Skip to main content
Log in

Simulation of Quasi-One-Dimensional Wigner Solid Melting in a Parabolic Confinement

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A computer simulation of a quasi-one-dimensional Coulomb crystal in a parabolic confinement has been carried out using molecular dynamics. The melting transition has been investigated and critical temperatures have been determined from the behavior of the modified Lindemann parameter, translational correlation function, and structure factor. The values obtained for the critical temperature are in good agreement with the earlier experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).

    Article  ADS  Google Scholar 

  2. E. Wigner, Phys. Rev. 46, 1002 (1934).

    Article  ADS  Google Scholar 

  3. D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, New York, 2002).

    Google Scholar 

  4. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    Google Scholar 

  5. G. Piacente, I. Schweigert, J. J. Betouras, and F. M. Peeters, Phys. Rev. B 69, 045324 (2004).

    Article  ADS  Google Scholar 

  6. K. Zakh and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).

    Article  ADS  Google Scholar 

  7. P. Dillmann, I. Schweigert, P. Keim, and F. M. Peeters, J. Phys.: Condens. Matter 24, 464118 (2012).

    Google Scholar 

  8. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

    Article  ADS  Google Scholar 

  9. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970).

    ADS  MathSciNet  Google Scholar 

  10. B. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979).

    Article  ADS  Google Scholar 

  11. A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  12. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  ADS  Google Scholar 

  13. E. Y. Andrei, Two-Dimensional Electron Systems: On Helium and Other Cryogenic Substrates, Vol. 19 of Physics and Chemistry of Materials with Low-Dimensional Structures (Springer Science, New York, 2012).

    Google Scholar 

  14. E. N. Frey, D. R. Nelson, and L. Radzihovsky, Phys. Rev. Lett. 83, 2977 (1999).

    Article  ADS  Google Scholar 

  15. H. Thomas, G. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  16. P. Glasson, V. Dotsenko, P. Fozooni, M. J. Lea, W. Bailey, G. Papageorgiou, S. E. Andresen, and A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001).

    Article  ADS  Google Scholar 

  17. M. Fogler, S. Teber, and B. Shklovskii, Phys. Rev. B 69, 035413 (2004).

    Article  ADS  Google Scholar 

  18. A. D. Klironomos and J. S. Meyer, Phys. Rev. B 84, 0241173 (2011).

    Article  Google Scholar 

  19. P. Platzman and M. Dykman, Science (Washington, DC, U. S.) 284, 1967 (1999).

    Article  Google Scholar 

  20. S. A. Lyon, Phys. Rev. A 74, 052338 (2006).

    Article  ADS  Google Scholar 

  21. D. I. Schuster, A. Fragner, M. I. Dykman, S. A. Lyon, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010).

    Article  ADS  Google Scholar 

  22. D. G. Rees, N. R. Beysengulov, Y. Teranishi, C. S. Tsao, S. S. Yeh, S. P. Chiu, Y. H. Lin, D. A. Tayurskii, J. J. Lin, and K. Kono, Phys. Rev. B 94, 045139 (2016).

    Article  ADS  Google Scholar 

  23. N. R. Beysengulov, D. G. Rees, Y. Lysogorskiy, N. K. Galiullin, A. S. Vazjukov, D. A. Tayurskii, and K. Kono, J. Low Temp. Phys. 182, 28 (2016).

    Article  ADS  Google Scholar 

  24. D. G. Rees, N. R. Beysengulov, J. J. Lin, and K. Kono, Phys. Rev. Lett. 116, 206801 (2016).

    Article  ADS  Google Scholar 

  25. F. M. Peeters, Phys. Rev. B 30, 159 (1984).

    Article  ADS  Google Scholar 

  26. A. Brodin, A. Nych, U. Ognysta, B. Lev, V. Nazarenko, M. Škarabot, and I. Muševič, Condens. Matter Phys. 13, 33601 (2010).

    Article  Google Scholar 

  27. P. P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).

    Article  ADS  Google Scholar 

  28. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  29. P. Langevin, C. R. Acad. Sci. Paris 146, 530 (1908).

    Google Scholar 

  30. A. O. Badrutdinov, D. Konstantinov, M. Watanabe, and K. Kono, Europhys. Lett. 104, 47007 (2013).

    Article  ADS  Google Scholar 

  31. D. C. Glattli, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 60, 420 (1988).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 3.9779.2017/8.9, subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Zakharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, M.Y., Beysengulov, N.R., Lysogorskiy, Y. et al. Simulation of Quasi-One-Dimensional Wigner Solid Melting in a Parabolic Confinement. Jetp Lett. 110, 697–701 (2019). https://doi.org/10.1134/S0021364019220016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019220016

Navigation