Skip to main content
Log in

Model of Supercapacitor Electrodes Based on Nanostructured Materials

  • NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The substantiation of an extended model of the equivalent electric circuit of supercapacitor electrodes based on nanostructured materials taking into account the change in the characteristics of charge transport in the electrolyte–electrode material system at various frequencies depending on the thickness of the electrode material is presented. The model is aimed at predicting the impedance characteristics of supercapacitors depending on the conductivity of the electrolyte, the characteristics of the pores, and the thickness of the nanostructured material of the electrode. Good agreement is obtained between the results of calculation and experimental data. Within the framework of the model, the decrease in the specific electrical capacitance of supercapacitors with an increase in the thickness of the electrode material is explained by the significant influence of the relatively small values of the electrolyte resistance in the space between the powder particles and the contact resistance between the electrode material particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Burke, A., Ultracapacitors: Why, how, and where is the technology, J. Power Sources, 2000, vol. 91, no. 1, pp. 37–50.

    Article  CAS  Google Scholar 

  2. Long, J.W., Belanger, D., Brousse, T., et al., Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes, MRS Bull., 2011, vol. 36, no. 7, pp. 513–522.

    Article  CAS  Google Scholar 

  3. Varentsov, V.K. and Varentsova, V.I., Electrochemical modification of a nonwoven fibrous carbon material in sulfuric acid solution, Russ. J. Appl. Chem., 2015, vol. 88, no. 10, pp. 1650–1655.

    Article  CAS  Google Scholar 

  4. Yanilkin, I.V., Sametov, A.A., and Shkolnikov, E.I., Effect of the amount of F4 fluoroplastic binder in carbon electrodes on characteristics of supercapacitors, Russ. J. Appl. Chem., 2015, vol. 88, no. 2, pp. 335–342.

    Article  CAS  Google Scholar 

  5. Yanilkin, I.V., Sametov, A.A., Atamanyuk, I.N., et al., Porous structure and electrical capacitance of charcoals in aqueous and organic electrolytes, Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1157–1167.

    Article  CAS  Google Scholar 

  6. Rolison, D.R. and Nazar, L.F., High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes, MRS Bull., 2011, vol. 36, pp. 486–493.

    Article  CAS  Google Scholar 

  7. Signorelli, R., Ku, D.C., Kassakian, J.G., et al., Electrochemical double-layer capacitors using carbon nanotube electrode structures, Proc. IEEE, 2009, vol. 97, no. 11, pp. 1837–1847.

    Article  CAS  Google Scholar 

  8. Chen, J.H., Li, W.Z., Wang, D.Z., et al., Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon, 2002, vol. 40, no. 8, pp. 1193–1197.

    Article  CAS  Google Scholar 

  9. Ji, Ch.-Ch., Bao, Sh.-J., Lu, Zh.-J., et al., 3D interpenetrating macroporous graphene aerogels with MnO2 coating for supercapacitors, Russ. J. Electrochem., 2015, vol. 51, no. 8, pp. 782–788.

    Article  CAS  Google Scholar 

  10. Biener, J., Stadermann, M., Suss, M., et al., Advanced carbon aerogels for energy applications, Energy Environ. Sci., 2011, vol. 4, no. 3, pp. 656–667.

    Article  CAS  Google Scholar 

  11. Wilson, E. and Islam, M.F., Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 9, pp. 5612–5618.

    Article  CAS  Google Scholar 

  12. Chen, W. and Yan, L., In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures, Nanoscale, 2011, vol. 3, no. 8, pp. 3132–3137.

    Article  CAS  Google Scholar 

  13. Liu, C., Yu, Z., Neff, D., et al., Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 2010, vol. 10, pp. 4863–4868.

    Article  CAS  Google Scholar 

  14. Toller, M.D., Park, S., Zhu, Y., et al., Graphene-based ultracapacitors, Nano Lett., 2008, vol. 8, no. 10, pp. 3498–3502.

    Article  Google Scholar 

  15. Pell, W.G. and Conway, B.E., Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behavior, J. Electroanal. Chem., 2001, vol. 500, nos. 1–2, pp. 121–133.

  16. Pell, W.G. and Conway, B.E., Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, J. Power Sources, 2001, vol. 96, no. 1, pp. 57–67.

    Article  CAS  Google Scholar 

  17. Conway, B.E. and Pell, W.G., Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices, J. Power Sources, 2002, vol. 105, no. 2, pp. 169–181.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Feng, H., Wu, X., et al., Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy, 2009, vol. 34, no. 11, pp. 4889–4899.

    Article  CAS  Google Scholar 

  19. Qu, Q.T., Wang, B., Yang, L.C., et al., Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes, Electrochem. Commun., 2008, vol. 10, no. 10, pp. 1652–1655.

    Article  CAS  Google Scholar 

  20. Maltsev, A.A., Bibikov, S.B., Varfolomeev, S.D., et al., Determining the specific surface area of carbon electrode materials for electrodes of supercapacitors via the adsorption of methylene blue dye, Russ. J. Phys. Chem. A, 2018, vol. 92, no. 4, pp. 772–777.

    Article  CAS  Google Scholar 

  21. Kötz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 2000, vol. 45, nos. 15–16, pp. 2483–2498.

  22. Lust, E., Jänes, A., Pärn, T., et al., Influence of nanoporous carbon electrode thickness on the electrochemical characteristics of a nanoporous carbon|tetraethylammonium tetrafluoroborate in acetonitrile solution interface, J. Solid State Electrochem., 2004, vol. 8, no. 4, pp. 224–237.

    Article  CAS  Google Scholar 

  23. Eikerling, M., Kornyshev, A.A., and Lust, E., Optimized structure of nanoporous carbon-based double-layer capacitors, J. Electrochem. Soc., 2005, vol. 152, no. 1, pp. E24–E33.

    Article  CAS  Google Scholar 

  24. Hao, Ch., Wang, X., Yin, Y., et al., Analysis of charge redistribution during self-discharge of double-layer supercapacitors, J. Electron. Mater., 2016, vol. 45, no. 4, pp. 2160–2171.

    Article  CAS  Google Scholar 

  25. Chirkov, Yu.G. and Rostokin, V.I., Computer simulation of active layers in double-layer supercapacitors: Galvanostatics, determination of effective coefficients, and calculation of overall characteristics, Russ. J. Electrochem., 2014, vol. 50, no. 1, pp. 13–26.

    Article  CAS  Google Scholar 

  26. Chirkov, Yu.G. and Rostokin, V.I., Computer simulation of active layers in the electric double layer supercapacitor: optimization of active layer charging modes and structure, calculation of overall characteristics, Russ. J. Electrochem., 2014, vol. 50, no. 1, pp. 208–222.

    Article  CAS  Google Scholar 

  27. Pisareva, T.A., Kharanzhevskii, E.V., and Reshetnikov, S.M., Electric capacity of electrochemical capacitors with composite electrodes based on the aluminum–active carbon system, Russ. J. Electrochem., 2016, vol. 52, no. 8, pp. 762–769.

    Article  CAS  Google Scholar 

  28. Pisareva, T.A., Kharanzhevskii, E.V., and Reshetnikov, S.M., Synthesis of nanocrystalline graphite for supercapacitor electrodes by short-pulse laser processing of a polyimide film, Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 897–903.

    Article  CAS  Google Scholar 

  29. Yu, G., Xie, X., Pan, L., et al., Hybrid nanostructured materials for high-performance electrochemical capacitor, Nano Energy, 2013, vol. 2, no. 2, pp. 213–234.

    Article  CAS  Google Scholar 

  30. Le Mehaut, A. and Crepy, G., Introduction to transfer and motion in fractal media: The geometry of kinetics, Solid State Ionics, 1983, vols. 9–10, pp. 17–30.

  31. Leibig, M. and Halsey, T.C., The double layer impedance as a probe of surface roughness, J. Electrochim. Acta, 1993, vol. 38, no. 14, pp. 1985–1988.

    Article  Google Scholar 

  32. Hill, R.M., Dissado, L.A., and Nigmatullin, R.R., Invariant behaviour classes for the response of simple fractal circuits, J. Phys.: Condens. Matter, 1991, vol. 3, no. 48, pp. 9773–9190.

    Google Scholar 

  33. Hummers, Jr., W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.

    Article  CAS  Google Scholar 

  34. Lerf, A., He, H., Forster, M., et al., Structure of graphite oxide revisited, J. Phys. Chem. B, 1998, vol. 102, no. 23, pp. 4477–4482.

    Article  CAS  Google Scholar 

  35. Dreyer, D.R., Park, S., Bielawski, C.W., et al., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, vol. 39, no. 1, pp. 228–240.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Erasmus Mundus Programme Erasmus + Dimension International at the University of Granada (Spain).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Pisareva, N. S. Shadrin, E. V. Kharanzhevskiy or S. M. Reshetnikov.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisareva, T.A., Shadrin, N.S., Kharanzhevskiy, E.V. et al. Model of Supercapacitor Electrodes Based on Nanostructured Materials. Inorg. Mater. Appl. Res. 12, 804–811 (2021). https://doi.org/10.1134/S2075113321030308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321030308

Keywords:

Navigation