Skip to main content
Log in

Cold Sintering of Ni–Ag Nanocomposite Particles Produced by Electric Explosion of Wires

  • COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

77 Ni–23 Ag nanocomposite powder as well as nanopowders of Ni and Ag were produced by electric explosion of wires, and compacted specimens were made with the help of a cold sintering method at a high pressure. It is shown that electric explosion results in formation of mainly janus-nanoparticles of immiscible Ni and Ag metals with retention of nanostructure in consolidated bulk specimens. Microstructure and mechanical properties of cold sintered specimens prepared from as prepared and heat treated in hydrogen flow have been studied. It is ascertained that treatment of 70% dense compacts in hydrogen flow results in higher density and higher ductility of cold sintered specimens. Density of cold sintered at 3 GPa pressure 77 Ni–23 Ag and Ni specimens was reached about 95% from theoretical value whereas the density of Ag specimens is close to 100% of that. High strength was obtained under three-point bending tests and in compression tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Lenel, F.V., Powder Metallurgy: Principles and Applications, Princeton, NJ: Metal Powder Ind. Fed., 1980.

    Google Scholar 

  2. Gutmanas, E.Y., Materials with fine microstructures by advanced powder metallurgy, Progr. Mater. Sci., 1990, vol. 34, pp. 261–366.

    Article  CAS  Google Scholar 

  3. Gutmanas, E.Y., Cold-sintering—high pressure consolidation, in ASM Handbook, Vol. 7: Powder Metal Technologies and Applications, Materials Park, Oh: ASM Int., 1998, pp. 574–583.

  4. Suryanarayana, C., Mechanical alloying and milling, Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  5. Ma, E., Alloys created between immiscible elements, Progr. Mater. Sci., 2005, vol. 50, pp. 413–509.

    Article  CAS  Google Scholar 

  6. Herr, U., Ying, J., Gonser, U., and Gleiter, H., Alloy effects in consolidated binary mixtures of nanometer-sized crystals investigated by Mössbauer spectroscopy, Solid State Commun., 1990, vol. 76, pp. 197–202.

    Article  CAS  Google Scholar 

  7. Gutmanas, E.Y., Trusov, L.K., and Gotman, I., Consolidation, microstructure and mechanical properties of nanocrystalline metal powders, Nanostruct. Mater., 1994, vol. 4, pp. 893–901.

    Article  CAS  Google Scholar 

  8. Gutmanas, E.Y., Trudler, A., and Gotman, I., Processing and properties of dense Cu nanocomposites, Mater. Sci. Forum, 2002, vols. 386–388, pp. 329–334.

  9. Karwan-Baczewska, J., Gotman, I., Gutmanas, E.Y., and Shapiro, M., Small particles with better contacts make nanocomposites kings of conductivity, Met. Powder Rep., 2005, vol. 60, no. 6, pp. 28–34.

    Article  Google Scholar 

  10. Toshima, N. and Yonezawa, T., Bimetallic nanoparticles—novel materials for chemical and physical applications, New J. Chem., 1998, vol. 22, pp. 1179–1201.

    Article  CAS  Google Scholar 

  11. Leslie-Pilecky, D.L. and Rieke, R.D., Magnetic properties of nanostructured materials, Chem. Mater., 1996, vol. 8, pp. 1770–1783.

    Article  Google Scholar 

  12. Gutmanas, E.Y., Rabinkin, A., and Roitberg, M., Cold sintering under high pressure, Scr. Metall., 1979, vol. 13, pp. 11–15.

    Article  CAS  Google Scholar 

  13. Gutmanas, E.Y., Cold sintering under high pressure—mechanisms and application, Powder Metall. Int., 1983, vol. 15, pp. 129–132.

    Google Scholar 

  14. Gutmanas, E.Y., Trusov, L.K., and Gotman, I., Consolidation, microstructure and mechanical properties of nanocrystalline metal powders, Nanostruct. Mater., 1994, vol. 4, pp. 893–901.

    Article  CAS  Google Scholar 

  15. Gutmanas, E.Y., Trudler, A., and Gotman, I., Processing and properties of dense Cu nanocomposites, Mater. Sci. Forum, 2002, vols. 386–388, pp. 329–334.

  16. Karwan-Baczewska, J., Gotman, I., Gutmanas, E.Y., and Shapiro, M., Small particles with better contacts make nanocomposites kings of conductivity, Met. Powder Rep., 2005, vol. 60, no. 6, pp. 28–34.

    Article  Google Scholar 

  17. Lee, C.-C. and Chen, D.H., Large-scale synthesis of Ni–Ag core-shell nanoparticles with magnetic, optical and antioxidation properties, Nanotechnology, 2006, vol. 17, pp. 3094–3099.

    Article  CAS  Google Scholar 

  18. Ishizaki, T., Yatsugi, K., and Akedo, K., Effect of particle size on the magnetic properties of Ni nanoparticles synthesized with trioctylphosphine as the capping agent, Nanomaterials, 2016, vol. 6, pp. 172–184.

    Article  CAS  PubMed Central  Google Scholar 

  19. Sharipova, A., Psakhie, S.G., Swain, S.K., Gotman, I., and Gutmanas, E.Y., High-strength bioresorbable Fe–Ag nanocomposite scaffolds: processing and properties, AIP Conf. Proc., 2015, vol. 1683, p. 020244.

    Article  CAS  Google Scholar 

  20. Sharipova, A., Swain, S.K., Gotman, I., Starosvetsky, D., Psakhie, S.G., Unger, R., and Gutmanas, E.Y., Mechanical, degradation and drug-release behavior of nano-grained Fe–Ag composites for biomedical applications, J. Mech. Behav. Biomed. Mater., 2018, vol. 86, pp. 240–249.

    Article  CAS  PubMed  Google Scholar 

  21. Kotov, Yu.A., Electric explosion of wires as a method for preparation of nanopowders, J. Nanoparticle Res., 2003, vol. 5, pp. 539–550.

    Article  Google Scholar 

  22. Lerner, M.I., Pervikov, A.V., Glazkova, E.A., Svarovskaya, N.V., Lozhkomoev, A.S., and Psakhie, S.G., Structures of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements, Powder Technol., 2016, vol. 288, pp. 371–378.

    Article  CAS  Google Scholar 

  23. Gleiter, H., Nanocrystalline materials, Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  24. Lerner, M.I., Psakhie, S.G., Lozhkomoev, A.S., Sharipova, A.F., Pervikov, A.V., Gotman, I., and Gutmanas, E.Y., Fe–Cu nanocomposites by high pressure consolidation of powders prepared by electric explosion of wires, Adv. Eng. Mater., 2018, vol. 20, no. 7, p. 1701024. https://doi.org/10.1002/adem.201701024.

    Article  CAS  Google Scholar 

  25. Lin, S.-H., Chen, S.-Y., Chen, Y.-T., and Cheng, S.-Y., Electrochemical fabrication and magnetic properties of highly ordered silver-nickel core-shell nanowires, J. Alloys Compd., 2008, vol. 449, pp. 232–236.

    Article  CAS  Google Scholar 

  26. Wang, L., Wang, W., Wang, Y., Wang, T., Zhou, S., Hu, L., Liu, T., Elfalleh, W., and Yu, D., Structural characteristics of Ni–Ag magnetic catalyst and its properties in soybean oil hydrogenation, Food Bioprod. Process., 2018, vol. 109, pp. 139–147.

    Article  CAS  Google Scholar 

  27. Ger, T.-R., Huang, H.-T., Huang, C.-Y., Liu, W.-C., Lai, T.-Y., Liu, B.-T., Chen, J.-Y., Hong, C.-W., Chen, P.-J., and Lai, M.-F., Comparing the magnetic property of shell thickness controlled of Ag–Ni core-shell nanoparticles, J. Appl. Phys., 2014, vol. 115, p. 17B528.

  28. Jing, J.J., Xie, J., Chen, G.Y., Li, W.H., and Hang, M.M., Preparation of nickel-silver core-shell nanoparticles by liquid-phase reduction for use in conductive paste, J. Exp. Nanosci., 2015, vol. 15, pp. 1347–1356.

    Article  CAS  Google Scholar 

  29. He, J.H., Sheng, H.W., Schilling, P.J., Chien, C.-L., and Ma, E., Amorphous structures in the immiscible Ag–Ni system, Phys. Rev. Lett., 2001, vol. 86, pp. 2826–2829.

    Article  CAS  PubMed  Google Scholar 

Download references

FUNDING

The synthesis and study of bimetallic 77 Ni–23 Ag particles and specimens made of them were carried out under the financial support of the Russian Science Foundation (project no. 17-19-01319). The synthesis and study of Ni nanoparticles and specimens made of them were carried out within the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020, direction III.23.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Sharipova, O. V. Bakina, A. S. Lozhkomoev, E. A. Glazkova, A. V. Pervikov, N. V. Svarovskaya, M. I. Lerner, S. G. Psakhie, I. Gotman or E. Y. Gutmanas.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipova, A.F., Bakina, O.V., Lozhkomoev, A.S. et al. Cold Sintering of Ni–Ag Nanocomposite Particles Produced by Electric Explosion of Wires. Inorg. Mater. Appl. Res. 10, 691–698 (2019). https://doi.org/10.1134/S2075113319030389

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319030389

Keywords:

Navigation