Skip to main content
Log in

Synthesis and Optimization of Thermoplastic Polyurethane/Polyaniline/Ferrite Cobalt Composite as an Effective Absorber in X-Band Region

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this study, shielding effectiveness for a few composite films was examined. Composites were prepared by combining thermoplastic polyurethane, polyaniline and ferrite cobalt. The composites were synthesized in several steps by the hydrothermal and melt blending method. Different tests were performed to characterize ferrite cobalt, polyaniline/ferrite cobalt and final ternary composite. The effect of weight percentage of each component, the thickness of composite on electromagnetic interference shielding effectiveness was studied. The sample with an average of 36.7 dB in the X-band had the best performance and the highest amount at 10.9 GHz was achieved (SET = 41.83). The results showed that absorption and reflection had two effective mechanisms for shielding. Also, the absorption coefficient with 78% of total shielding effectiveness was highest and polyaniline had a significant role in the absorption mechanism. Besides, the thickness was a key factor for production of wave-absorbent composites. Finally, by using the design-expert software, optimization was performed to achieve the SET ≥ 20 and it was found that the composite should have the following parameters: ferrite cobalt content in polyaniline (16.25 wt %), polyaniline/ferrite cobalt content in thermoplastic polyurethane (63.66 wt %) and a thickness of 1.22 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Leung, R. Croft, R. J. McKenzie, S. Iskra, B. Silber, N. Cooper, B. O’Neill, V. Cropley, A. Diaz-Trujillo, and D. Hamblin, Clin. Neurophysiol. 122, 2203 (2011).

    CAS  PubMed  Google Scholar 

  2. R. Singh and S. G. Kulkarni, Polym. Bull. 71, 497 (2014).

    CAS  Google Scholar 

  3. M. Imai, K. Akiyama, T. Tanaka, and E. Sano, Compos. Sci. Technol. 70, 1564 (2010).

    CAS  Google Scholar 

  4. W. Li, R.M. Ray, D. B. Thomas, M. Yost, S. Davis, N. Breslow, D. L. Gao, E. D. Fitzgibbons, J. E. Camp, and E. Wong, Am. J. Epidemiol. 178, 1038 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. X. Zhang, Y. Rao, J. Guo, and G. Qin, Carbon 96, 972 (2016).

    CAS  Google Scholar 

  6. R. Panwar, V. Agarwala, and D. Singh, Ceram. Int. 41, 2923(2015).

    CAS  Google Scholar 

  7. A. Olad and S. Shakoori, J. Magn. Magn. Mater. 458, 335 (2018).

    CAS  Google Scholar 

  8. A. Hazarika, B. K. Deka, D. Kim, K. Kong, Y.-B. Park, and H. W. Park, Sci. Rep. 7, 40386 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. G. Rao and S. Mahulikar, Aeronaut. J. 106, 629 (2002).

    Google Scholar 

  10. F. Movassagh-Alanagh, A. Bordbar-Khiabani, and A. Ahangari-Asl, Compos. Sci. Technol. 150, 65 (2017).

    CAS  Google Scholar 

  11. M. Oyharçabal, T. Olinga, M.-P. Foulc, S. Lacomme, E. Gontier, and V. Vigneras, Compos. Sci. Technol. 74, 107 (2013).

    Google Scholar 

  12. S. Wen, Y. Liu, X. Zhao, J. Cheng, and H. Li, Phys. Chem. Chem. Phys. 16, 18333 (2014).

    CAS  PubMed  Google Scholar 

  13. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, and C. Chen, Sci. Rep. 5, 9298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Ding, Y. Huang, J. Wang, H. Wu, and P. Liu, Appl. Surf. Sci. 357, 908 (2015).

    CAS  Google Scholar 

  15. H. Gu, S. Tadakamalla, X. Zhang, Y. Huang, Y. Jiang, H. A. Colorado, Z. Luo, S. Wei, and Z. Guo, J. Mater. Chem. C 1,729(2013).

    CAS  Google Scholar 

  16. E. Tanrıverdi, A. Uzumcu, H. Kavas, A. Demir, and A. Baykal, Nano-Micro Lett. 3, 99 (2011).

    Google Scholar 

  17. H. Khatoon and S. Ahmad, J. Ind. Eng. Chem. 53, 1 (2017).

    CAS  Google Scholar 

  18. D. Jaaoh, C. Putson, and N. Muensit, Polymer 61, 123 (2015).

    CAS  Google Scholar 

  19. H. R. Tantawy, D. E. Aston, J. R. Smith, and J. L. Young, ACS Appl. Mater. Interfaces 5, 4648 (2013).

    CAS  PubMed  Google Scholar 

  20. N. B. Janda, J. M. Keith, J. A. King, W. F. Perger, and T. J. Oxby, J. Appl. Polym. Sci. 96, 62 (2005).

    CAS  Google Scholar 

  21. S. Yang, K. Lozano, A. Lomeli, H. D. Foltz, and R. Jones, Composites, Part A 36, 691 (2005).

    Google Scholar 

  22. P. Chitra, A. Muthusamy, R. Jayaprakash, and E. R. Kumar, J. Magn. Magn. Mater. 366, 55 (2014).

    CAS  Google Scholar 

  23. A. J. McDowell and T. H. Hubing, IEEE Trans. Electromagn. Compat. 56, 1711 (2014).

    Google Scholar 

  24. M. H. Al-Saleh and U. Sundararaj, Carbon 47, 2 (2009).

    CAS  Google Scholar 

  25. B.C. Gültekin, N. D. Gültekin, O. Atak, and R. Şimşek, Fibers Polym. 19, 313 (2018).

    Google Scholar 

  26. A. Gupta and V. Choudhary, Compos. Sci. Technol. 71, 1563 (2011).

    CAS  Google Scholar 

  27. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, Carbon 60, 146 (2013).

    CAS  Google Scholar 

  28. M. H. Al-Saleh and U. Sundararaj, Carbon 47, 1738 (2009).

    CAS  Google Scholar 

  29. C. Merlini, A. Pegoretti, P. C. Vargas, T. F. da Cunha, S. D. Ramôa, B. G. Soares, and G. M. Barra, Polym. Compos. 40, E78 (2019).

    CAS  Google Scholar 

  30. S. D. Ramoa, G. M. Barra, C. Merlini, S. Livi, B. G. Soares, and A. Pegoretti, Polym. Adv. Technol. 29, 1377(2018).

    CAS  Google Scholar 

  31. M. Gholampoor, F. Movassagh-Alanagh, and H. Salimkhani, Solid State Sci. 64, 51 (2017).

    CAS  Google Scholar 

  32. J. Wu and D. Chung, Carbon 40, 445 (2002).

    CAS  Google Scholar 

  33. D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, Adv. Funct. Mater. 25, 559 (2015).

    CAS  Google Scholar 

  34. N. F. Colaneri and L. Schacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992).

    Google Scholar 

  35. A. Ohlan, K. Singh, A. Chandra, and S. Dhawan, Appl. Phys. Lett. 93, 053114 (2008).

    Google Scholar 

  36. J. Lee, Y. Liu, Y. Liu, S.-J. Park, M. Park, and H. Y. Kim, J. Mater. Chem. C 5, 7853 (2017).

    CAS  Google Scholar 

  37. S. Zhao and D. Ma, J. Nanomater. 2010, 842816 (2010).

    Google Scholar 

  38. N. Kasapoğlu, A. Baykal, Y. Köseoğlu, and M. Toprak, Scr. Mater. 57, 441 (2007).

    Google Scholar 

  39. W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, and J. Zhijiang, J. Magn. Magn. Mater. 321, 3442 (2009).

    Google Scholar 

  40. Y. Liu, X. Liu, and X. Wang, J. Alloys Compd. 584, 249 (2014).

    CAS  Google Scholar 

  41. Y. He, R. Gong, Y. Nie, H. He, and Z. Zhao, J. Appl. Phys. 98, 084903 (2005).

    Google Scholar 

  42. M. Cao, J. Zhu, J. Yuan, T. Zhang, Z. Peng, Z. Gao, G. Xiao, and S. Qin, Mater. Des. 23, 557 (2002).

    Google Scholar 

  43. H. Wu, L. Wang, S. Guo, and Z. Shen, Appl. Phys. A: Mater. Sci. Process. 108, 439 (2012).

    CAS  Google Scholar 

  44. A. Beitollahi, H. Golpayegani, and M. Niyaeifar, J. Mater. Sci.: Mater. Electron. 22, 124 (2011).

    CAS  Google Scholar 

  45. J. Alam, U. Riaz, and S. Ahmad, J. Magn. Magn. Mater. 314, 93 (2007).

    CAS  Google Scholar 

  46. M. H. Al-Saleh and U. Sundararaj, J. Phys. D: Appl. Phys. 46, 035304(2012).

    Google Scholar 

  47. B. Yuan, L. Yu, L. Sheng, K. An, and X. Zhao, J. Phys. D: Appl. Phys. 45, 235108 (2012).

    Google Scholar 

  48. M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, Carbon 50, 5126 (2012).

    CAS  Google Scholar 

  49. Y.-Y. Kim, J. Yun, H.-I. Kim, and Y.-S. Lee, J. Ind. Eng. Chem. 18, 392(2012).

    CAS  Google Scholar 

  50. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Appl. Phys. Lett. 98, 072906 (2011).

    Google Scholar 

  51. H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, and M. Cao, J. Mater. Chem. 22, 21679 (2012).

    CAS  Google Scholar 

  52. H. Zou, S. Li, L. Zhang, S. Yan, H. Wu, S. Zhang, and M. Tian, J. Magn. Magn. Mater. 323, 1643 (2011).

    CAS  Google Scholar 

  53. Y. Feng, T. Qiu, and C. Shen, J. Magn. Magn. Mater. 318, 8 (2007).

    CAS  Google Scholar 

  54. Y. Liu, S. Wei, B. Xu, Y. Wang, H. Tian, and H. Tong, J. Magn. Magn. Mater. 349, 57 (2014).

    CAS  Google Scholar 

  55. M.A. Dar, R. Kotnala, V. Verma, J. Shah, W. Siddiqui, and M. Alam, J. Phys. Chem. C 116, 5277 (2012).

    CAS  Google Scholar 

  56. P. Saini, V. Choudhary, and S. Dhawan, Polym. Adv. Technol. 20, 355 (2009).

    CAS  Google Scholar 

  57. P. Saini, V. Choudhary, K. Sood, and S. Dhawan, J. Appl. Polym. Sci. 113, 3146 (2009).

    CAS  Google Scholar 

  58. K. Lakshmi, H. John, K. Mathew, R. Joseph, and K. George, Acta Mater. 57, 371 (2009).

    CAS  Google Scholar 

  59. H. K. Choudhary, R. Kumar, S. P. Pawar, A. Anupama, S. Bose, and B. Sahoo, ChemistrySelect 3, 2120 (2018).

    CAS  Google Scholar 

  60. H. K. Choudhary, S. P. Pawar, R. Kumar, A. Anupama, S. Bose, and B. Sahoo, ChemistrySelect 2, 830 (2017).

    Google Scholar 

  61. E. J. Jelmy, S. Ramakrishnan, and N. K. Kothurkar, Polym. Adv. Technol. 27, 1246 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazaeli Reza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni Ahmad, Arezoo, G., Reza, F. et al. Synthesis and Optimization of Thermoplastic Polyurethane/Polyaniline/Ferrite Cobalt Composite as an Effective Absorber in X-Band Region. Polym. Sci. Ser. A 62, 744–757 (2020). https://doi.org/10.1134/S0965545X20330019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20330019

Navigation