Skip to main content
Log in

Determination of the Diameter Distribution Function of Single-Wall Carbon Nanotubes by the X-Ray Diffraction Data

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A method to construct an atomic model of bundles consisting of single-wall carbon nanotubes with different diameters is proposed. It takes into account the appearing distortions of the close packing and helps calculate X-ray diffraction patterns by the Debye scattering equation. This method is demonstrated on a Tuball™(OCSiAl) sample. Its application provides information on the diameter distribution function of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. M. Agrawal, B. S. Sudalayandi, L. M. Raff, and R. Komanduri. Comput. Mater. Sci., 2006, 38, 271.

    Article  CAS  Google Scholar 

  2. M. Meo and M. Rossi. Compos. Sci. Technol., 2006, 66, 1597.

    Article  CAS  Google Scholar 

  3. B. W. Xing, Z. C. Chun, and C. W. Zhao. Physica, 2004, 352, 156.

    Article  Google Scholar 

  4. Q.-P. Feng, X.-J. Shen, J.-P. Yang, S.-Y. Fu, Y.-W. Mai, and K. Friedrich. Polymer, 2011, 52, 6037.

    Article  CAS  Google Scholar 

  5. X. Xu, A.J. Uddin, K. Aoki, Y. Gotoh, T. Saito, and M. Yumura. Carbon, 2010, 48, 1977.

    Article  CAS  Google Scholar 

  6. L. Sun, G. L. Warren, J. Y. O’Reillya, W. N. Everett, S. M. Lee, D. Davis, D. Lagoudas, and H.-J. Suea. Carbon, 2008, 46, 320.

    Article  CAS  Google Scholar 

  7. P. G. Collins and P. Avouris. Sci. Am., 2000, 62.

    Google Scholar 

  8. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu. Phys. Rev. Lett., 2005, 95.

    Google Scholar 

  9. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio. Nature, 1996, 382, 54.

    Article  CAS  Google Scholar 

  10. S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao. Appl. Phys. Lett., 2002, 80, 4632.

    Article  CAS  Google Scholar 

  11. L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, and L. Lozzi. Appl. Phys. Lett., 2003, 82, 961.

    Article  CAS  Google Scholar 

  12. J. A. Talla. Physica, 2012, 407, 966.

    Article  CAS  Google Scholar 

  13. M. S. Dresselhaus, G. Dresselhaus, and R. Saito. Carbon, 1995, 33, 883.

    Article  CAS  Google Scholar 

  14. A. Thess, R. Lee, P. Nikolaev, and H. Dai. Science, 1996, 274, 483.

    Article  Google Scholar 

  15. T. Belin and F. Epron. Mater. Sci. Engin., 2005, 119, 105.

    Article  Google Scholar 

  16. L. Alvarez, A. Righi, T. Guillard, S. Rols, E. Anglaret, D. Laplaze, and J.-L. Sauvajol. Chem. Phys. Lett., 2000, 316, 186.

    Article  CAS  Google Scholar 

  17. S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J.-L. Sauvajol. Eur. Phys. J., 1998, 10, 263.

    Article  Google Scholar 

  18. H. Kadowaki, A. Nishiyama, K. Matsuda, Y. Maniwa, S. Suzuki, Y. Achiba, and H. Kataura. J. Phys. Soc. Jpn., 2005, 74, 2990.

    Article  CAS  Google Scholar 

  19. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley. Appl. Phys., 1998, 67, 29.

    Article  CAS  Google Scholar 

  20. M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba, K. Kato, M. Takata, A. Fujiwara, K. Matsuda, and Y. Maniwa. Phys. Rev., 2003, 68, 041405.

    Article  Google Scholar 

  21. Y. Maniwa, Y. Kumazawa, Y. Saito, H. Tou, H. Kataura, Hiroyoshi Ishii, S. Suzuki, Y. Aachiba, A. Fujiwara, and H. Suematsu. Jpn. J. Appl. Phys., 1999, 38, 668.

    Article  Google Scholar 

  22. Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. Achiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara, and H. Suematsu. Phys. Rev., 2001, 64.

    Google Scholar 

  23. G. Liu, Y. Zhao, K. Deng, Z. Liu, W. Chu, J. Chen, Y. Yang, K. Zheng, H. Huang, W. Ma, L. Song, H. Yang, C. Gu, G. Rao, C. Wang, S. Xie, and L. Sun. Nano Lett., 2008, 8, 1071.

    Article  CAS  Google Scholar 

  24. I. Hinkov, J. Grand, M.L. de la Chapelle, S. Farhata, C. D. Scott, P. Nikolaev, G. B. Tech, V. Pichot, P. Launois, J. Y. Mevellec, and S. Lefrant. J. Appl. Phys., 2004, 96, 2029.

    Article  Google Scholar 

  25. N. Bendiab, R. Almairac, S. Rols, R. Aznar, J.-L. Sauvajol, and I. Mirebeau. Phys. Rev., 2004, 69.

    Google Scholar 

  26. A. Giannasi, M. Celli, J. L. Sauvajol, M. Zoppi, and D. T. Bowron. Physica, 2004, 350, 1027.

    Article  Google Scholar 

  27. R. M. Allaf, I. V. Rivero, S. S. Spearman, and L. J. Hope-Weeks. Mater. Character., 2011, 62, 857.

    Article  CAS  Google Scholar 

  28. S. V. Tsybulya and D. A. Yatsenko. J. Struct. Chem., 2012, 53, 150.

    Article  Google Scholar 

  29. P. Debye. Ann. Physik, 1915, 351, 809.

    Article  Google Scholar 

  30. R. Mitsuyama, S. Tadera, H. Kyakuno, R. Suzuki, H. Ishii, Y. Nakai, Y. Miyata, K. Yanagi, H. Kataura, and Y. Maniwa. Carbon, 2014, 75, 299.

    Article  CAS  Google Scholar 

  31. B. Emmanuel, S. Thomas, G. Raghuvaran, and D. Sherwood. J. Alloys Compd., 2009, 479, 484.

    Article  CAS  Google Scholar 

  32. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio. Phys. Rep., 2005, 409, 47.

    Article  Google Scholar 

  33. J. B. Aladekomo and R. H. Bragg. Carbon, 1990, 28, 897.

    Article  Google Scholar 

  34. E. A. Belenkov. Inorg. Mater., 2001, 37, 928.

    Article  CAS  Google Scholar 

  35. I. Sanc. Foreing Trade Corporation. Panska, Czechoslovakia, ICDD Grant-in-Aid, 1990.

    Google Scholar 

  36. M. He, Y. Magnin, H. Jiang, H. Amara, E. I. Kauppinen, A. Loiseau, and C. Bichara. Nanoscale, 2018, 10, 6744.

    Article  CAS  Google Scholar 

  37. M. Li, X. Liu, X. Zhao, F. Yang, X. Wang, and Y. Li. Top. Curr. Chem., 2017, 375, 29.

    Article  Google Scholar 

  38. J. S. Barnard, C. Paukner, and K. K. Koziol. Nanoscale, 2016, 8, 17262.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SWCNT samples were provided by the OCSiAl Group.

Funding

The work was performed within the State Contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project ????-?17-117041710079-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Salamatov or A. A. Khasin.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 12, pp. 2089-2096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatov, I.N., Yatsenko, D.A. & Khasin, A.A. Determination of the Diameter Distribution Function of Single-Wall Carbon Nanotubes by the X-Ray Diffraction Data. J Struct Chem 60, 2001–2008 (2019). https://doi.org/10.1134/S0022476619120175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619120175

Keywords

Navigation