YFPflox mice crossed with mice
expressing Cre under the control of
the neural crest-specific Wnt1 promoter/
enhancer. Definitive novel evidence for
the mesodermal origin of HSC has
recently been presented by Asahina and
colleagues8 18 with the use of the meso-
derm-specific MesP1Cre. A conditional
cell lineage analysis using Wt1CreERT/
Rosa26LacZflox or ROSA26mTmGflox mice,
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Universitätsklinikum Ulm, Ulm, Germany; 5Department of
Internal Meidicine, Universitätsklinikum Marburg,
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revealed Wt1-positive septum transversum
giving rise to mesothelial cells, submeso-
thelial cells, HSC and perivascular mesen-
chymal cells during liver development.8

That study also demonstrated Wt1-posi-
tive mesothelial/submesothelial cells
migrating inward from the liver surface to
generate liver mesenchymal cells including
HSC. Similar lineage tracing techniques
need to be used to determine the exact
origin of PSC.

ROLE OF PSC IN FIBROSIS AND
REGENERATION
The origin and fate of stellate cells in the
context of injury and regeneration are also
a matter of ongoing debate. Regarding
the contribution of BM and epithelial
mesenchymal transition (EMT) of acinar
cells to the PSC population, the data are
limited and restricted to studies in mice. In
2006, it was reported that BM is a source
of myofibroblast-like cells in fibrotic
liver tissue, but the involvement of these
cells in the progression of liver fibrosis
remains questionable as their contribution
to collagen synthesis appears to be
limited.19 20 Recent studies have now also
addressed the role of BM-derived cells in
pancreatic regeneration and fibrosis.21 22

Using a similar experimental approach,
namely the transfer of green fluorescent
protein (GFP)-expressing BM cells to
lethally irradiated small rodents followed by
the induction of chronic pancreatitis with
cerulein or dibutyltin dichloride, it was
consistently shown that BM-derived cells
did home to the pancreas.21 22 In both
studies, the induction of chronic pancrea-
titis was found to be associated with an
increase in the number of GFP-expressing
PSC. Even then, however, no more than
20% of all PSC expressed GFP, indicating
a predominance of resident over BM-derived
stellate cells.22 Together, these experimental
data point to a significant but quantita-
tively limited contribution of BM to the
pool of PSC. Although there are also some
data that EMT of acini may contribute to
the ultimate PSC population (M. Erkan
et al, unpublished data), there is general
agreement that there is not currently
enough evidence to support the latter
hypothesis. As of now, the situation in
humans is not known. The effects of BM-
derived and EMT-derived PSC on the course
of inflammation, repair and fibrosis of the
pancreas remains to be further elucidated.23

Regarding hepatic and pancreatic regen-
eration after injury in rodents, there is
some preliminary evidence for HSC and
PSC acting as stem cells in respective
organs. HSC of rats express markers such

as nestin and CD133, which are known to
be expressed on somatic stem cells.24

However, before HSC can be classified as
stem cells, essential characteristics of stem
cells should be defined and verified in stel-
late cells. Briefly, stem cells are undifferen-
tiated cells with the potential to proliferate
and to undergo developmental processes.
More specifically, stem cells: (1) express
genes required for the inhibition or induc-
tion of cell development; (2) maintain their
characteristics in a special microenviron-
ment (stem cell niche); (3) are normally
quiescent, but can be activated on demand;
(4) proliferate/migrate when activated; and
(5) can differentiate into effector cells
(plasticity) or influence the developmental
fate of other cells. Through these mecha-
nisms stem cells participate in ontogenesis,
regeneration or reproduction of organisms.
Furthermore, stem cells are transplantable
and can survive for a long time within host
tissues. First steps were made to unravel
these characteristics in HSC of rodents.
Genes required for stemness and develop-
mental processes are expressed by HSC,
which preserve their quiescent state within
their niche, the space of Dissé.24 25 More-
over, HSC are quiescent in normal liver, but
become activated especially during stem
cell-based liver repair. The gene expression
of different cell types such as hepatocytes
is inducible in activated HSC by cytokine
treatment or co-culture with parenchymal
cells, demonstrating their plasticity.24 25 In
addition, some evidence exists that HSC
can also contribute to liver repair.26 With
regard to the pancreas, a recent study has
described a subset of mitoxantrone (a type
II topoisomerase inhibitor that disrupts
DNA synthesis and DNA repair in both
healthy cells and cancer cells) resistant
pancreatic cells that exhibit PSC markers,
and can be induced to differentiate into
insulin producing b cells when exposed to
an appropriate culture medium.27 It is
possible that PSC may also express various
markers that are expressed in stem cells.
However, convincing functional data
showing that PSC may in fact transform
into other cell types of the pancreas are
not yet available. Whether PSC contribute
to pancreas regeneration in a manner
similar to the contribution of HSC to liver
regeneration, by supporting the epithelial
cells and by developing into epithelial
cells,26 remains to be analysed. As of now,
the situation in humans remains
completely unknown.

METHODOLOGY FOR ISOLATION OF PSC
Isolation of quiescent PSC from rat
pancreas was first reported by Apte and

colleagues4 from Professor Wilson’s labo-
ratory in 1998. This method took advan-
tage of the known vitamin A content
(stored in cytoplasmic lipid droplets) of
PSC, which allowed the cells to be sepa-
rated by a single density gradient method
using nycodenz. More recently, a similar
method (albeit with some modifications)
was used to isolate quiescent PSC from
normal human pancreas.28 The gradients
can be developed not only with nycodenz
but also with other colloids such as
percoll, iohexol, iodixanol, optiprep. The
average yield of cells from a rat pancreas is
approximately 3 million cells per gram of
pancreas. The yield of PSC is much lower
from human pancreas due to limited
tissue availability and due to the higher
amount of fatty tissue surrounding the
resected pancreas (compared with rat
pancreas), which can impede tissue diges-
tion. PSC can also be isolated from
cancerous or fibrotic human pancreas, as
well as normal rat pancreas, using the
outgrowth method first described by
Bachem and colleagues5 from Professor
Adler ’s laboratory in 1998. The PSC
obtained by the outgrowth method
comprise cells of different age due to
temporal differences in their growing out
from fibrotic tissue blocks. Both methods
yield a mixed population of stromal cells,
which are globally named PSC but have
different subpopulations with various
sizes, a-smooth muscle actin (a-SMA)
expression and adhesiveness on plastic.
Neither method yields absolutely pure
PSC populations, although the nycodenz
method yields a more homogeneous
population of PSC at the point of isolation
than the outgrowth method, which is
inherently prone to possible contamina-
tion by other cells. In early primary
cultures obtained by outgrowth methods,
the contaminating cells are predominantly
macrophages and acinar cells. After
passaging, the cultures may also contain
a-SMA-negative fibroblasts while acinar
cells and macrophages are eliminated.
Tumour cells almost never grow out from
primary tumours, but may seldom grow
out from metastasis samples.29 Nonethe-
less, good practice requires checking cell
preparations for quality and purity
regardless of the isolation method used.

MARKERS OF QUIESCENT AND
ACTIVATED PSC
When isolating primary cells from the
pancreas, it is of vital importance to assess
the purity of the cultures not only for the
homogeneity of PSC but also for the
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absence of possible contaminants.
Another confounder is the activation of
PSC on plastic, which creates differences
between early and late passages. There-
fore, several PSC selective markers have
been proposed to assess their purity and
activity (figure 1). The most consistent
marker of PSC quiescence is the presence
of vitamin A droplets in the cytoplasm.
With regard to activated PSC, it is
currently not clear whether these are
different from myofibroblasts of the
pancreas and whether there are markers to
differentiate these two cell types.
However, there is strong agreement that
a-SMA is not an exclusive marker for
activated PSC. It is also expressed by
myofibroblasts, smooth muscle cells and
pericytes in blood vessels as well as the
gut wall (ie, duodenum and papilla vateri).
During activation, quiescent PSC lose
their intracellular retinoid (vitamin A)
droplets (detectable by fluorescence
microscopy as a characteristic blue-green
autofluorescence (rapidly fading) upon
exposure to ultraviolet light at 328 nm or
350 nm) and start to express a-SMA. The
active phenotype of PSC defined by
a-SMA expression may have contrasting

functions, eg, profibrogenic or profi-
brolytic, therefore a-SMA is considered to
be more a transdifferentiation marker
indicative of a myofibroblast-like pheno-
type than a marker of PSC activity
per se.30

With regard to other PSC markers,
researchers are in agreement that the
expression of desmin is highly variable in
PSC (variance of expression also exists
between different species). Similarly, there
is currently not enough evidence to
conclude that nestin alone is a sufficient
marker to monitor the activation of PSC
in rodents and humans. A more
commonly used and reliable immunos-
taining marker selective for rat and human
PSC (and absent in fibroblasts) is glial
fibrillar acidic protein. Some researchers
have reported the absence of glial fibrillar
acidic protein expression in quiescent PSC,
but in the opinion of experienced workers
in the field this is more likely to be due to
differences in the quality of the antibody
used for immunostaining than a true
absence of expression of the protein.
The dynamic change in gene expression

during PSC activation can be monitored
by several gene products. There is some

early evidence that although expressed in
activated PSC, Notch3, secreted frizzled
related protein 5, Wnt4 and Wnt5a are
absent in quiescent PSC (C. Kordes,
unpublished data); however, there is
agreement that these findings need further
validation.

PARAMETERS OF PSC ACTIVATION
There is strong agreement that activation
of PSC in culture can be assessed by
several functional parameters. However, it
is also recognised that the results of
studies of PSC activation may be influ-
enced by many different factors including
stellate cell purity, culture media used and
age of animals harvested or (for humans)
donor age and disease (normal pancreas,
chronic pancreatitis, pancreatic cancer).
While the response of PSC to individual
activating factors has been well charac-
terised in vitro, researchers are also
mindful that this may not reflect the true
in-vivo situation in which: (1) PSC are
exposed to a multiplicity of factors at any
one time; (2) there is often redundancy of
the effects of cytokines; (3) culture
conditions may influence ECM composi-
tion; and (4) isolated PSC in culture may
behave differently from those in situ
where they are surrounded by other cell
types (figure 2). Once activated, PSC also
secrete endogenous factors that can
further activate transformed PSC via
autocrine pathways.

INTRACELLULAR SIGNALLING
PATHWAYS INVOLVED IN STELLATE CELL
ACTIVATION/DEACTIVATION
The intracellular pathways involved in the
‘activation’ of PSC have also been inten-
sively analysed as the activity of the
stroma significantly impacts on the course
of pancreatitis and on tumour behav-
iour.31 Therefore, intracellular pathways
are considered to be important as poten-
tial therapeutic targets to inhibit/revert
stellate cell activity. Pertinently, kinases of
the mitogen-activated protein kinase
family have been implicated in many
aspects of PSC activation, but have been
linked most consistently to the trans-
duction of mitogenic signals and the
stimulation of cytokine/chemokine (eg,
MCP-1 and IL-6) production.32 The latter
effect is transcriptionally mediated by AP-
1 and nuclear factor kappa B transcription
factors. On the other hand, Smad tran-
scription factors are key mediators of the
biological effects of transforming growth
factor b1 in PSC, stimulating trans-
formation to a myofibroblastic phenotype

Quiescent PSC (fat-storing phenotype)

• Localisation: periacinar and interlobular 
• Numerous perinuclear fat-droplets 
(retinoids)

• Express vimentin, desmin, GFAP, 
nestin, synemin

• Low mitotic index
• Low  capacity to synthesise ECM

activation - transformation

TGFß1, TNFa, IL1, IL6, IL8
activin-A, ox. stress (ROS)
acetaldehyde, ethanol

Activated PSC (myofibroblast phenotype)

• Localisation: interlobular in fibrotic  areas 
adjacent to carcinoma cells

• Loss of fat droplets, loss of retinoids
• α-smooth muscle actin positive
• Intense rER  
• High mitotic index
• Express various receptos PDGF-R,  TGFß-R,  ICAM-1
• High motility and contraction
• Produce ECM proteins: Coll. I, III, XI, fibronection, periostin
• Synthesise MMPs and TIMPs  for ECM-turnover
• Release neurotrophic factors/transmitters: NGF, Ach
• Release growth factors and cytokines:  PDGF, FGF, TGFß1, 
CTGF,  IL-1ß,  IL-6,   IL8, RANTES, MCP-1,  ET-1, VEGF

PSC express the stem/

progenitor cell markers

• CD34, Nestin, p75NTR, 
•GFAP, Bcrp1, Aldh, Notch

Bone

marrow

Stem cells

EMT Fibrocyte

? ?

Figure 1 Activation of quiescent stellate cells. Ach, acetylcholine; Aldh, aldehyde dehydrogenase;
Bcrp1, breakpoint cluster region pseudogene 1; CD34, bluster of differentiation molecule-34; Coll,
collagen; CTGF, connective tissue growth factor; ECM, extracellular matrix; EMT, epithelial
mesenchymal transition; ET-1, endothelin-1; FGF, fibroblast-growth-factor; GFAP, glial fibrillar
acidic protein; ICAM-1, inter-cellular adhesion molecule 1; IL1, Interleukin-1; IL-1b, interleukin-1
beta; IL6, interleukin-6; IL8, interleukin-8; MCP-1, monocyte chemotactic protein 1; MMPs, matrix
metalloproteinases; NGF, nerve growth factor; ox. stres, oxidative stress; p75NTR, p75
neurotrophin receptor; PDGF, platelet-derived growth factor; PDGF-R, platelet-derived growth factor
receptor; PSC, pancreatic stellate cells; RANTES, regulated upon activation, normal T-cell
expressed, and secreted also known as CCL5; rER, rough endoplasmic reticulum; ROS, reactive
oxygen species; TGFb1, transforming growth factor beta-1; TGFb-R, transforming growth factor
beta receptor; TIMPs, tissue inhibitor of metalloproteinases; TNFa, tumor necrosis factor-alpha;
VEGF, vascular endothelial growth factor.
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and increased ECM synthesis.32 However,
while several signalling pathways medi-
ating PSC functions have been identified,
it is currently not possible to clarify their
‘restricted’ role as other pathways medi-
ating similar functions are increasingly
being identified and the cross-talk
between these pathways is also being
elucidated.

Signalling pathways that are respon-
sible for PSC inactivation (reversal to
a relatively quiescent phenotype) have
also been identified in recent years. Inhi-
bition of mitogen-activated protein kinase
(ERK, JNK and p38 kinase) signalling in
PSC mediates the induction of quiescence
in response to retinol and retinoic acid.
There is some evidence that the forced
expression of PPAR-g, C/EBP-a, or

albumin may also inactivate PSC.33

Therefore, modulation of PPAR-g and
STAT1, which can be targeted by clini-
cally applicable drugs (thiazolidinediones
and interferons, respectively), deserves
further investigation.

PSC ARE THE KEY FIBROGENIC CELLS
IN THE PANCREAS AND ARE DIFFERENT
FROM PFB
Differentiation between PSC and pancre-
atic fibroblasts is an important issue given
that the outgrowth method of PSC isola-
tion involves the use of fibrotic pancreatic
tissue. In contrast to pancreatic fibroblasts
(PFB), PSC express a-SMA and form dense
bodies (microfilaments) like myofibroblast-
like cells.4 5 Compared with PSC, PFB are

less adherent therefore detach earlier from
plastic during trypsinisation. Using this
difference, pure cultures of PSC and PFB
can be obtained after repeated mild tryp-
sinisation and separate cultivation.34 In
contrast to PSC, which show a star-like
shape (few are also triangular or spindle-
shaped), cultured PFB are spindle-shaped
and smaller. Both cell types are vimentin
positive; 20e40% of PSC are desmin posi-
tive and more than 90% are a-SMA posi-
tive (positivity increases as cells are kept
on plastic).34 In contrast, PFB are desmin
and a-SMA negative. Importantly, PSC
produce higher amounts of ECM proteins
compared with PFB, and express the scav-
enger receptor CD36, CCK receptors 1/2
and ACh receptor while PFB do not express
any of these receptors.34 35

ECM degradation:

Release of growth factors
(TGFß, PDGF, FGF)

Cancer cells  
(CC)

PSC stimulate angio-

genesis in EC via:

VEGF, PDGF, FGF1, IL-8
FGF2, coll-I, periostin, 
adrenomedullin, 
prokineticin-1
MMPs, uPA

activation - transformation

Cancer cells stimulate PSC

activation (TGFß1,  TNFα and 
others)

Cancer cells stimulate PSC: 

Proliferation (PDGF, IGF1, ET-1)
Motility (PDGF)  
Matrix synthesis (TGFß, FGF2, sonic 
hedgehog)
MMP synthesis (IL1, TGFß1, TNFα, 
EMMPRIN)

PSC stimulate cancer cells: 

Proliferation (TGFß, FGF2, PDGF, 
EGF, CTGF, AM, Gal-3, SDF-1)   

Chemoresistance (NO,IL-1ß, periostin)
Invasion (MMPs, uPA, tPA, SDF-1)  
Motility (PDGF, EGF, SDF-1)
PSC reduce:

Anoikis/apoptosis (coll-1, FN, periostin)

Endothelial cells Cancer cells

MMPs, plasmin

(MMPs), plasmin
CC stimulated angio-

genesis in EC via:

VEGF, PDGF, FGF
plasmin, MMPs

Quiescent PSC

uPA

Bone

marrow

stem cells

?

Neuropathy

Release of growth factors and 
transmitters (NGF, periostin, 
ACh)
Hypoxia?

Neural/cancer

cell Interactions: 
NGF, GNDF, PEDF

CC/PSC driven anti-

angiogenesis via: MMP-
driven cleavage of endostatin, 
angiostatin from CC. Direct 
EC inhibiton of CC via PEDF, 
TSP1

MMP-12
Activation

via hypoxia

Figure 2 Interactions of pancreatic stellate cells with neighbouring cells in their microenvironment. Ach, acetylcholine; AM, adrenomedullin; CC,
cancer cells; Coll, collagen; CTGF, connective tissue growth factor; EC, endothelial cells; ECM, extracellular metrix; EGF, epidermal growth factor;
EMMPRIN, extracellular matrix metalloproteinase inducer also known as Basigin or CD147; ET-1, endothelin-1; FGF, fibroblast-growth-factor; GAL-3,
galactoside-binding, soluble, 3; GNDF, glial cell line-derived neurotrophic factor; IGF-1, insulin-like growth factor 1; IL1, interleukin-1; IL8, interleukin-8;
MMPs, matrix metalloproteinases; NGF, nerve growth factor; NO, nitric oxide; PSC, pancreatic stellate cells; PDGF, platelet-derived growth factor;
PEDF, pigment epithelium derived factor; SDF-1, stromal cell-derived factor-1; TGFb1, transforming growth factor beta-1; TNFa, tumor necrosis
factor-alpha; tPA, tissue plasminogen activator; TSP1, thrombospondin 1; uPA, urokinase-type plasminogen activator; VEGF, vascular endothelial
growth factor.
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VARIANCES OF PSC BETWEEN SPECIES,
DONORS AND IMPACT OF
IMMORTALISATION ON INTERPRETING
RESULTS
There is strong agreement that there are
species as well as donor-dependent vari-
ances between murine and human PSC. As
a result of the limited access to human
pancreatic tissue at several institutions,
immortalised PSC have been proposed as an
alternative model to study pancreatic
stroma. Immortalised PSC may be useful
for studies of molecular signalling that
require manipulation of gene expression
and use in in-vivo models that require cells
to remain viable for a relatively longer time
period.36 37 However, it is important to note
that differences exist between immortalised
and primary PSC, and therefore caution
must be exercised when extrapolating
findings with immortalised PSC to the
clinical situation. Of more concern is the
observation that immortalised PSC were
able (albeit occasionally) to form aggressive
anaplastic tumours when injected alone
into nude mice (M. Buchholz et al, unpub-
lished data). This raises the possibility that
the immortalisation procedure resulted in
the preferential selection of malignant
subclones. Therefore, there is strong agree-
ment that the results of experiments
obtained by using murine or immortalised
PSC should ideally be verified using several
different primary human PSC cultures to
maximise the robustness of the data.

PSC AND PANCREATIC DISEASES
Compelling evidence has accumulated in
recent years to support a major role
forPSC in both fibrogenesis and fibrol-
ysis.4 5 38e41 During pancreatic injury, PSC
are transformed (in response to factors
that are now well identified, including
oxidant stress, cytokines, growth factors
and toxins such as alcohol and its metab-
olite acetaldehyde) from their quiescent
state to an activated myofibroblast-like
phenotype that synthesises and secretes
excessive amounts of ECM proteins
(increased fibrogenesis). Activated PSC are
seen in the early phases of alcoholic
chronic pancreatitis and in autoimmune
pancreatitis.42e44 However, it is unclear
how fibrogenesis is initiated in the
inflamed pancreas. There are currently two
concepts. The first concept focuses on the
direct activation of PSC by acetaldehyde
(the oxidative metabolite of alcohol) and
oxidant stress (as shown in vitro and in
animal experiments).44 The second
concept is based on the necrosisefibrosis
sequence as the underlying pathogenic
mechanisms of alcoholic chronic pancrea-

titis. It is proposed that the initial lesion is
autodigestive tissue necrosis, which is
followed by inflammation and the induc-
tion of the fibrotic reaction.39 42 43 In stage
I with overt tissue injury, PSC are found in
close association with macrophages
around areas of necrosis. In stage II
with extensive cellular fibrosis, PSC are
found in the perilobular spaces. In stage III
with established dense fibrosis in the
perilobular spaces, PSC are conspicuously
reduced in number, and in stage IV, when
in addition to perilobular fibrosis calculi in
the ducts are present, PSC are mainly
detected adjacent to duct ulcerations
caused by calculi.43 There is general
agreement that in the early stages (I and
II) cessation of alcohol would prevent the
formation of organ fibrosis, predominantly
through increased apoptosis of activated
PSC.39 42e44 However, there is currently
not enough evidence showing that
increasing the fibrolytic activity of PSC
reverts organised fibrosis of the pancreas.
The tumour microenvironment is

known to be an important contributor to
the malignant phenotype.36 38 41 45e48 In
the pancreas, PSC have been identified
within the tumour microenvironment of
pancreatic ductal adenocarcinoma. Recent
evidence from animal experiments suggests
that PSC can promote local tumour
growth and metastatic spread and can also
increase resistance to chemo and radiation
treatment.36 38 41 45e48 The vascularity of
the tumour is believed to play a role in the
aggressive behaviour of pancreatic cancer.
Pancreatic ductal adenocarcinoma as well
as chronic pancreatitis is characterised by
hypoxia and fibrosis.46 47 49 It remains
unclear whether PSC play an overall pro-
angiogenic or anti-angiogenic role in
pancreatic fibrosis and cancer.36 46e49 PSC
activity is inversely correlated with
vascular density, and inhibition of stellate
cell activity results in increased vascularity
and the delivery of chemotherapeutic
reagents.46 49 On the other hand, condi-
tioned media of PSC induce angiogenesis
both in vitro and in vivo through the
production of vascular endothelial growth
factor and non-vascular endothelial growth
factor family members.46 47 These contra-
dictory findings could be explained by the
dynamic rather than on/off responses of
PSC. It is likely that PSC may exert
different effects on angiogenesis depending
on the site (invading front vs dense fibrotic
areas) and disease stage (early vs
advanced). Pertinently, sonic hedgehog
signalling has been implicated in PSC
activation and suggested as an important
enhancer of the desmoplastic reaction and

inhibitor of stromal angiogenesis in
pancreatic cancer.49 50 However, the
downstream targets of hedgehog signalling
in PSC remain to be fully elucidated.

TRANSGENIC MOUSE MODELS OF
PANCREATIC CANCER AND RE-CREATION
OF FIBROTIC TUMOUR
MICROENVIRONMENT
Genetically engineered mouse models of
pancreatic cancer, ie, mice with a pancreas-
specific activation of oncogenic Kras, have
been instrumental in defining the steps
from epithelial transformation to invasive
tumour growth.51 52 On a morphological
level, these models reflect the presumed
stepwise progression from intraepithelial
neoplasia to ductal adenocarcinoma. In
particular, some of the mouse tumours
such as p48+/Cre;LSL-KRASG12D/+ and the
PDX-1-Cre;LSL-KRASG12D/+ are accompa-
nied by a significant desmoplastic
response, thus resembling human pancre-
atic ductal adenocarcinoma. However, it
has been unclear for a long time whether
a provisional matrix is already present
around precursor lesions, whether PSC are
part of this matrix and whether desmo-
plasia is a lesion-specific response and, in
particular, whether the excessive matrix
has any clinical relevance. With regard to
the last point, a recent paper by Erkan
et al31 has shown a close correlation
between the extent of a-SMA staining and
poor outcome, whereas strong collagen
deposition correlated with a favourable
outcome in pancreatic cancer. In the
genetically engineered mouse models of
pancreatic ductal adenocarcinoma, the
earliest stromal activation and ECM
deposition are found around metaplastic/
dysplastic lesions such as tubular complexes
and to a lesser extent around PanIN lesions.
However, it is not clear whether this
stromal activation is a part of carcinogenesis
or an epiphenomenon representing an effort
to confine the preneoplastic lesions.53 In
breast and prostate cancers, such a stromal
reaction has been shown to precede the
actual cancer. However, despite early
evidence in pancreatic cancer,53 judging by
the stromal activation, it is currently not
clear whether tubular complexes are an
additional precursor lesion in pancreatic
ductal adenocarcinoma.

CONCLUSIONS
Pancreatic fibrosis, which develops as
a consequence of chronic inflammation,
leads to the loss of functional parenchyma
and probably increases the risk of cancer.
As the role of PSC in chronic pancreatitis
and pancreatic cancer is increasingly
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clarified, it is anticipated that effective
approaches to target PSC specifically will
be developed. Such therapeutic strategies
would be expected to reduce the fibrosis of
chronic pancreatitis, thereby retarding the
development of exocrine and endocrine
insufficiency, and interrupt the interaction
of PSC in the stromal reaction with
pancreatic cancer cells, thereby inhibiting
tumour progression and improving the
otherwise dismal prognosis of this disease.
Therefore, at present, the field of PSC
research is dynamic and wide open, with
significant potential for novel discoveries
and major breakthroughs that could have
a lasting impact on the treatment of
patients with pancreatic diseases. The
Pancreatic Star Alliance would particularly
like to encourage young researchers to
enter this exciting area of pancreatology.

FUTURE RESEARCH DIRECTIONS
1. PSC origin (lineage tracing studies).
2. Functions in health.
3. Interactions with other pancreatic cells

(endocrine cells, immune cells,
Schwann cells, nerve cells).

4. Role in pancreatic repair/regeneration.
5. Therapeutic targeting.

Figures presented in this article are modified from the
figures previously published in Cancers 2010, in which
authors hold the copyright and Multidisciplinary Digital
Publishing Institute (MDPI) is a licensee.
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