Skip to main content
Log in

LTR retrotransposons in plants

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Ty1/copia and Ty3/gypsy LTR retrotransposons represent a significant part of plant genomes and play an important role in their structure, functioning, and evolution. The majority of information about this group of transposable elements is related to agricultural plant species and model objects, such as Arabidopsis thaliana. The most investigated groups of LTR retrotransposons are those present in angiosperms, including the Ty1/copia (Sire, Oryco, Retrofit, and Tork families) and Ty3/gypsy (CRM, Galadriel, Reina, Del, REM, Athila, and Tat) superfamilies. The genomes of gymnosperms can include both common (CRM, Galadriel, Reina, and Del), and specific Ty3/gypsy (PpRT1, IFG7, PtGypsyX1, PGGYPSYX1) and Ty1/copia (TPE1, Tpa, PtCopiaX1, PGCOPIAX1, and Tgb) LTR retrotransposons. There is little information about the diversity and distribution of LTR retrotransposons in nonseed plants (mosses, ferns, etc.). Fern genomes contain some Ty3/gypsy retroelements, closely related to the CRM family, as well as some specific retroelements from the Galahad and Mordred families. Club-moss genomes contain Ty3/gypsy elements from the Tcn1 family, originally described only in fungal genomes, and from the Galahad and Mordred families. Retroelements, described in moss genomes, belong to the Galahad and Tcn1 families. Ty1/copia retroelements have been revealed in the genomes of certain nonseed plants, but they have not been described in detail, and the question of their belonging to any phylogenetic group of LTR retrotransposons still remains unclear. There are no data on the diversity of LTR retrotransposons in the genomes of green algae and charophytes, except for information about the REM (Ty3/gypsy) element from the genome of green alga Chlamydomonas reinhardtii and the Osser (Ty1/copia) element from the genome of colonial green alga Volvox carteri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, C.S. and Jones, I.M., The Molecular Basis of HIV Capsid Assembly—Five Years of Progress, Rev. Med. Virol., 2004, vol. 14, pp. 107–121.

    PubMed  CAS  Google Scholar 

  • Aeby, P., Spicher, A., de Chastonay, Y., et al., Structure and Genomic Organization of Proretrovirus-Like Elements Partially Eliminated from the Somatic Genome of Ascaris lumbricoides, EMBO J., 1986, vol. 5, pp. 3353–3360.

    PubMed  CAS  Google Scholar 

  • Alberola, T.M. and de Frutos, R., Molecular Structure of a Gypsy Element of Drosophila subobscura (gypsyDs) Constituting a Degenerate Form of Insect Retroviruses, Nucleic Acids Res., 1996, vol. 24, pp. 914–923.

    PubMed  CAS  Google Scholar 

  • Ananiev, E.V., Phillips, R.L., and Rines, H.W., Chromosome Specific Molecular Organization of Maize (Zea mays L.) Centromeric Regions, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 13073–13078.

    PubMed  CAS  Google Scholar 

  • Anxolabehere, D., Kidwell, M.G., and Periquet, G., Molecular Characteristics of Diverse Populations Are Consistent with the Hypothesis of a Recent Invasion of Drosophila melanogaster by Mobile P Elements, Mol. Biol. Evol., 1988, vol. 5, pp. 252–269.

    PubMed  CAS  Google Scholar 

  • Beguiristain, T., Grandbastien, M.A., Puigdomnech, P., and Casacuberta, J.M., Three Tnt1 Subfamilies Show Different Stress-Associated Patterns of Expression in Tobacco. Consequences for Retrotransposon Control and Evolution in Plants, Plant Physiol., 2001, vol. 127, pp. 212–221.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Ma, J., and Devos, K.M., Mechanisms of Recent Genome Size Variation in Flowering Plants, Ann. Bot., 2005, vol. 95, pp. 127–132.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Transposable Element Contributions to Plant Gene and Genome Evolution, Plant. Mol. Biol., 2000, vol. 42, pp. 251–269.

    PubMed  CAS  Google Scholar 

  • Bergthorsson, U., Richardson, A.O., Young, G.J., et al., Massive Horizontal Transfer of Mitochondrial Genes from Diverse Land Plant Donors to the Basal Angiosperm Amborella, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 17747–17752.

    PubMed  CAS  Google Scholar 

  • Boeke, J.D. and Corces, V.G., Transcription and Reversetranscription of Retrotransposons, Annu. Rev. Microbiol., 1989, vol. 43, pp. 403–434.

    PubMed  CAS  Google Scholar 

  • Boutabout, M., Wilhelm, M., and Wilhelm, F.X., DNA Synthesis Fidelity by the Reverse Transcriptase of the Yeast Retrotransposon Ty1, Nucleic Acids Res., 2001, vol. 29, pp. 2217–2222.

    PubMed  CAS  Google Scholar 

  • Bowen, N.J. and McDonald, J.F., Genomic Analysis of Caenorhabditis elegans Reveals Ancient Families of Retroviral-Like Elements, Genome Res., 1999, vol. 9, pp. 924–935.

    PubMed  CAS  Google Scholar 

  • Brandes, A., Heslop-Harrison, J.S., Kamm, A., et al., Comparative Analysis of the Chromosomal and Genomic Organization of Ty1-Copia-Like Retrotransposons in Pteridophytes, Gymnosperms and Angiosperms, Plant. Mol. Biol., 1997, vol. 33, pp. 11–21.

    PubMed  CAS  Google Scholar 

  • Briggs, J.A., Simon, M.N., Gross, I., et al., The Stoichiometry of GAG Protein in HIV-1, Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 672–675.

    PubMed  CAS  Google Scholar 

  • Bruggmann, R., Bharti, A.K., Gundlach, H., et al., Uneven Chromosome Contraction and Expansion in the Maize Genome, Genome Res, 2006, vol. 16, pp. 1241–1251.

    PubMed  CAS  Google Scholar 

  • Brunel, C., Marquet, R., Romby, P., and Ehresmann, C., RNA Loop-Loop Interactions as Dynamic Functional Motifs, Biochimie, 2002, vol. 84, pp. 925–944.

    PubMed  CAS  Google Scholar 

  • Chalvet, F., Teysset, L., Terzian, C., et al., Proviral Amplification of the gypsy Endogenous Retrovirus of Drosophila melanogaster Involves Env-Independent Invasion of the Female Germline, EMBO J., 1999, vol. 18, pp. 2659–2669.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., Sniegowski, P., and Stephan, W., The Evolutionary Dynamics of Repetitive DNA in Eukaryotes, Nature, 1994, vol. 371, pp. 215–220.

    PubMed  CAS  Google Scholar 

  • Cheng, X., Zhang, D., Cheng, Z., et al., A New Family of Ty1-copia-Like Retrotransposons Originated in the Tomato Genome by a Recent Horizontal Transfer Event, Genetics, 2009, vol. 181, pp. 1183–1193.

    PubMed  CAS  Google Scholar 

  • Cheresiz, S.V., Yurchenko, N.N., Ivannikov, A.V., and Zakharov, I.K., Transposable Elements and Stress, Inform. Vestn. VOGiS, 2008, vol. 12, no. 1/2, pp. 217–242.

    Google Scholar 

  • Clark, J.B. and Kidwell, M.G., A Phylogenetic Perspective on P Transposable Element Evolution in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 11428–11433.

    PubMed  CAS  Google Scholar 

  • Cook, J.M., Martin, J., Lewin, A., et al., Systematic Screening of Anopheles Mosquito Genomes Yields Evidence for a Major Clade of pao-Like Retrotransposons, Insect Mol. Biol., 2000, vol. 9, pp. 109–117.

    PubMed  CAS  Google Scholar 

  • Copeland, C.S., Mann, V.H., Morales, M.E., et al., The Sinbad Retrotransposon from the Genome of the Human Blood Fluke, Schistosoma mansoni, and the Distribution of Related pao-Like Elements, BMC Evol. Biol., 2005, vol. 5, p. 20.

    PubMed  Google Scholar 

  • Cristofari, G., Bampi, C., Wilhelm, M., et al., A 5-3 Long-Range Interaction in Ty1 RNA Controls Its Reverse Transcription and Retrotransposition, EMBO J., 2002, vol. 21, pp. 4368–4379.

    PubMed  CAS  Google Scholar 

  • Darlix, J.L., Gabus, C., Nugeyre, M.T., et al., Cis Elements and Transacting Factors Involved in the RNA Dimerization of the Human Immunodeficiency Virus HIV-1, J. Mol. Biol., 1990, vol. 216, pp. 689–699.

    PubMed  CAS  Google Scholar 

  • de Almeida, L.M. and Carareto, C.M., Multiple Events of Horizontal Transfer of the minos Transposable Element between Drosophila Species, Mol. Phylogenet. Evol., 2005, vol. 35, pp. 583–594.

    PubMed  Google Scholar 

  • Der, J.P., Barker, M.S., Wickett, N.J., et al., De novo Characterization of the Gametophyte Transcriptome in Bracken Fern, Pteridium aquilinum, BMC Genomics, 2011, vol. 12, p. 99.

    PubMed  CAS  Google Scholar 

  • Devos, K.M., Brown, J.K., and Bennetzen, J.L., Genome Size Reduction through Illegitimate Recombination Counteracts Genome Expansion in Arabidopsis, Genome Res., 2002, vol. 12, pp. 1075–1079.

    PubMed  CAS  Google Scholar 

  • Docking, T.R., Saad, F.E., Elliott, M.C., and Schoen, D.J., Retrotransposon Sequence Variation in Four Asexual Plant Species, J. Mol. Evol., 2006, vol. 62, pp. 375–387.

    PubMed  CAS  Google Scholar 

  • Du, J., Tian, Z., Bowen, N.J., et al., Bifurcation and Enhancement of Autonomous-Nonautonomous Retrotransposon Partnership through LTR Swapping in Soybean, Plant Cell, 2010, vol. 22, pp. 48–61.

    PubMed  CAS  Google Scholar 

  • Eckert, A.J. and Hall, B.D., Phylogeny, Historical Biogeography, and Patterns of Diversification for Pinus (Pinaceae): Phylogenetic Tests of Fossil-Based Hypotheses, Mol. Phylogenet. Evol., 2006, vol. 40, pp. 166–182.

    PubMed  CAS  Google Scholar 

  • Eickbush, T.H. and Jamburuthugoda, V.K., The Diversity of Retrotransposons and the Properties of Their Reverse Transcriptases, Virus Res., 2008, vol. 134, pp. 221–234.

    PubMed  CAS  Google Scholar 

  • Emberton, J., Ma, J., Yuan, Y., et al., Gene Enrichment in Maize with Hypomethylated Partial Restriction (HMPR) Libraries, Genome Res., 2005, vol. 15, pp. 1441–1446.

    PubMed  CAS  Google Scholar 

  • Evans, M.J., Bacharach, E., and Goff, S.P., RNA Sequences in the Moloney Murine Leukemia Virus Genome Bound by the GAG Precursor Protein in the Yeast Three-Hybrid System, J. Virol., 2004, vol. 78, pp. 7677–7684.

    PubMed  CAS  Google Scholar 

  • Feng, Y.X. and Moore, S.P., Garfi Nkel D.J., Rein A. The Genomic RNA in Ty1 Virus-Like Particles Is Dimeric, J. Virol., 2000, vol. 74, pp. 10819–10821.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., Dunbar, E., Anderson, R., et al., Ty1-copia Group Retrotransposons Are Ubiquitous and Heterogeneous in Higher Plants, Nucleic Acids Res., 1992a, vol. 20, pp. 3639–3644.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., Smith, D.B., and Kumar, A., Extreme Heterogeneity of Ty1-copia Group Retrotransposons in Plants, Mol. Gen. Genet., 1992b, vol. 231, no. 2, pp. 233–242.

    PubMed  CAS  Google Scholar 

  • Fortune, P.M., Roulin, A., and Panaud, O., Horizontal Transfer of Transposable Elements in Plants, Commun. Integr. Biol., 2008, vol. 1, pp. 74–77.

    PubMed  CAS  Google Scholar 

  • Francki, M.G., Identification of bilby, a Diverged Centromeric Ty1-copia Retrotransposon Family from Cereal Rye (Secale cereale L.), Genome, 2001, vol. 44, pp. 266–274.

    PubMed  CAS  Google Scholar 

  • Friant, S., Heyman, T., Bystroem, A.S., et al., Interactions between Ty1 Retrotransposon RNA and the T and D Regions of the tRNAiMet Primer Are Required for Initiation of Reverse Transcription in vivo, Mol. Cell. Biol., 1998, vol. 18, pp. 799–806.

    PubMed  CAS  Google Scholar 

  • Friesen, N., Brandes, A., and Heslop-Harrison, J.S., Diversity, Origin, and Distribution of Retrotransposons (gypsy and Copia) in Conifers, Mol. Biol. Evol., 2001, vol. 18, pp. 1176–1188.

    PubMed  CAS  Google Scholar 

  • Fu, H. and Dooner, H.K., Intraspecific Violation of Genetic Colinearity and Its Implications in Maize, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 9573–9578.

    PubMed  CAS  Google Scholar 

  • Gao, X., Havecker, E.R., Baranov, P.V., et al., Translational Recoding Signals Between Gag and Pol in Diverse LTR Retrotransposons, RNA, 2003, vol. 9, pp. 1422–1430.

    PubMed  CAS  Google Scholar 

  • Gbadegesin, M.A., Wills, M.A., and Beeching, J.R., Diversity of LTR-Retrotransposons and Enhancer/Suppressor Mutator-Like Transposons in Cassava (Manihot esculenta Crantz), Mol. Genet. Genomics, 2008, vol. 280, pp. 305–317.

    PubMed  CAS  Google Scholar 

  • Georgiev, G.P., Mobile Genetic Elements in Animal Cells and Their Biological Significance, Eur. J. Biochem., 1984, vol. 145, pp. 203–220.

    PubMed  CAS  Google Scholar 

  • Geyer, P.K., Spana, C., and Corces, V.G., On the Molecular Mechanism of gypsy-Induced Mutations at the Yellow Locus of Drosophila melanogaster, EMBO J., 1986, vol. 5, pp. 2657–2662.

    PubMed  CAS  Google Scholar 

  • Giedroc, D.P., Theimer, C.A., and Nixon, P.L., Structure, Stability and Function of RNA Pseudoknots Involved in Stimulating Ribosomal Frameshifting, J. Mol. Biol., 2000, vol. 298, pp. 167–185.

    PubMed  CAS  Google Scholar 

  • Gorinsek, B., Gubensek, F., and Kordis, D., Evolutionary Genomics of Chromoviruses in Eukaryotes, Mol. Biol. Evol., 2004, vol. 21, pp. 781–798.

    PubMed  CAS  Google Scholar 

  • Grandbastien, M.A., Activation of Plant Retrotransposons Under Stress Conditions, Trends in Plant Sci, 1998, vol. 3, pp. 181–187.

    Google Scholar 

  • Grandbastien, M.A., Retrotransposons of Plants, in Encyclopedia of Virology, 3rd ed., Oxford, UK: Elsevier, 2008, vol. 5, pp. 428–436.

    Google Scholar 

  • Grandbastien, M.A., Spielmann, A., and Caboche, M., Tnt1, a Mobile Retroviral-Like Transposable Element of Tobacco Isolated by Plant Cell Genetics, Nature, 1989, vol. 337, pp. 376–380.

    PubMed  CAS  Google Scholar 

  • Hartl, D.L., Lohe, A.R., and Lozovskaya, E.R., Modern Thoughts on an Ancient marinere: Function, Evolution, Regulation, Ann. Rev. Genet., 1997, vol. 31, pp. 337–358.

    PubMed  CAS  Google Scholar 

  • Havecker, E.R., Gao, X., and Voytas, D.F., The Diversity of LTR Retrotransposons, Genome Biol., 2004, vol. 5, p. 225.

    PubMed  Google Scholar 

  • Havecker, E.R., Gao, X., and Voytas, D.F., The Sireviruses, a Plant-Specific Lineage of the Ty1-copia Retrotransposons, Interact with a Family of Proteins Related to Dynein Light Chain 8, Plant Physiol., 2005, vol. 139, pp. 857–868.

    PubMed  CAS  Google Scholar 

  • He, P., Ma, Y., Zhao, G., et al., FaRE1: a Transcriptionally Active Ty1-copia Retrotransposon in Strawberry, J. Plant Res., 2010, vol. 123, pp. 707–714.

    PubMed  CAS  Google Scholar 

  • Hedges, S.B., The Origin and Evolution of Model Organisms, Nat. Rev. Genet., 2002, vol. 3, pp. 838–849.

    PubMed  CAS  Google Scholar 

  • Heredia, F., Loreto, E.L., and Valente, V.L., Complex Evolution of gypsy in Drosophilid Species, Mol. Biol. Evol., 2004, vol. 21, pp. 1831–1842.

    PubMed  CAS  Google Scholar 

  • Hirochika, H. and Hirochika, R., Ty1-copia Group Retrotransposons as Ubiquitous Components of Plant Genomes, J. Genet., 1993, vol. 68, pp. 35–46.

    CAS  Google Scholar 

  • Hirochika, H., Sugimoto, K., Otsuki, Y., et al., Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 7783–7788.

    PubMed  CAS  Google Scholar 

  • Homme, Y., Sguin, A., and Tremblay, F.M., Different Classes of Retrotransposons in Coniferous Spruce Species, Genome, 2000, vol. 43, pp. 1084–1089.

    PubMed  Google Scholar 

  • Hu, W., Das, O.P., and Messing, J., Zeon-1, a Member of a New Maize Retrotransposon Family, Mol. Gen. Genet., 1995, vol. 248, pp. 471–480.

    PubMed  CAS  Google Scholar 

  • Hu, W.S., Bowman, E.H., Delviks, K.A., and Pathak, V.K., Homologous Recombination Occurs in a Distinct Retroviral Subpopulation and Exhibits High Negative Interference, J. Virol., 1997, vol. 71, pp. 6028–6036.

    PubMed  CAS  Google Scholar 

  • Hull, R. and Covey, S.N., Retroelements: Propagation and Adaptation, Virus Genes, 1995, vol. 11, pp. 105–118.

    PubMed  CAS  Google Scholar 

  • Hull, R., Harper, G., and Lockhart, B., Viral Sequences Integrated Into Plant Genomes, Trends Plant Sci., 2000, vol. 5, pp. 362–365.

    PubMed  CAS  Google Scholar 

  • Jaaskelainen, M.J., Mykkanen, A.H., Arna, T., et al., Retrotransposon BARE-1: Expression of Encoded Proteins and Formation of Virus-Like Particles in Barley Cells, Plant J., 1999, vol. 20, pp. 413–422.

    PubMed  CAS  Google Scholar 

  • Jin, Y.K. and Bennetzen, J.L., Structure and Coding Properties of Bs1, a Maize Retrovirus-Like Transposon, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 6235–6239.

    PubMed  CAS  Google Scholar 

  • Jordan, I.K., Matyunina, L.V., and McDonald, J.F., Evidence for the Recent Horizontal Transfer of Long Terminal Repeat Retrotransposon, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 12621–12625.

    PubMed  CAS  Google Scholar 

  • Kalendar, R., Tanskanen, J., Immonen, S., et al., Genome Evolution of Wild Barley (Hordeum spontaneum) by BARE-1 Retrotransposon Dynamics in Response to Sharp Microclimatic Divergence, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6603–6607.

    PubMed  CAS  Google Scholar 

  • Kalendar, R., Vicient, C.M., Peleg, O., et al., Large Retrotransposon Derivatives: Abundant, Conserved But Non-Autonomous Retroelements of Barley and Related Genomes, Genetics, 2004, vol. 166, pp. 1437–1450.

    PubMed  CAS  Google Scholar 

  • Kamm, A., Doudrick, R.L., Heslop-Harrison, J.S., and Schmidt, T., The Genomic and Physical Organization of Ty1-copia-Like Sequences as a Component of Large Genomes in Pinus elliottii var. elliottii and Other Gymnosperms, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 2708–2713.

    PubMed  CAS  Google Scholar 

  • Kentner, E.K., Arnold, M.L., and Wessler, S.R., Characterization of High-Copy-Number Retrotransposons from the Large Genomes of the Louisiana Iris Species and Their Use As Molecular Markers, Genetics, 2003, vol. 164, pp. 685–697.

    PubMed  CAS  Google Scholar 

  • Khoshoo, T.N., Chromosome Numbers in Gymnosperms, Silvae Genet., 1961, vol. 1, pp. 1–9.

    Google Scholar 

  • Khoshoo, T.N., Polyploidy in Gymnosperms, Evolution, 1959, vol. 13, pp. 24–39.

    Google Scholar 

  • Kidwell, M.G., Horizontal Transfer, Curr. Opin. Genet. Dev., 1992, vol. 2, pp. 868–873.

    PubMed  CAS  Google Scholar 

  • Kimura, Y., Tosa, Y., Shimada, S., et al., OARE-1, a Ty1copia Retrotransposon in Oat Activated by Abiotic and Biotic Stresses, Plant Cell Physiol., 2001, vol. 42, pp. 1345–1354.

    PubMed  CAS  Google Scholar 

  • Kondo, N., Nikoh, N., Ljichi, N., et al., Genome Fragment of Wolbachia Endosymbiont Transferred to X Chromosome of Host Insect, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 4280–4285.

    Google Scholar 

  • Kossack, D.S. and Kinlaw, C.S., IFG, a gypsy-Like Retrotransposon in Pinus (Pinaceae), Has an Extensive History in Pines, Plant. Mol. Biol., 1999, vol. 39, pp. 417–426.

    PubMed  CAS  Google Scholar 

  • Kovalchuk, A., Senam, S., Mauersberger, S., and Barth, G., Tyl6, a Novel Ty3/gypsy-Like Retrotransposon in the Genome of the Dimorphic Fungus Yarrowia lipolytica, Yeast, 2005, vol. 22, pp. 979–991.

    PubMed  CAS  Google Scholar 

  • Kumar, A. and Bennetzen, J.L., Plant Retrotransposons, Ann. Rev. Genet., 1999, vol. 33, pp. 479–532.

    PubMed  CAS  Google Scholar 

  • Kumekawa, N., Ohtsubo, E., and Ohtsubo, H., Identification and Phylogenetic Analysis of gypsy-Type Retrotransposons in the Plant Kingdom, Genes. Genet. Syst., 1999, vol. 74, pp. 299–307.

    PubMed  CAS  Google Scholar 

  • Laten, H.M., Havecker, E.R., Farmer, L.M., and Voytas, D.F., SIRE1, an Endogenous Retrovirus Family from Glycine max, Is Highly Homogeneous and Evolutionarily Young, Mol. Biol. Evol., 2003, vol. 20, pp. 1222–1230.

    PubMed  CAS  Google Scholar 

  • Laten, H.M., Majumdar, A., and Gaucher, E.A., SIRE-1, a copia/Ty1-Like Retroelement from Soybean, Encodes a Retroviral Envelope-Like Protein, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 6897–6902.

    PubMed  CAS  Google Scholar 

  • Laten, H.M., Phylogenetic Evidence for Ty1-copia-Like Endogenous Retroviruses in Plant Genomes, Genetics, 1999, vol. 107, pp. 87–93.

    CAS  Google Scholar 

  • Lecher, P., Bucheton, A., and Pélisson, A., Expression of the Drosophila Retrovirus gypsy as Ultrastructurally Detectable Particles in the Ovaries of Fl Is Carrying a Permissive Fl amenco Allele, J. Gen. Virol., 1997, vol. 78, pp. 2379–2388.

    PubMed  CAS  Google Scholar 

  • Lee, D., Ellis, T.H.N., Turner, L., et al., A Copia-Like Element in Pisum Demonstrates the Uses of Disperse Sequences in Genetic Analysis, Plant. Mol. Biol., 1990, vol. 15, pp. 707–722.

    PubMed  CAS  Google Scholar 

  • Levin, H.L., A Novel Mechanism of Self-Primed Reverse Transcription Defines a New Family of Retroelements, Mol. Cell. Biol., 1995, vol. 15, pp. 3310–3317.

    PubMed  CAS  Google Scholar 

  • Li, Z.Y., Chen, S.Y., Zheng, X.W., and Zhu, L.H., Identification and Chromosomal Localization of a Transcriptionally Active Retrotransposon of Ty3-gypsy Type in Rice, Genome, 2000, vol. 43, pp. 404–408.

    PubMed  CAS  Google Scholar 

  • Linares, C., Loarce, Y., Serna, A., and Fominaya, A., Isolation and Characterization of Two Novel Retrotransposons of the Ty1-copia Group in Oat Genomes, Chromosoma, 2001, vol. 110, pp. 115–123.

    PubMed  CAS  Google Scholar 

  • Linares, C., Serna, A., and Fominaya, A., Chromosomal Organization of a Sequence Related to LTR-Like Elements of Ty1-copia Retrotransposons in Avena Species, Genome, 1999, vol. 42, pp. 706–713.

    PubMed  CAS  Google Scholar 

  • Lindauer, A., Fraser, D., Brderlein, M., and Schmitt, R., Reverse Transcriptase Families and a Copia-Like Retrotransposon, osser, in the Green Alga Volvox carteri, FEBS Lett., 1993, vol. 319, pp. 261–266.

    PubMed  CAS  Google Scholar 

  • Lippman, Z., Gendrel, A.V., Black, M., et al., Role of Transposable Elements in Heterochromatin and Epigenetic Control, Nature, 2004, vol. 430, pp. 471–476.

    PubMed  CAS  Google Scholar 

  • Llaca, V. and Messing, J., Amplicons of Maize Zein Genes Are Conserved within Genic but Expanded and Constricted in Intergenic Regions, Plant J., 1998, vol. 15, pp. 211–220.

    PubMed  CAS  Google Scholar 

  • Llorens, C., Futami, R., Covelli, L., et al., The gypsy Data-base (GyDB) of Mobile Genetic Elements: Release 2.0, Nucl. Acids Res. (NARESE), 2011, vol. 39,suppl. 1, pp. D70–D74. doi: 10.1093/nar/gkq1061 (http://gydb.org/index.php/Ty3/Gypsy#CRM)

    Google Scholar 

  • Llorens, C., Muñoz-Pomer, A., Bernad, L., et al., Network Dynamics of Eukaryotic LTR Retroelements beyond Phylogenetic Trees, Biol. Direct., 2009, vol. 4, p. 41.

    PubMed  Google Scholar 

  • Ma, J., Devos, K.M., and Bennetzen, J.L., Analyses of LTR Retrotransposon Structures Reveal Recent and Rapid Genomic DNA Loss in Rice, Genome Res., 2004, vol. 14, pp. 860–869.

    PubMed  CAS  Google Scholar 

  • Madsen, L.H., Fukai, E., Radutoiu, S., et al., LORE1, an Active Low-Copy-Number Ty3-gypsy Retrotransposon Family in the Model Legume Lotus japonicus, Plant J., 2005, vol. 44, pp. 372–381.

    PubMed  CAS  Google Scholar 

  • Malik, H.S. and Eickbush, T.H., Modular Evolution of the Integrase Domain in the Ty3/gypsy Class of LTR Retrotransposons, J. Virol., 1999, vol. 73, pp. 5186–5190.

    PubMed  CAS  Google Scholar 

  • Malik, H.S. and Eickbush, T.H., Phylogenetic Analysis of Ribonuclease H Domains Suggests a Late, Chimeric Origin of LTR Retrotransposable Elements and Retroviruses, Genome Res., 2001, vol. 11, pp. 1187–1197.

    PubMed  CAS  Google Scholar 

  • Manninen, I. and Schulman, A.H., BARE-1, a Copia-Like Retroelement in Barley (Hordeum vulgare L.), Plant Mol. Biol., 1993, vol. 22, pp. 829–846.

    PubMed  CAS  Google Scholar 

  • Mao, L., Begum, D., Goff, S.A., and Wing, R.A., Sequence and Analysis of the Tomato JOINTLESS Locus, Plant Physiol., 2001, vol. 126, pp. 1331–1340.

    PubMed  CAS  Google Scholar 

  • Marillonnet, S. and Wessler, S.R., Extreme Structural Heterogeneity among the Members of a Maize Retrotransposon Family, Genetics, 1998, vol. 150, pp. 1245–1256.

    PubMed  CAS  Google Scholar 

  • Marquet, R., Baudin, F., Gabus, C., et al., Dimerization of Human Immunodeficiency Virus (Type 1) RNA: Stimulation by Cations and Possible Mechanism, Nucleic Acids Res., 1991, vol. 19, pp. 2349–2357.

    PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Tsunewaki, K., Evolutionary Dynamics of Ty1-Copia Group Retrotransposons in Grass Shown by Reverse Transcriptase Domain Analysis, Mol. Biol. Evol., 1999, vol. 16, pp. 208–217.

    PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Tsunewaki, K., Presence of Wheat Retrotransposons in Gramineae Species and the Origin of Wheat Retrotransposon Families, Genes Genet. Syst., 1997, vol. 72, pp. 335–343.

    PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Tsunewaki, K., Wheat Retrotransposon Families Identified by Reverse Transcriptase Domain Analysis, Mol. Biol. Evol., 1996, vol. 13, pp. 1384–1392.

    PubMed  CAS  Google Scholar 

  • Meignin, C., Bailly, J.L., Arnaud, F., et al., The 50 Untranslated Region and Gag Product of Idefix, a Long Terminal Repeat-Retrotransposon from Drosophila melanogaster, Act Together to Initiate a Switch between Translated and Untranslated States of the Genomic mRNA, Mol. Cell Biol., 2003, vol. 23, pp. 8246–8254.

    PubMed  CAS  Google Scholar 

  • Melayah, D., Bonnivard, E., Chalhoub, B., et al., The Mobility of the Tobacco Tnt1 Retrotransposon Correlates with Its Transcriptional Activation by Fungal Factors, Plant J., 2001, vol. 28, pp. 159–168.

    PubMed  CAS  Google Scholar 

  • Mhiri, C., Morel, J.B., Casacuberta, J.M., et al., The Promoter of the Tobacco Tnt1 Retrotransposon Is Induced by Wounding and by Abiotic Stress, Plant. Mol. Biol., 1997, vol. 33, pp. 257–266.

    PubMed  CAS  Google Scholar 

  • Mikkelsen, J.G. and Pedersen, F.S., Genetic Reassortment and Patch Repair by Recombination in Retroviruses, J. Biomed. Sci., 2000, vol. 7, pp. 77–99.

    PubMed  CAS  Google Scholar 

  • Millar, C.I, Early Evolution of Pines, in Ecology and Biogeography of Pinus, Richardson, D.M., Ed., Cambridge: Cambridge Univ. Press, 1998, pp. 69–91.

    Google Scholar 

  • Mougeot, J.L., Richardson-Milazi, S., and Brooks, B.R., Whole-Genome Association Studies of Sporadic Amyotrophic Lateral Sclerosis: Are Retroelements Involved?, Trends Mol. Med., 2009, vol. 15, pp. 148–158.

    PubMed  CAS  Google Scholar 

  • Mower, J.P., Stefanovi, S., Young, G.J., and Palmer, J.D., Plant Genetics: Gene Transfer from Parasitic to Host Plants, Nature, 2004, vol. 432, pp. 165–166.

    PubMed  CAS  Google Scholar 

  • Murray, B.G., Nuclear DNA Amount in Gymnosperms, Ann. Bot., 1998, vol. 82, pp. 3–15.

    CAS  Google Scholar 

  • Nakajima, R., Noma, K., Ohtsubo, H., and Ohtsubo, E., Identification and Characterization of Two Tandem Repeat Sequences (TrsB and TrsC) and a Retrotransposon (RIRE1) as Genome-General Sequences in Rice, Genes. Genet. Syst., 1996, vol. 71, pp. 373–382.

    PubMed  CAS  Google Scholar 

  • Neumann, P., Pozarkova, D., and Macas, J., Highly Abundant Pea LTR Retrotransposon ogre Is Constitutively Transcribed and Partially Spliced, Plant. Mol. Biol., 2003, vol. 53, pp. 399–410.

    PubMed  CAS  Google Scholar 

  • Novikova, O., Mayorov, V., Smyshlyaev, G., et al., Novel Clades of Chromodomain-Containing gypsy LTR Retrotransposons from Mosses (Bryophyta), Plant J., 2008, vol. 56, pp. 562–574.

    PubMed  CAS  Google Scholar 

  • Novikova, O., Smyshlyaev, G., and Blinov, A., Evolutionary Genomics Revealed Interkingdom Distribution of Tcn1-Like Chromodomain-Containing gypsy LTR Retrotransposons among Fungi and Plants, BMC Genomics, 2010, vol. 11, p. 231.

    PubMed  Google Scholar 

  • Nozue, K., Kanegae, T., and Wada, M., A Full Length Ty3/gypsy-Type Retrotransposon in the Fern Adiantum, J. Plant Res., 1997, vol. 110, pp. 495–499.

    CAS  Google Scholar 

  • Paillart, J.C., Shehu-Xhilaga, M., Marquet, R., and Mak, J., Dimerization of Retroviral RNA Genomes: An Inseparable Pair, Nat. Rev. Microbiol., 2004, vol. 2, pp. 461–472.

    PubMed  CAS  Google Scholar 

  • Panstruga, R., Buschges, R., Piffanelli, P., and Schulze-Lefert, P., A Contiguous 60 Kb Genomic Stretch from Barley Reveals Molecular Evidence for Gene Islands in a Monocot Genome, Nucleic Acids Res., 1998, vol. 26, pp. 1056–1062.

    PubMed  CAS  Google Scholar 

  • Pearce, S.R., Pich, U., Harrison, G., et al., The Ty1-copia Group Retrotransposons of Allium cepa Are Distributed Throughout the Chromosomes but Are Enriched in the Terminal Heterochromatin, Chromosome Res., 1996, vol. 4, pp. 357–364.

    PubMed  CAS  Google Scholar 

  • Peifer, M. and Bender, W., Sequences of the gypsy Transposon of Drosophila Necessary for Its Effects on Adjacent Genes, Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, pp. 9650–9654.

    PubMed  CAS  Google Scholar 

  • Pelissier, T., Tutois, S., Deragon, J.M., et al., Athila, a New Retroelement from Arabidopsis thaliana, Plant. Mol. Biol., 1995, vol. 29, pp. 441–452.

    PubMed  CAS  Google Scholar 

  • Perez-Alegre, M., Dubus, A., and Fernández, E., REM1, a New Type of Long Terminal Repeat Retrotransposon in Chlamydomonas reinhardtii, Mol. Cell. Biol., 2005, vol. 25, pp. 10628–10638.

    PubMed  CAS  Google Scholar 

  • Piegu, B., Guyot, R., Picault, N., et al., Doubling Genome Size without Polyploidization: Dynamics of Retrotransposition-Driven Genomic Expansions in Oryza australiensis, a Wild Relative of Rice, Genome Res., 2006, vol. 16, pp. 1262–1269.

    PubMed  CAS  Google Scholar 

  • Piskurek, O. and Okada, N., Poxviruses As Possible Vectors for Horizontal Transfer of Retroposons from Reptile to Mammals, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 12046–12051.

    PubMed  CAS  Google Scholar 

  • Pouteau, S., Grandbastien, M.A., and Boccara, M., Microbial Elicitors of Plant Defence Responses Activate Transcription of a Retrotransposon, Plant J., 1994, vol. 5, pp. 535–542.

    CAS  Google Scholar 

  • Pouteau, S., Huttner, E., Grandbastien, M.A., and Caboche, M., Specific Expression of the Tobacco Tnt1 Retrotransposon in Protoplasts, EMBO J., 1991, vol. 10, pp. 1911–1918.

    PubMed  CAS  Google Scholar 

  • Powell, J.R. and Gleason, J.M., Codon Usage and the Origin of P Elements, Mol. Biol. Evol., 1996, vol. 13, pp. 278–279.

    PubMed  CAS  Google Scholar 

  • Presting, G.G., Malysheva, L., Fuchs, J., and Schubert, I., A Ty3/gypsy Retrotransposon-Like Sequence Localizes to the Centromeric Regions of Cereal Chromosomes, Plant J., 1998, vol. 16, pp. 721–728.

    PubMed  CAS  Google Scholar 

  • Preston, B.D., Error-Prone Retrotransposition: Rime of the Ancient Mutators, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 7427–7431.

    PubMed  CAS  Google Scholar 

  • Qiu, Y.L., Lee, J., Bernasconi-Quadroni, F., et al., The Earliest Angiosperms: Evidence from Mitochondrial, Plastid and Nuclear Genomes, Nature, 1999, vol. 402, pp. 404–407.

    PubMed  CAS  Google Scholar 

  • Ramallo, E., Kalendar, R., Schulman, A.H., and Martnez-Izquierdo, J.A., Reme1, a Copia Retrotransposon in Melon, Is Transcriptionally Induced by UV Light, Plant. Mol. Biol., 2008, vol. 66, pp. 137–150.

    PubMed  CAS  Google Scholar 

  • Raven, P.H., Evert, R.F., and Eichhorn, S.E., Biology of Plants, 7th ed., New York: Freeman, 2005.

    Google Scholar 

  • Rensing, S.A., Fritzowsky, D., Lang, D., and Reski, R., Protein Encoding Genes in an Ancient Plant: Analysis of Codon Usage, Retained Genes and Splice Sites in a Moss, Physcomitrella patens, BMC Genomics, 2005, vol. 6, p. 43.

    PubMed  Google Scholar 

  • Reski, R. and Frank, W., Moss (Physcomitrella patens) Functional Genomics—Gene Discovery and Tool Development, with Implications for Crop Plants and Human Health. Brief Funct., Genomic Proteomic, 2005, vol. 4, pp. 48–57.

    CAS  Google Scholar 

  • Rico-Cabanas, L. and Martinez-Izquierdo, J.A., CIRE1, a Novel Transcriptionally Active Ty1-copia Retrotransposon from Citrus sinensis, Mol. Genet. Genomics, 2007, vol. 277, pp. 365–377.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M. and Lamp, D.J., Recent Horizontal Transfer of a mariner Transposable Element among and between Diptera and Neuroptera, Mol. Biol. Evol., 1995, vol. 12, pp. 850–862.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M., MacLeod E.G. Five Major Subfamilies of mariner Transposable Elements in Insects, Including the Mediterranean Fruit Fly, and Related Arthropods, Insect Mol. Biol., 1993, vol. 2, pp. 125–139.

    PubMed  CAS  Google Scholar 

  • Rocheta, M., Cordeiro, J., Oliveira, M., and Miguel, C., PpRT1: the First Complete gypsy-Like Retrotransposon Isolated in Pinus pinaster, Planta, 2007, vol. 225, pp. 551–562.

    PubMed  CAS  Google Scholar 

  • Rostoks, N., Park, Y.J., Ramakrishna, W., et al., Genomic Sequencing Reveals Gene Content, Genomic Organization, and Recombination Relationships in Barley, Funct. Integr. Genomics, 2002, vol. 2, pp. 51–59.

    PubMed  CAS  Google Scholar 

  • Roulin, A., Piegu, B., Wing, R.A., and Panaud, O., Evidence of Multiple Horizontal Transfers of the Long Terminal Repeat Retrotransposon RIRE1 within the Genus Oryza, Plant J., 2008, vol. 53, pp. 950–959.

    PubMed  CAS  Google Scholar 

  • Roy, C., Tounekti, N., Mougel, M., et al., An Analytical Study of the Dimerization of in vitro Generated RNA of Moloney Murine Leukemia Virus MoMuLV, Nucleic Acids Res., 1990, vol. 18, pp. 7287–7292.

    PubMed  CAS  Google Scholar 

  • Sabot, F. and Schulman, A.H., Parasitism and the Retrotransposon Life Cycle in Plants: a Hitchhiker’s Guide to the Genome, Heredity, 2006, vol. 97, pp. 381–388.

    PubMed  CAS  Google Scholar 

  • Sabot, F., Guyot, R., Wicker, T., et al., Updating Transposable Element Annotations from Large Wheat Genomic Sequences Reveals Diverse Activities and Gene Association of Elements, Mol. Genet. Genomics, 2005a, vol. 274, pp. 119–130.

    PubMed  CAS  Google Scholar 

  • Sabot, F., Simon, D., and Bernard, M., Plant Transposable Elements, with An Emphasis on Grass Species, Euphytica, 2004, vol. 139, pp. 227–247.

    CAS  Google Scholar 

  • Sabot, F., Sourdille, P., and Bernard, M., Advent of a New Retrotransposon Structure: the Long Form of the Veju Elements, Genetica, 2005b, vol. 125, pp. 325–332.

    PubMed  CAS  Google Scholar 

  • Sabot, F., Sourdille, P., Chantret, N., and Bernard, M., Morgane, a New LTR Retrotransposon Group, and Its Subfamilies in Wheats, Genetica, 2006. DOI: 10.1007/S10709-006-0016-3

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., et al., The Paleontology of Intergene Retrotransposons of Maize, Nat. Genet., 1998, vol. 20, pp. 43–45.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., Ramakrishna, W., Bennetzen, J.L., et al., Transposable Elements, Genes and Recombination in a 215-kb Contig from Wheat Chromosome 5A(m), Funct. Integr. Genomics, 2002, vol. 2, pp. 70–80.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.K., et al., Nested Retrotransposons in the Intergenic Regions of the Maize Genome, Science, 1996, vol. 274, pp. 765–768.

    PubMed  CAS  Google Scholar 

  • Sanz-Alferez, S., SanMiguel, P., Jin, Y.K., et al., Structure and Evolution of the cinful Retrotransposon Family of Maize, Genome, 2003, vol. 46, pp. 745–752.

    PubMed  CAS  Google Scholar 

  • Sentry, J.W. and Smyth, D.R., An Element with Long Terminal Repeats and Its Variant Arrangements in the Genome of Lilium henryi, Mol. Gen. Genet., 1989, vol. 215, pp. 349–354.

    PubMed  CAS  Google Scholar 

  • Shen, Z., Denton, M., Mutti, N., et al., Polygalacturonase from Sitophilusoryzae: Possible Horizontal Transfer of a Pectinase Gene from Fungi to Weevils, J. Insect Sci., 2003, vol. 3, p. 24.

    PubMed  Google Scholar 

  • Shields, D.C. and Sharp, P.M., Evidence That Mutation Patterns Vary among Drosophila Transposable Elements, J. Mol. Biol., 1989, vol. 207, pp. 843–846.

    PubMed  CAS  Google Scholar 

  • Shirasu, K., Schulman, A.H., Lahaye, T., and Schulze-Lefert, P., A Contiguous 66-Kb Barley DNA Sequence Provides Evidence for Reversible Genome Expansion, Genome Res., 2000, vol. 10, pp. 908–915.

    PubMed  CAS  Google Scholar 

  • Silva, J.C. and Kidwell, M.G., Evolution of P Elements in Natural Populations of Drosophila willistoni and D. sturtevanti, Genetics, 2004, vol. 168, pp. 1323–1335.

    PubMed  CAS  Google Scholar 

  • Silva, J.C. and Kidwell, M.G., Horizontal Transfer and Selection in the Evolution of P Elements, Mol. Biol. Evol., 2000, vol. 17, pp. 1542–1557.

    PubMed  CAS  Google Scholar 

  • Silva, J.C., Loreto, E.L., and Clark, J.B., Factors That Affect the Horizontal Transfer of Transposable Elements, Curr. Issues Mol. Biol., 2004, vol. 6, pp. 57–71.

    PubMed  CAS  Google Scholar 

  • Stenoien, H.K., Compact Genes Are Highly Expressed in the Moss Physcomitrella patens, J. Evol. Biol., 2007, vol. 20, pp. 1223–1229.

    PubMed  CAS  Google Scholar 

  • Stewart, W.N. and Rothwell, G.W., Paleobotany and the Evolution of Plants, 2nd ed., Cambridge, England: Cambridge Univ. Press, 1993.

    Google Scholar 

  • Sugimoto, K., Takeda, S., and Hirochika, H., MYB-Related Transcription Factor NtMYB2 Induced by Wounding and Elicitors Is a Regulator of the Tobacco Retrotransposon Tto1 and Defense-Related Genes, Plant Cell, 2000, vol. 12, pp. 2511–2528.

    PubMed  CAS  Google Scholar 

  • Suoniemi, A., Tanskanen, J., and Schulman, A.H., Gypsy-Like Retrotransposons Are Widespread in the Plant Kingdom, Plant J., 1998, vol. 13, pp. 699–705.

    PubMed  CAS  Google Scholar 

  • Syomin, B.V., Kandror, K.V., Semakin, A.B., et al., Presence of the gypsy (MDG4) Retrotransposon in Extracellular Virus-Like Particles, FEBS Lett., 1993, vol. 323, pp. 285–288.

    PubMed  CAS  Google Scholar 

  • Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H., A 13-Bp Cis-Regulatory Element in the LTR Promoter of the Tobacco Retrotransposon Tto1 Is Involved in Responsiveness to Tissue Culture, Wounding, Methyl Jasmonate and Fungal Elicitors, Plant J., 1999, vol. 18, pp. 383–393.

    PubMed  CAS  Google Scholar 

  • Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H., Transcriptional Activation of the Tobacco Retrotransposon Tto1 by Wounding and Methyl Jasmonate, Plant. Mol. Biol., 1998, vol. 36, pp. 365–376.

    PubMed  CAS  Google Scholar 

  • Tarchini, R., Biddle, P., Wineland, R., et al., The Complete Sequence of 340 Kb of DNA Around the Rice ADH1-ADH2 Regions Reveals Interrupted Colinearity with Maize Chromosome 4, Plant Cell, 2000, vol. 12, pp. 381–391.

    PubMed  CAS  Google Scholar 

  • Terzian, C., Ferraz, C., Demaille, J., and Bucheton, A., Evolution of the gypsy Endogenous Retrovirus in the Drosophila melanogaster Subgroup, Mol. Biol. Evol., 2000, vol. 17, pp. 908–914.

    PubMed  CAS  Google Scholar 

  • Thomson, K.G., Thomas, J.E., and Dietzgen, R.G., Retrotransposon-Like Sequences Integrated into the Genome of Pineapple, Ananas comosus, Plant. Mol. Biol., 1998, vol. 38, pp. 461–465.

    PubMed  CAS  Google Scholar 

  • van Leeuwen, H., Monfort, A., Zhang, H.B., and Puigdomenech, P., Identification and Characterisation of a Melon Genomic Region Containing a Resistance Gene Cluster from a Constructed BAC Library. Microcolinearity between Cucumis melo and Arabidopsis thaliana, Plant. Mol. Biol., 2003, vol. 51, pp. 703–718.

    PubMed  Google Scholar 

  • Vanderwiel, P.L., Voyatas, D., and Wendel, J.F., Copia-Like Retrotransposable Element Evolution in Diploid and Polyploid Cotton (Gossypium L.), J. Mol. Evol., 1993, vol. 36, pp. 429–447.

    PubMed  CAS  Google Scholar 

  • Vasil’eva, L.A., Vykhristyuk, O.V., Antonenko, O.V., and Zakharov, I.K., Induction of Transpositions of Mobile Genetic Elements in the Genome of Drosophila melanogaster by Various Stress Factors, Inform. Vestn. VOGiS, 2007, vol. 11, nos. 3/4, pp. 662–671.

    Google Scholar 

  • Vazquez-Manrique, R.P., Hernández, M., Martínez-Sebastián, M.J., and de Frutos, R., Evolution of gypsy Endogenous Retrovirus in the Drosophila obscura Species Group, Mol. Biol. Evol., 2000, vol. 17, pp. 1185–1193.

    PubMed  CAS  Google Scholar 

  • Vernhettes, S., Grandbastien, M.A., and Casacuberta, J.M., In vivo Characterization of Transcriptional Regulatory Sequences Involved in the Defense-Associated Expression of the Tobacco Retrotransposon Tnt1, Plant. Mol. Biol., 1997, vol. 35, pp. 673–679.

    PubMed  CAS  Google Scholar 

  • Vernhettes, S., Grandbastien, M.A., and Casacuberta, J.M., The Evolutionary Analysis of the Tnt1 Retrotransposon in Nicotiana Species Reveals the High Variability of Its Regulatory Sequences, Mol. Biol. Evol., 1998, vol. 15, pp. 827–836.

    PubMed  CAS  Google Scholar 

  • Vicient, C.M., Kalendar, R., and Schulman, A.H., Structure, Functionality, and Evolution of the BARE-1 Retrotransposon of Barley, Genetics, 1999, vol. 107, pp. 53–63.

    CAS  Google Scholar 

  • Vicient, C.M., Kalendar, R., and Schulman, A.H., Variability, Recombination and Mosaic Evolution of the Barley BARE-1 Retrotransposon, J. Mol. Evol., 2005, vol. 61, pp. 275–291.

    PubMed  CAS  Google Scholar 

  • Vitte, C. and Panaud, O., LTR Retrotransposons and Flowering Plant Genome Size: Emergence of the Increase/Decrease Model, Cytogenet. Genome Res., 2005, vol. 110, pp. 91–107.

    PubMed  CAS  Google Scholar 

  • Voytas, D.F. and Ausubel, F.M., A Copia-Like Transposable Element Family in Arabidopsis thaliana, Nature, 1988, vol. 336, pp. 242–244.

    PubMed  CAS  Google Scholar 

  • Voytas, D.F., Cummings, M.P., Koniczny, A., et al., Copia-Like Retrotransposons Are Ubiquitous among Plants, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 7124–7128.

    PubMed  CAS  Google Scholar 

  • Voytas, D.F., Konieczny, A., Cummings, M.P., and Ausubel, F.M., The Structure, Distribution and Evolution of the Ta1 Retrotransposable Element Family of Arabidopsis thaliana, Genetics, 1990, vol. 126, pp. 713–721.

    PubMed  CAS  Google Scholar 

  • Wakaniya, I., Newton, R.J., Johnston, J.S., and Price, H.J., Genome Size and Environmental Factors in the Genus Pinus, Am. J. Bot., 1993, vol. 80, pp. 1235–1241.

    Google Scholar 

  • Weber, B. and Schmidt, T., Nested Ty3-gypsy Retrotransposons of a Single Beta procumbens Centromere Contain a Putative Chromodomain, Chromosome Res., 2009, vol. 17, pp. 379–396.

    PubMed  CAS  Google Scholar 

  • Wei, F., Gobelman-Werner, K., Morroll, S.M., et al., The Mla (Powdery Mildew) Resistance Cluster Is Associated with Three NBS-LRR Gene Families and Suppressed Recombination within a 240-Kb DNA Interval on Chromosome 5S (1HS) of Barley, Genetics, 1999, vol. 153, pp. 1929–1948.

    PubMed  CAS  Google Scholar 

  • Wessler, S.R., Bureau, T.E., and White, S.E., LTR-Retrotransposons and MITEs: Important Players in the Evolution of Plant Genomes, Curr. Opin. Genet. Dev., 1995, vol. 5, pp. 814–821.

    PubMed  CAS  Google Scholar 

  • Wicker, T., Sabot, F., Hua-Van, A., et al., A Unified Classification System for Eukaryotic Transposable Elements, Nat. Rev. Genet., 2007, vol. 8, pp. 973–982.

    PubMed  CAS  Google Scholar 

  • Wicker, T., Stein, N., Albar, L., et al., Analysis of a Contiguous 211 Kb Sequence in Diploid Wheat (Triticum monococcum L.) Reveals Multiple Mechanisms of Genome Evolution, Plant J., 2001, vol. 26, pp. 307–316.

    PubMed  CAS  Google Scholar 

  • Wilhelm, M., Boutabout, M., Heyman, T., and Wilhelm, F.X., Reverse Transcription of the Yeast Ty1 Retrotransposon: the Mode of First Strand Transfer Is Either Intermolecular or Intramolecular, J. Mol. Biol., 1999, vol. 288, pp. 505–510.

    PubMed  CAS  Google Scholar 

  • Witte, C.P., Le, Q.H., Bureau, T.E., and Kumar, A., Terminal Repeat Retrotransposons in Miniature (TRIM) Are Involved in Restructuring Plant Genomes, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 13778–13783.

    PubMed  CAS  Google Scholar 

  • Wright, D.A. and Voytas, D.F., Athila4 of Arabidopsis and calypso of Soybean Define a Lineage of Endogenous Plant Retroviruses, Genome Res., 2002, vol. 12, pp. 122–131.

    PubMed  CAS  Google Scholar 

  • Wright, D.A. and Voytas, D.F., Potential Retroviruses in Plants: Tat1 Is Related to a Group of Arabidopsis thaliana Ty3/gypsy Retrotransposons That Encode Envelope-Like Proteins, Genetics, 1998, vol. 149, pp. 703–715.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. and Eickbush, T.H., Origin and Evolution of Retroelements Based Upon Their Reverse Transcriptase Sequences, EMBO J., 1990, vol. 9, pp. 3353–3362.

    PubMed  CAS  Google Scholar 

  • Xiong, Y., Burke, W.D., and Eickbush, T.H., Pao, a Highly Divergent Retrotransposable Element from Bombyx mori Containing Long Terminal Repeats with Tandem Copies of the Putative R Region, Nucleic Acids Res., 1993, vol. 2117–2123.

  • Yoshida, S., Maruyama, S., Nozaki, H., and Shirasu, K., Horizontal Gene Transfer by the Parasitic Plant Striga hermonthica, Science, 2010, vol. 328, p. 1128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Sormacheva.

Additional information

Original Russian Text © I.D. Sormacheva, A.G. Blinov, 2011, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2011, Vol. 15, No. 2, pp. 351–381.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sormacheva, I.D., Blinov, A.G. LTR retrotransposons in plants. Russ J Genet Appl Res 1, 540–564 (2011). https://doi.org/10.1134/S2079059711060098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059711060098

Keywords

Navigation