Skip to main content
Log in

Mineralization of Hydroxyapatite Induced by Eggshell As Calcium Source with Hydrothermal Synthesis Method

  • CRYSTAL GROWTH
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Being no more use than fertilizer, eggshells are generally considered as garbage. A large number of eggshell wastes are produced from food processing, baking, and hatching industries every year. As a bio-waste, the eggshell with porous structure can still be fully utilized. In this study, eggshell was used as calcium source and template to induce hydroxyapatite (HA) mineralization in hydrothermal reaction. The effects of different calcium sources and phosphorus sources on the morphology and structure of HA were examined. The synthesized particles have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy apparatuses. The results showed that the porous of eggshell was beneficial for the infiltration of soluble phosphorus and slowly synthesis of HA under hydrothermal conditions. Porous eggshells and creatine phosphate disodium tended to induce the mineralization of spherical HA. Thus HA derived from biological sources can be a possible material in converting bio-waste into value added products by a simple and effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Bardhan, S. Mahata, and B. Mondal, Adv. Appl. Ceram. 110, 80 (2009).

    Article  Google Scholar 

  2. E. M. Rivera, M. Araiza, W. Brostow, V. M. Castano, J. R. Dıaz-Estrada, R. Hernández, and J. R. Rodrıguez, Mater. Lett. 41, 128 (1999).

    Article  Google Scholar 

  3. M. Rahman, A. Netravali, B. Tiimob, V. Apalangya, and V. Rangari, J. Appl. Polym. Sci. 133, 43477 (2016).

    Article  Google Scholar 

  4. N. Pramanik and T. Imae, Langmuir 28, 14018 (2012).

    Article  Google Scholar 

  5. B. Song, Q. Xu, C. Wang, S. Xu, and H. Zhang, J. Appl. Polym. Sci. 133, 42871 (2016).

    Google Scholar 

  6. S. Wu, H. Tsou, H. Hsu, S. Hsu, S. Liou, and W. Ho, Ceram. Int. 39, 8183 (2013).

    Article  Google Scholar 

  7. S. J. Lee and S. H. Oh, Mater. Lett. 57, 4570 (2003).

    Article  Google Scholar 

  8. G. Suresh Kumar and E. K. Girija, Ceram. Int. 39, 8293 (2013).

    Article  Google Scholar 

  9. P. Deb, E. Barua, S. Lala, and A. Deoghare, Mater. Today: Proc. 15, 277 (2019).

    Google Scholar 

  10. M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. De Carlos, and B. León, Mat. Sci. Eng. C: Mater. 32, 478 (2012).

    Article  Google Scholar 

  11. J. Zhao, Y. Zhu, G. Cheng, Y. Ruan, T. Sun, F. Chen, J. Wu, X. Zhao, and G. Ding, Mater. Lett. 124, 208 (2014).

    Article  Google Scholar 

  12. S. H. Chung and A. Manthiram, Adv. Mater. 26, 1360 (2014).

    Article  Google Scholar 

  13. E. Rivera, M. Araiza, W. Brostow, V. Castano, J. Dıaz-Estrada, R. Hernández, and J. Rodrıguez, Mater. Lett. 41, 128 (1999).

    Article  Google Scholar 

  14. U. Anjaneyulu and S. Sasikumar, B. Mater. Sci. 37, 207 (2014).

    Article  Google Scholar 

  15. J. Martín-Durán, M. Duocastella, P. Serra, and R. Romero, J. Exp. Zool. B 310, 668 (2008).

    Article  Google Scholar 

  16. H. Chen, C. Qing, J. Zheng, Y. Liu, and G. Wu, Mat. Sci. Eng. C: Mater. 63, 485 (2016).

    Article  Google Scholar 

  17. T. Witoon, Ceram. Int. 37, 329 (2011).

    Google Scholar 

  18. C. Yao, J. Zhu, A. Xie, Y. Shen, H. Li, B. Zheng, and Y. Wei, Mat. Sci. Eng. C: Mater. 73, 709 (2017).

    Article  Google Scholar 

  19. C. Qi, Y. Zhu, B. Lu, X. Zhao, J. Zhao, F. Chen, and J. Wu, Chem. Eur. J. 19, 5332 (2013).

    Article  Google Scholar 

  20. D. Xiao, Z. Tan, Y. Fu, K. Duan, X. Zheng, X. Lu, and J. Weng, Ceram. Int. 40, 10183 (2014).

    Article  Google Scholar 

  21. A. W. Xu, Q. Yu, W. F. Dong, M. Antonietti, and H. Cölfen, Adv. Mater. 17, 2217 (2005).

    Article  Google Scholar 

  22. K. Ishikawa, S. Matsuya, X. Lin, Z. Lei, T. Yuasa, and Y. Miyamoto, J. Ceram. Soc. Jpn. 118, 341 (2010).

    Article  Google Scholar 

  23. C. Qi, Q. L. Tang, Y. J. Zhu, X. Y. Zhao, and F. Chen, Mater. Lett. 85, 71 (2012).

    Article  Google Scholar 

  24. G. S. Kumar, A. Thamizhavel, and E. K. Girija, Mater. Lett. 76, 198 (2012).

    Article  Google Scholar 

  25. S. Koutsopoulos, J. Biomed. Mater. Res. A 62, 600 (2002).

    Article  Google Scholar 

  26. N. Nga, N. T. Chau, and P. Viet, Colloid Surface B 172, 769 (2018).

Download references

Funding

This work is supported by the National Science Foundation of China (21101054), Program of Visiting Scholar for Young Scholar Sponsored by Department of Education Anhui Province (gxgnfx2018024, gxgwfx2019051) and Anhui Province Key Laboratory of Environment Friendly Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengli Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chengli Yao, Jinmiao Zhu Mineralization of Hydroxyapatite Induced by Eggshell As Calcium Source with Hydrothermal Synthesis Method. Crystallogr. Rep. 65, 1242–1247 (2020). https://doi.org/10.1134/S1063774520070299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520070299

Navigation