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STATISTICS FROM THE INSIDE

14. Diagnostic and screening tests and reference
values

M J R Healy

Many studies in medical research are con-
cerned with the properties of diagnostic and
screening tests. These present a number of
statistical problems, both in design and inter-
pretation. I start by considering the simpler
kind of test whose result can be described as
being either positive or negative.

Tests with a positive/negative result
A clinician suspects that a patient has a
certain disease condition and calls for a
particular test to be carried out. The result of
the test is positive. How much weight should
be placed upon this result? To answer this
question, suppose that a study has been done
in which the presence or absence of the
disease in a number of patients has been
established for certain by some means or
other, perhaps by an expensive gold standard
test, and that the results for the new test were
as in the table.

Results of a yes/no test

Disease

Absent Present

Test negative 82 17 99
Test positive 12 73 85

94 90 184
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The numbers in this table can be sum-

marised in various ways. To begin with, the
proportion of patients with the disease who
had a positive test was 73/90=081. This is
called the sensitivity of the test. A high sensi-
tivity means that only a few of the patients
who actually have the disease are missed by
the test. Similarly, the proportion of patients
not having the disease who had a negative test
was 82/94=087. This is the specificity of the
test.* A test with high specificity gives only a

small proportion of misleading positive
results among patients who do not have the
disease.

Before going further, a few remarks are in
order. First of all, the fractions above are

actually only estimates of the true properties

of the test. The sensitivity in the example of
the table has an approximate 95% confidence
interval of 0O73 to 090, a fairly wide range,

and the sensitivity is similarly imprecise.
When such estimates are presented in a

paper, it is important that confidence inter-
vals should be given. We are also assuming
that each column of the table constitutes a

random sample of patients without and with
the disease respectively, or more precisely of
those patients who are liable to get the test. It
is legitimate in this context for these two
samples to be drawn separately if this is
convenient.

It may be useful to point out, following the
previous article in this series on 'probabilities
and decisions',1 that the true sensitivity and
specificity are actually conditional probabilities -
using the notation introduced there, we have

sensitivity
=pr(test positive disease present)

specificity
=pr(test negative disease absent)

where the vertical bars can be read as 'condi-
tional upon' or 'assuming that'.
The sensitivity and specificity are inherent

properties of the test. Provided the conduct of
the test and the definition of the disease condi-
tion remain the same, they should be transfer-
able from one situation to another. However, it
will be seen that they are not the quantities that
the practising clinician is commonly interested
in. She is more likely to require the conditional
probabilities the other way round, the proba-
bilities that the disease is present (or absent)
when the test comes out positive (or negative).
These probabilities are called the positive and
negative predictive values. Formally, written as

conditional probabilities,

positive predictive value
=pr(disease present test positive)

negative predictive value
=pr (disease absent test negative)

To reverse the order of a conditional prob-
ability we need to invoke Bayes' theorem. For
brevity let me write D+ and D- to denote
disease present and absent and T+, T- for
test positive and negative. Then the probability
for both D+ and T+ can be written in two
ways:

pr(T+ and D+)
=pr(T+)Xpr(D+ IT+)
=pr(D+)Xpr(T+ ID+)

*Thought will show that these two terms are reasonably appro-
priate to their meanings. Their close similarity is not considered
a drawback by experts in the field, however tiresome it may be
for others.
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From this we find that

pr(D+ IT+)=pr(T+ ID+)X ( }
I ~~pr(T+)

so that to reverse the order of the conditional
probability we need to multiply by the term in
the curly brackets. We can go a little farther by
noting that either D+ or D- must be the case
so that pr(T+), the overall probability of a
positive test, is the sum of two terms covering
the two situations:

pr(T+) =
pr(T+ ID+)pr(D+)+pr(T+ ID-)pr(D-)

Furthermore, pr(D+) has a meaningful inter-
pretation - it is the probability of the disease
being present when we do not know the test
result. In a rather broad sense, this is what epi-
demiologists call the prevalence of the disease
condition. Thus we find that
pr(D+ T+)
=pr(T+ D+)

pr(D+)
| pr(T+ D+).pr(D+)+pr(T+ ID-).(1 -pr(D+))}

All the quantities in this formula have been
described in words above. In particular the
multiplying factor can be written as

Prevalence/{ sensitivityXprevalence
+ (1 - specificity) X (1 -prevalence)}

The important feature is the intervention of
both the specificity and the prevalence. The
former is a property of the test but the magni-
tude of the latter will vary widely according to
circumstances. In a specialist clinic it may be
quite high, with most of the patients subjected
to the test having the disease. In a screening
environment it may be extremely low, one in
1000 or fewer. It is this latter circumstance that
requires particular attention. Suppose that a
superb test has both sensitivity and specificity
equal to 0-99 and that this test is applied as a
screen for a condition with a prevalence of one
in 1000. Then the positive predictive value is

O099x0X001
(0-99XO0001 +0-01 x0-999)
=0-99X0-0911 =0-0902

Given a positive test, the odds are 10 to 1
against the subject having the disease. In
10000 subjects, approximately 10 will have
the disease and these will all be expected to
give a positive test result. But the remaining
9990 subjects will not have the disease, and
these will give rise to around 100 false positive
results. Of the 110 positive test results, 10 out
of every 1 1 will on average be false positives.
The prevalence of a disease condition can be

estimated from data such as those in the table
if it can be assumed that the whole of the table
(not just the separate columns) is a random
sample of the relevant population of patients.
This will be a useful method when the preva-
lence is fairly high but in a screening situation
with a very low prevalence separate epidemio-
logical studies will be needed. It must be
remembered in either case that the measured
prevalence will be no more than an estimate of

the true value. When the data in the table are a
proper random sample, the predictive values
can be estimated directly from them in the
same way as the specificity and sensitivity.
Thus with this assumption, the predictive
values from the table are 73/85=0 86 (posi-
tive) and 82/99=0 83 (negative).

Yet another pair of indices easily derived
from the data in the table are the positive and
negative likelihood ratios. The positive likeli-
hood ratio, for example, is defined as the ratio
pr(T+ D+)/pr(T+ D-). An estimate from
the table is (73/90)/(12/94)=6-35. It is equal to
the ratio sensitivity/(l -specificity). The inter-
est of this ratio is connected with the direct use
of Bayes' theorem in a diagnostic context.
Suppose the prior odds on a patient having the
disease is P (this is equal to preva-
lence/(l-prevalence)). Then the posterior
odds after observing a positive test result is
found by multiplying P by the positive likeli-
hood ratio. This approach may be especially
interesting when two alternative tests are to be
compared.
The various derived quantities that I have

described come in pairs and it is tempting to
try to find a single number to describe the per-
formance of a test. One method that has been
widely used involves what is known as Youden 's
index, which is simply equal to (sensi-
tivity+ specificity-i) and varies between 0 and 1
(unless the test is worse than useless in that it is
negatively associated with the presence of
disease). The use of any such single measure is
not recommended in this context. In clinical
practice (and indeed elsewhere) the conse-
quences of false positive and false negative
readings are commonly very different, and sim-
ply adding together the rates at which the two
occur may have quite misleading implications.

I have used the phrase 'false positives' in the
above discussion and the meaning is fairly clear
- in my notation they are the (T+ D-) cases
where a patient without the disease gives rise to
a positive test result. The table for example
contains 12 of them. But the phrase 'false posi-
tive rate' should be avoided because of its
ambiguity. In the table it might mean 12/94,
which is 1 minus the sensitivity, or 12/85,
which is 1 minus the positive predictive value.

Speaking from personal experience, it is not
particularly easy for the non-specialist to keep
in mind the interpretation of the various quan-
tities that have been derived from the four
entries in a table such as the table here. It
would be helpful to readers of scientific papers
if authors always quoted the table in full in
addition to any indices that they may calculate
from it. More extended discussion of the prob-
lems of test interpretation can be found in
Galen and Gambino and Strike.2 3

Tests with a quantitative result
Many pathology tests nowadays do not pro-
duce a simple positive or negative result but
rather a reading in numerical form. Doctors, in
common with the rest of mankind, are not par-
ticularly comfortable with numerical results
and adopt a number of practices to reduce
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ROC of transport score as predictor of death in infants
transferred to a neonatal unit.

them to a more manageable yes or no answer.

The simplest tactic is to draw a line on the con-

tinuous scale and declare all results above the
line to be positive, all below the line to be neg-

ative (this is especially common when the
result is a titre). The problem of course is
where to draw the line. Some light can be
thrown on this by calculating the specificity
and sensitivity for a range of different bound-
ary values and plotting sensitivity against
(1-specificity). The resulting curve, for rather
obscure historical reasons, is called the receiver
operating characteristic or ROC. An example is
shown in the figure, where the data relate to
infants transferred to a neonatal unit, the test is
a transport score and the outcome is death (I
am grateful to Dr T Stephenson and Mr A
Leslie for letting me use the data as an illustra-
tion). The diagram illustrates how changing
the boundary varies the pay off between sensi-
tivity and specificity - we can increase either
one of these but only at the expense of the
other. A 'good' test will have an ROC which
passes close to the upper left hand corner ofthe
diagram which represents perfection in both
respects. The diagonal line corresponds to the
minimum performance as obtained by simple
guessing. The ROC is a comprehensible sum-

mary of a good deal of data and may be a use-

ful way of comparing informally the
performance of alternative tests.

Reference values
Another strategy designed to render numerical
results more comprehensible is the introduc-
tion ofnormal limits, or, as they are more com-

monly called today, reference values. The idea
here is that the levels of some quantity, oral
temperature, say, or a blood constituent, vary
in the healthy population within a certain range
of values. If a patient exhibits a value outside
this range, this may be taken as evidence of
abnormality or the presence of disease.
Recognising that odd extreme values do turn
up in perfectly healthy people, the range of
values that do not arouse suspicion is com-

monly taken to be given by the mean plus and
minus 2 standard deviations, these quantities
relating to the frequency distribution of the
values in the healthy population.
The derivation of reference values is a more

complex business than appears at first sight.
The most difficult question is a non-statistical
one - how is the 'healthy population' to be
defined? Many authors have suggested that
results obtained from hospital patients could
be used for defining reference values, but this is
almost a contradiction in terms; people attend-
ing hospital cannot by definition be assumed to
be healthy. The problem is more acute when
the values depend upon factors such as age,
ethnic origin, and gender. Separate ranges may
have to be specified for males and females, for
example. The construction of age specific ref-
erence ranges such as growth standards is a
topic on its own I hope to return to in a future
article in this series.
The purpose of reference values must also

be borne in mind. The 'mean±2 SD' rule is
clearly intended to give a sensitivity of 95% -
only 5% of the healthy population may be
expected to have values outside the reference
range. This is closely analogous to a statistical
significance test controlling the rate of type I
errors. Like a significance test, it has little to
say about specificity or type II errors; a value
lying inside the reference range is far from
being a guarantee of lack of abnormality. It
should, however, be stated that reference
values are technically to be distinguished from
confidence limits, which apply to parameter
values - in the jargon of statistics, reference
values are better referred to as tolerance limits.
From a statistical point of view, the first

thing to remember about reference values is
that they are necessarily estimates based upon
sample data. This has two immediate conse-
quences. First, the quality of the sample is of
prime importance. We may perhaps define the
healthy population as consisting of anybody
without overt disease. To assume that the col-
lection of laboratory staff and medical students
who are most immediately available for
venepuncture constitutes a representative
sample from such a population is rash in the
extreme. When reporting reference values, a
specification of the nature of the sample on
which they are based is essential.

Secondly, since they are estimates, the refer-
ence values must be subject to sampling error
in the sense that, were the study to be repeated
in identical fashion, non-identical values would
be found. The size of the sampling errors is
much larger than is sometimes appreciated.
Suppose that the distribution of values in the
healthy population is Gaussian (the usual term
'Normal', even with a capital, is best avoided in
this context, and the more historically correct
'de Moivrean' is unlikely to catch on) and that
the upper reference value is calculated as
mean+2 SD using estimates obtained from a
sample of size n. Then the 95% confidence
limits on the value obtained are 1-71 r/\i/
where or is the population standard deviation.
For a sample size of 50 this amounts to 0f24 a,
a far from negligible amount relative to the dis-
tance between the reference value and the
mean which will be about 2u. Looked at
another way, while the proportion of the popu-
lation to be included between the limits may be
set at 5%, the actual proportion between the
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estimated limits will also be subject to error.
The standard error of this proportion is
approximately 0-15/\Fn and when n=50 this
amounts to 0-0212, suggesting that the actual
proportion included may be somewhere
between 91% and 99%. When reference values
are to be determined, large samples cannot be
avoided.
The use of plus and minus two standard

deviations to define a 95% reference range is
based upon a tacit assumption that the under-
lying population is at least approximately
Gaussian. The multiplier 2 is derived from this
assumption (it is an approximation to the exact
value of 1 96), but the mean and standard
deviation will in practice both be estimates and
it appears that the t distribution ought to be
involved to allow for this, just as in an ordinary
significance test. In fact, to ensure an average
coverage of 95%, the correct multiplier for the
standard deviation with a sample of size n is
t\I(n+ 1)/n where t is the 2'/2% point of the
t distribution with (n-1) degrees of freedom,
and this is very close to 2-0 for realistic sample
sizes. However, the Gaussian assumption is
very often false. What is to be done then? One
possibility is to make no distributional assump-
tion at all and simply to sort the observed
sample values, setting the reference values so
as to cut off just 21/2% at each end. (This
requires a little care. With 95% coverage the
lower reference value corresponds to the 2'/2th
centile. The estimate of this from a sample of
size 100 (say) is equal to the 3rd smallest
observation, not half way between this and the
one below it.) However, this non-parametric
technique has its disadvantages. In particular,
the reference values estimated in this way are
very much less precise when the distribution is
actually Gaussian than those based upon the
sample mean and standard deviation. To
achieve the same degree of precision as is
afforded by the parametric estimates, the
sample size must be practically doubled.
As stated in a previous article in this series,4

there are two sorts of departure from Gaus-
sianity that commonly occur in practice. One
of these is the presence of outlying values, all
too often due to mistakes in recording or in
laboratory technique. Detecting and eliminat-
ing these is particularly important when it is
the tails of the distribution that are of interest,
and also particularly difficult. One method that
can be adopted when the uncontaminated
distribution is approximately Gaussian is to
estimate the mean and standard deviation from
only the central part of the sample, trimming
off and ignoring for purposes of calculation the

outermost 5% or so of readings at each end
where the outliers, if there are any, will be
located. The mean of the trimmed sample can
be used directly but the standard deviation
estimate needs to allow for the trimming - I
have described a possible method for doing
this.5 Given these estimates, sample values that
are exceptionally extreme - perhaps those
beyond 3 standard deviations from the mean,
corresponding to a frequency of around 1 in
1000 - may be regarded as probably erroneous
and omitted from the rest of the calculations.
The other common form of non-Gaussian

distribution is one that is noticeably skew to
the right. Here transforming the data values to
logarithms very often succeeds in bringing
them to Gaussian form. The use of a Normal
plot is the most straightforward way of check-
ing whether the transformation has been suc-
cessful.4 If some degree of skewness remains,
or if the transformation has overcorrected, it
may be helpful to subtract or add a constant
quantity to each value before taking logarithms
(the article by Flynn et al provides some
examples6). Provided that the resulting distri-
bution is reasonably symmetrical, more subtle
departures from the Gaussian form are
unlikely to cause trouble in this context.
The analogy between the use of a reference

range and that of a significance test suggests
that it would be useful to go beyond the sim-
plistic split into high/normal/low by providing
an estimate of the amount of the departure of a
reading from the normal mean. A major
advantage of an underlying distribution which
is at least approximately Gaussian (possibly
after transformation) is that it allows this to be
done. Given the mean and standard deviation
(or at least estimates of them) it is easy to
express any result as some multiple of the stan-
dard deviation away from the mean. This is
sometimes called an SD score. The usual limits
of the 95% reference range correspond to SD
scores of + 2, but lesser values should arouse
suspicion, while scores of 3 and above are
beyond plausible limits of normality.
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