Skip to main content
Log in

Impedance Studies on Stress Corrosion Cracking Behavior of Steel Pipeline in NS4 Solution under SSRT Test Condition

  • INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Stress corrosion cracking behavior of API 5L X65 steel in a NS4 solution with different pH was investigated by electrochemical impedance under slow strain rate tensile test. NS4 solution was selected as corrosive electrolyte under disbonded pipeline coatings. According to the analysis of tensile test, steel was susceptible to SCC in a NS4 solution. The reduction area ratio in the air was measured to be 70.71%, which was more significant than the reduction obtained in a NS4 solution with different pH. EIS in different strain time in acidic solution showed perfect semicircles, which indicated high dissolution rate and some hydrogen penetration effect in this environment. EIS in neutral and basic NS4 solution presented effective constant phase elements in the transmission line model for the porous electrode, which indicated SCC behavior of steel in these solutions. Phase angle analysis indicated that cracks grow considerably after 12 h. Besides, SEM illustrated a ductile type of fracture in air and brittle type of fracture in all NS4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Sotelo-Mazon, O., Valdez, S., Porcayo-Calderon, J., Henao, J., Cuevas-Arteaga, C., Poblano-Salas, C.A., and Martinez-Gomez, L., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, pp. 427–437.

    Article  CAS  Google Scholar 

  2. Ghiasvand, M., Zaarei, D., Danaee, I., Mogoie, B., and Salehi Nasab, H., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 1154–1160.

    Article  Google Scholar 

  3. Petrov, N.N., Alovyagina, A.S., Mikheev, M.N., Bukov, N.N., and Panyushkin, V.T., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, pp. 603–608.

    Article  CAS  Google Scholar 

  4. Petrunin, M.A., Maksaeva, L.B., Rybkin, A.A., Gladkikh, N.A., Yurasova, T.A., Maleeva, M.A., and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 1335–1340.

    Article  CAS  Google Scholar 

  5. Srinivasa Rao, G., Srinivasa Rao, K., Srinivasa Rao, P., Koteswara Rao, S.R., and Madhusudan Reddy, G., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 866–875.

    Article  CAS  Google Scholar 

  6. Maleeva, M.A., Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 1107–1113.

    Article  CAS  Google Scholar 

  7. Pourazizi, R., Mohtadi-Bonab, M.A., and Szpunar, J.A., Eng. Failure Anal., 2020, vol. 109, p. 104400.

    Article  CAS  Google Scholar 

  8. Maocheng, Y.A., Jin, X.U., Libao, Y.U., Tangqing, W.U., Cheng, S.U., and Wei, K.E., Corros. Sci., 2016, vol. 110, pp. 23–34.

    Article  CAS  Google Scholar 

  9. Wang, L., Xin, J., Cheng, L., Zhao, K., Sun, B., Li, J., Wang, X., and Cui, Z., Corros. Sci., 2019, vol. 147, pp. 108–127.

    Article  CAS  Google Scholar 

  10. Nyrkova, L., Osadchuk, S., Melnichuk, S., Rybakov, A., Ostapyuk, S., and Borysenko, Y., Mater. Today: Proc., 2019, vol. 6, pp. 279–287.

    CAS  Google Scholar 

  11. Li, C.X., Dang, S.H., Bao, X.L., Zhang, P., Wang, G.Z., Long, X.J., and Han, P.D., Chin. J. Phys., 2019, vol. 59, pp. 242–249.

    Article  Google Scholar 

  12. Liu, Z.Y., Li, X.G., Du, C.W., Zhai, G.L., and Cheng, Y.F., Corros. Sci., 2008, vol. 50, pp. 2251–2257.

    Article  CAS  Google Scholar 

  13. Liu, Z.Y., Du, C.W., Zhang, X., Wang, F.M., and Li, X.G., Acta Metall. Sin. (Engl. Lett.), 2013, vol. 26, pp. 489–496.

  14. Fang, B.Y., Atrens, A., Wang, J.Q., Han, E.H., Zhu, Z.Y., and Ke, W., J. Mater. Sci., 2003, vol. 38, pp. 127–132.

    Article  CAS  Google Scholar 

  15. Zheng, X., Castaneda, H., Gao, H., and Srivastava, A., Corrosion, 2019, vol. 153, pp. 53–61.

    Article  CAS  Google Scholar 

  16. Bosch, R.W., Corros. Sci., 2005, vol. 47, no. 1, pp. 125–143

    Article  CAS  Google Scholar 

  17. Bosch, R.W., Moons, F., Zheng, J.H., and Bogaerts, W.F., Corrosion, 2001, vol. 57, pp. 532–539.

    Article  CAS  Google Scholar 

  18. Lou, X. and Singh, P.M., Electrochim. Acta, 2011, vol. 56, pp. 1835–1847.

    Article  CAS  Google Scholar 

  19. Barraza-Fierro, J.I., Serna-Barquera, S.A., Campillo-Illanes, B.F., and Castaneda, H., Metall. Mater. Trans. A, 2017, vol. 48, pp. 1944–1958.

    Article  CAS  Google Scholar 

  20. Monnot, M., Roche, V., Estevez, R., Mantel, M., and Nogueira, R.P., Electrochim. Acta, 2017, vol. 252, pp. 58–66.

    Article  CAS  Google Scholar 

  21. Danaee, I., Nikparsa, P., Khosravi-Nikou, M.R., Eskandari, H., and Nikmanesh, S., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 1000–1013.

    Article  Google Scholar 

  22. Havashinejadian, E., Danaee, I., Eskandari, H., and Nikmanesh, S., J. Electrochem. Sci. Technol., 2017, vol. 8, pp. 115–123.

    Article  CAS  Google Scholar 

  23. Danaee, I. and Nikparsa, P., J. Mater. Eng. Perform., 2019, vol. 28, pp. 5088–5103.

    Article  CAS  Google Scholar 

  24. Eloot, K., Debuyck, F., Moors, M., and Van Peteghem, A.P., J. Appl. Electrochem., 1995, vol. 25, pp. 326–333.

    Article  CAS  Google Scholar 

  25. de Levie, R., Electrochim. Acta, 1963, vol. 8, pp. 751–780.

    Article  Google Scholar 

  26. Bisquert, J., Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 4185–4192.

    Article  CAS  Google Scholar 

  27. Keiser, H., Beccu, K.D., and Gutjahr, M.A., Electrochim. Acta, 1976, vol. 21, pp. 539–543.

    Article  CAS  Google Scholar 

  28. Bastidas, D.M., Corrosion, 2007, vol. 63, pp. 515–521.

    Article  CAS  Google Scholar 

  29. Cooper, S.J., Bertei, A., Finegan, D.P., and Brandon, N.P., Electrochim. Acta, 2017, vol. 251, pp. 681–689.

    Article  CAS  Google Scholar 

  30. Huang, J., Electrochim. Acta, 2018, vol. 281, pp. 170–188.

    Article  CAS  Google Scholar 

  31. Oskuie, A.A., Shahrabi, T., Shahriari, A., and Saebnoori, E., Corros. Sci., 2012, vol. 61, pp. 111–122.

    Article  CAS  Google Scholar 

  32. Contreras, A., Hernández, S.L., Orozco-Cruz, R., and Galvan-Martínez, R., Mater. Des., 2012, vol. 35, pp. 281–289.

    Article  CAS  Google Scholar 

  33. Hardie, D., Charles, E.A., and Lopez, A.H., Corros. Sci., 2006, vol. 48, pp. 4378–4385.

    Article  CAS  Google Scholar 

  34. Contreras, A., Salazar, M., Carmona, A., and Galván-Martínez, R., Mater. Res., 2017, vol. 20, pp. 1201–1210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Danaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, M., Danaee, I., Saebnoori, E. et al. Impedance Studies on Stress Corrosion Cracking Behavior of Steel Pipeline in NS4 Solution under SSRT Test Condition. Prot Met Phys Chem Surf 57, 634–646 (2021). https://doi.org/10.1134/S2070205121030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121030126

Keywords:

Navigation