Skip to main content
Log in

Investigation of the Influence of Organics Contained in Natural Water on the Performance of Reverse Osmosis Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Aspects of the interaction of organic pollutants of natural water with nanofiltration and reverse osmosis membranes have been considered on the basis of experimental results and summarized literature data. Experimental studies have been carried out to determine the rates of membrane fouling by various organic substances including humic acids (imparting the color) and low-molecular-weight organics (responsible for the oxygen demand) during the treatment of river water and pretreated water. The effect of membrane material on the rate of organic deposition on them has been studied. Relationships have been obtained for calculating the rates of buildup of organics on membranes depending on their concentration in the feed water, the nature and molecular weight of foulants, the membrane material, the flow rates in device channels, and the recovery. Experimental determination of the rates of adsorption of organic substances of various natures has made it possible to measure the sorption capacity of the membrane surface. It is likely that in the case of simultaneous fouling of the membrane with poorly soluble salts (calcium carbonate), colloidal and organic substances, iron compounds, etc., the effect of the set of foulants and scalants on the membranes surface may differ significantly from the results obtained in this study. Predicting the amount of organic foulants will help to correctly select the composition of solutions for chemical cleaning of membranes and eliminate the influence of organics on scale dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. C. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, Desalination 216, 1 (2007).

    Article  CAS  Google Scholar 

  2. J. W. Kaakinen and C. D. Moody. ACS Symposium Series, vol. 281: Reverse Osmosis and Ultrafiltration, Ed. by S. Sourirajan and T. Matsuura (American Chemical Society, Washington, D.C., 1985), p. 359.

  3. R. W. Baker, E. L. Cussler, W. Eykamp, et al., Membrane Separation Systems—A Research & Development Needs Assessment: Final Report (Department of Energy, 1990), Vol. II.

  4. H. Winters, Desalination 66, 319 (1987).

    Article  CAS  Google Scholar 

  5. J. S. Taylor, in Proceedings of the Ninth Annual Membrane Conference, Boston, November 4–6, 1991.

  6. S. Kim, I. S. Lee, K. J. Kim, D. M. Shon, L. S. Kang, Desalin. Water Treat. 33, 329 (2011).

    Article  CAS  Google Scholar 

  7. H. Lee, Y. Jin, and S. Hong, Desalination 399, 185 (2016).

    Article  CAS  Google Scholar 

  8. A. Shrivastava, S. Rosenberg, and M. Peery, Desalination 368, 181 (2015).

    Article  CAS  Google Scholar 

  9. A. S. Al-Amoudi, Desalination 259, 1 (2010).

    Article  CAS  Google Scholar 

  10. A. R. Guastalli, F. X. Simon, Y. Penru, et al., Desalination 322, 144 (2013).

    Article  CAS  Google Scholar 

  11. P.-J. Remize, J.-F. Laroche, J. Leparc, and J.-C. Schrotter, Desalin. Water Treat. 9, 22 (2009).

    Article  CAS  Google Scholar 

  12. F. Knops, J. E. Pozzi, and D. Dharmabalan, in Proceedings of the International Desalination Association World Congress on Water Reuse and Desalination, San Paolo, Brazil, October 15–20, 2017. IDAWC REF: 57848.

  13. A. N. Samodurov, S. E. Lysenko, S. L. Gromov, et al., Teploenergetika, No. 6, 26 (2006).

    Google Scholar 

  14. E. B. Yurchevskii and A. G. Pervov, Energosberezh. Vodopodgot., No. 5, 32 (2016).

  15. S. L. Gromov, M. P. Kovalev, S. E. Lysenko, et al., Vodoochist. Vodosnabzh., No. 2, 20 (2008).

  16. A. R. Guastalli, F. X. Simon, Y. Penru, et al., Desalination 322, 144 (2013).

    Article  CAS  Google Scholar 

  17. J.-M. Laine, D. Viol, and P. Maulart, in Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, Paris, October 3–6, 2000, Vol. 1, p. 144.

  18. M. Pontie, et al., Desalination 157, 127 (2013).

    Article  Google Scholar 

  19. V. Bonnelye, M. A. Sanz, and J. P. Durand, Desalination 167, 191 (2004).

    Article  CAS  Google Scholar 

  20. C. J. Gabelich, T. I. Yun, and B. M. Coffey, Desalination 154, 207 (2003).

    Article  CAS  Google Scholar 

  21. F. R. Boussahe, S. Bouland, K. M. Moussaoui, and A. Montiel, in Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, Paris, October 3–6, 2000, Vol. 2, p. 435.

  22. J. C. Ktuithof and J. Vrouwenvelder, Desalin. Water Treat. 126, 1, (2018), 1–2.

  23. L. Katebian, E. Gomez, L. Skillman, et al., Desalination 393, 135 (2016).

    Article  CAS  Google Scholar 

  24. E. B. Yurchevskii, A. G. Pervov, A. P. Andrianov, and M. A. Pichugina, Teploenergetika, No. 11, 46 (2009).

  25. A. G. Pervov, et al., Desalination 126, 227 (1999).

    Article  CAS  Google Scholar 

  26. A. G. Pervov, A. P. Andrianov, D. V. Spitsov, and E. B. Yurchevskii, Membrany, No. 2, 3 (2010).

  27. B. N. Khodyrev, B. S. Fedoseev, A. I. Kalashnikov, et al., Elektr. Stantsii, No. 6, 51 (2002).

    Google Scholar 

  28. T. L. Champlin in Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, Paris, October 3–6, 2000, Vol. 1, p. 155.

  29. A. G. Pervov, A. P. Andrianov, D. V. Spitsov, and L. V. Rudakova, Vodosnabzh. Sanit. Tekh., No. 7, 12 (2009).

  30. A. G. Pervov, G. Ya. Rudakova, and R. V. Efremov, Vodosnabzh. Sanit. Tekh., No. 7, 21 (2009).

  31. D. L. Russell, in Proceedings of the International Desalination Association World Congress on Water Reuse and Desalination, San Paolo, Brazil, October 15–20, 2017. IDAWC REF: 58273.

  32. T. Darton, U. Annunziata, F. del Vigo Pisano, and S. Gallego, Desalination 167, 239 (2004).

    Article  CAS  Google Scholar 

  33. N. Pena Garcia, J. Rodriguez, F. del Vigo, et al., in Proceedings of the International Desalination Association World Congress on Water Reuse and Desalination, San Paolo, Brazil, October 15–20, 2017. IDAWC REF: 57950.

  34. N. Pena, S. Gallego, F. del Vigo, and S. P. Chesters, Desalin. Water Treat. 51, 958 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pervov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervov, A.G., Nguyen, X.Q. & Yurchevsky, E.B. Investigation of the Influence of Organics Contained in Natural Water on the Performance of Reverse Osmosis Membranes. Membr. Membr. Technol. 1, 286–297 (2019). https://doi.org/10.1134/S2517751619050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619050068

Keywords:

Navigation