Skip to main content
Log in

The Effect of Damage of a Plasma-Treated Polyurethane Surface on Bacterial Adhesion

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Elastic polyurethanes are flexible materials used in biomedical products. Plasma treatment is a promising method of surface modification. However, external deformation of the elastic substrate could damage the modified layer and provoke various undesirable consequences. In this work, two elastic polyurethanes with different stiffness have been studied. The materials were treated by plasma immersion implantation of nitrogen ions (with the energy of 1 and 3 keV). As a result, the relief and hydrophobicity of the surfaces changed such that the adhesion of both Gram-positive (Staphylococcus) and Gram-negative (Escherichia coli) bacteria decreased. Cyclic uniaxial deformation damages the treated surfaces: transverse cracks and longitudinal folds are formed. These changes increase bacterial adhesion to values that exceeding that on untreated materials. All features of the modified surfaces correlated both with the properties of original substrate and with the treatment parameters. Bacterial adhesion is affected mainly by the peculiarities of the relief structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. A. Panchuk, Z. K. Sadakbaeva, D. V. Bagrov, et al., Polym. Sci., Ser. A 52 (8), 794 (2010).

    Article  Google Scholar 

  2. P. Alves, S. Pinto, H. C. de Sousa, and M. H. Gil, J. Appl. Polym. Sci. 122 (4), 2302 (2011).

    Article  Google Scholar 

  3. I. A. Morozov, A. S. Mamaev, I. V. Osorgina, et al., Mat. Sci. Eng. C – Mater. 62, 242 (2016).

  4. A. L. Volynskii, D. A. Panchuk, Z. K. Sadakbaeva, et al., Dokl. Phys. Chem. 427 (2), 133 (2009).

    Article  Google Scholar 

  5. I. A. Morozov, A. S. Mamaev, M. V. Bannikov, et al., Coatings 8 (2), 75-1-11 (2018).

  6. I. V. Osorgina, S. E. Porozova, S. A. Plaksin, and I. A. Morozov, Ned. Tekh., No. 1, 45 (2016).

  7. A. Beliaev, A. Svistkov, R. Iziumov, et al., IOP Conf. Ser.: Mat. Sci. Eng. 123, Article ID 012001 (2016).

  8. I. Kondyurina, G. S. Nechitailo, A. L. Svistkov, et al., Nucl. Instrum. Meth. 342, 39 (2015).

    Article  Google Scholar 

  9. M. Stuber, L. Niederberger, F. Danneil, et al., Adv. Eng. Mater. 9 (12), 1114 (2007).

    Article  Google Scholar 

  10. K. Tsougeni, A. Tserepi, G. Boulousis, et al., Plasma Process Polym. 4 (4), 398 (2007).

    Article  Google Scholar 

  11. I. A. Morozov, A. S. Mamaev, I. V. Osorgina, et al., J. Appl. Polym. Sci. 135 (11), 45983 (2018).

    Article  Google Scholar 

  12. R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, J. Mater. Res. 15 (11), 2468 (2000).

    Article  ADS  Google Scholar 

  13. G. Speranza, G. Gottardi, C. Pederzolli, et al., Biomaterials 25, 2029 (2004).

    Article  Google Scholar 

  14. K. Triandafillu, D J. Balazs, B. O. Aronsson, et al., Biomaterials 24, 1507 (2003).

    Article  Google Scholar 

  15. M. Katsikogianni and Y. F. Missirlis, Eur. Cell Mater. 8, 37 (2004).

    Article  Google Scholar 

  16. N. Mitik-Dineva, et al., Biotechnol. J.: Healthcare Nutr. Technol. 3, 536 (2008).

    Article  Google Scholar 

  17. M. G. Katsikogianni and Y. F. Missirlis, Acta Biomater. 6, 1107 (2010).

    Article  Google Scholar 

  18. V. A. Tegoulia and S. L. Cooper, Colloids Surf. B: Biointerfaces 24, 217 (2002).

    Article  Google Scholar 

  19. J. D. Patel, M. Ebert, R. Ward, and J. M. Anderson, J. Biomed. Mater. Res. A 80A, 742 (2007).

    Article  Google Scholar 

  20. T. Shida, H. Koseki, I. Yoda, et al., Int. J. Nanomed. 8, 3955 (2013).

    Google Scholar 

  21. M. R. Sanchis, O. Calvo, O. Fenollar, et al., Polym. Test. 27 (1), 75 (2008).

    Article  Google Scholar 

  22. P. Gilbert, D. J. Evans, E. Evans, et al., J. Appl. Bacteriol. 71 (1), 72 (1991).

    Google Scholar 

  23. K. J. Edwards and A. D. Rutenberg, Chem. Geol. 180 (1–4), 19 (2001).

  24. D. Perera-Costa, J. M. Bruque, M. L. Gonzalez-Martin, et al., Langmuir 30, 4633 (2014).

    Article  Google Scholar 

  25. A. P. Alekhin, G. M. Boleiko, S. A. Gudkova, et al., Nanotechnol. Russia 5, 696 (2010).

    Article  Google Scholar 

  26. I. A. Morozov, A. S. Kamenetskikh, R. I. Izumov, and M. G. Scherban, J. Phys. Conf. Ser. 1134, 012042 (2018).

    Article  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 17-48-590057_r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Morozov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, I.A., Kamenetskikh, A.S., Beliaev, A.Y. et al. The Effect of Damage of a Plasma-Treated Polyurethane Surface on Bacterial Adhesion. BIOPHYSICS 64, 410–415 (2019). https://doi.org/10.1134/S000635091903014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091903014X

Navigation