Skip to main content
Log in

Density functional modelling studies of chloride-substituted Schiff bases as corrosion inhibitors: Optimized geometries, atomic charges, solvent and non-linear optical effects

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The anti-corrosive properties, optimized geometrical structures, atomic charges, molecular electrostatic potential (MEP) surfaces and non-linear optical (NLO) effects of some chloride-substituted Schiff bases salicylaldimine (R), N-(2-chlorophenyl)salicyaldimine (2Cl–R), N-(3-chlorophenyl)salicyaldimine (3Cl–R) and N-(4-chlorophenyl)salicyaldimine (4Cl–R) have been investigated by using density functional modelling calculations. The quantum chemical parameters, such as the highest occupied molecular orbital, the lowest unoccupied molecular orbital, gap energy and other parameters, including electronegativity, global hardness, the total charges on the whole molecules and the total energies have been calculated and discussed to obtain information about the relationships between the molecular and electronic structures of the studied inhibitors and their experimental corrosion inhibition efficiencies. The linear polarizability (α), and the firstorder hyperpolarizability (β) have been also predicted by the density functional theory (DFT) with different base sets 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) for investigating the effects of basis sets on the NLO properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zerga, B., Saddik, R., Hammouti, B., et al., Int. J. Electrochem. Sci., 2012, vol. 7, p. 631.

    Google Scholar 

  2. Elayyachy, M., Hammouti, B., El Idriss, A., and Aouniti, A., Electrochim. Acta, 2011, vol. 29, p. 57.

    Article  Google Scholar 

  3. Jum, H., Kai, Z.P., and Li, Y., Corros. Sci., 2008, vol. 50, p. 865.

    Article  Google Scholar 

  4. Ajmal, M., Mideen, A.S., and Quaraishi, M.A., Corros. Sci., 1994, vol. 36, p. 79.

    Article  Google Scholar 

  5. Fang, J. and Li, J., J. Mol. Struct.: THEOCHEM, 2002, vol. 593, p. 179.

    Article  Google Scholar 

  6. Bentiss, F., Lagrene, M., and Traisnel, M., Corros. Sci., 2000, vol. 42, p. 127.

    Article  Google Scholar 

  7. Hammouti, B., Salghi, R., and Kertit, S., J. Electrochem. Soc. India, 1998, vol. 47, p. 31.

    Google Scholar 

  8. Kertit, S., Essouffi, H., Hammouti, B., and Benkaddour, M., J. Chem. Phys., 1998, vol. 95, p. 2072.

    Google Scholar 

  9. Chetouani, A., Hammouti, B., Benhadda, T., and Daoudi, M., Appl. Surf. Sci., 2005, vol. 249, p. 375.

    Article  Google Scholar 

  10. Cao, C., Corros. Sci., 1996, vol. 38, p. 2073.

    Article  Google Scholar 

  11. Cumper, C.W., Grzes Kowiak, R., and Newton, P., Corros. Sci., 1982, vol. 22, p. 551.

    Article  Google Scholar 

  12. Stupnisek Lesac, E., Metikos-Hakovic, M., Lencic, D., et al., Corrosion, 1992, vol. 48, p. 924.

    Article  Google Scholar 

  13. Emregül, K.C. and Hayvalı, M., Corros. Sci., 2006, vol. 48, p. 797.

    Article  Google Scholar 

  14. Yuce, A.O. and Kardas, G., Corros. Sci., 2012, vol. 58, p. 86.

    Article  Google Scholar 

  15. John, S. and Joseph, A., Mater. Chem. Phys., 2012, vol. 133, p. 1083.

    Article  Google Scholar 

  16. Emregül, K.C., Düzgün, E., and Atakol, O., Corros. Sci., 2006, vol. 48, p. 3243.

    Article  Google Scholar 

  17. Emregül, K.C., Kurtaran, R., and Atakol, O., Corros. Sci., 2003, vol. 45, p. 2803.

    Article  Google Scholar 

  18. Desai, M.N., Desai, M.B., Shah, C.B., and Desai, S.M., Corros. Sci., 1986, vol. 26, p. 827.

    Article  Google Scholar 

  19. Danaee, I., Ghasemi, O., Rashed, G., et al., J. Mol. Struct., 2013, vol. 1035, p. 247.

    Article  Google Scholar 

  20. Aytaç, A., Özmen, Ü., and Kabasakaloğlu, M., Mater. Chem. Phys., 2005, vol. 89, p. 176.

    Article  Google Scholar 

  21. Ashassi-Sorkhabi, H., Shabani, B., Aligholipour, B., and Seifzadeh, D., Appl. Surf. Sci., 2006, vol. 252, p. 4039.

    Article  Google Scholar 

  22. Yurt, A., Ulutas, S., and Dal, H., Appl. Surf. Sci., 2006, vol. 253, p. 919.

    Article  Google Scholar 

  23. Li, S.L., Wang, Y.G., Chen, S.H., et al., Corros. Sci., 1999, vol. 41, p. 1769.

    Article  Google Scholar 

  24. Sheikhshoaie, I. and Mashhadizadeh, M.H., Russ. J. Coord. Chem., 2003, vol. 29, p. 714.

    Article  Google Scholar 

  25. Drozdzak, R., Allaert, B., Ledoux, N., et al., Coord. Chem. Rev., 2005, vol. 249, p. 3055.

    Article  Google Scholar 

  26. Yang, C.J. and Jenekhe, S.A., Macromolecules, 1995, vol. 28, p. 1180.

    Article  Google Scholar 

  27. Destri, S., Khotina, I.A., and Porzio, W., Macromolecules, 1998, vol. 31, p. 1079.

    Article  Google Scholar 

  28. Zeyrek, C.T., Elmali, A., and Elerman, Y., Z. Naturforsch., B: J. Chem. Sci., 2005, vol. 60, p. 520.

    Google Scholar 

  29. Vanco, J., Svajlenova, O., Racanska, E., et al., J. Trace Elem. Med. Biol., 2004, vol. 18, p. 155.

    Article  Google Scholar 

  30. Karakas, A., Elmali, A., Ünver, H., and Svoboda, I., J. Mol. Struct., 2004, vol. 702, p. 103.

    Article  Google Scholar 

  31. Zeyrek, C.T., Dilek, N., Yıldız, M., and Ünver, H., Mol. Phys., 2014, vol. 112, p. 2557.

    Article  Google Scholar 

  32. Ünver, H., Karakas, A., Elmali, A., and Durlu, T., J. Mol. Struct., 2005, vol. 737, p. 131.

    Article  Google Scholar 

  33. Issa, R.M., Awad, M.K., and Atlam, F.M., Mater. Corros., 2010, vol. 61, p. 709.

    Google Scholar 

  34. Awad, M.K., Issa, R.M., and Atlam, F.M., Mater. Corros., 2009, vol. 60, p. 813.

    Article  Google Scholar 

  35. Becke, A.D., J. Chem. Phys., 1992, vol. 96, p. 9489.

    Article  Google Scholar 

  36. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372.

    Article  Google Scholar 

  37. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  Google Scholar 

  38. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision D. 01, Wallingford, CT: Gaussian Inc., 2009.

    Google Scholar 

  39. Dennington, R., Keith, T., and Millam, J., GaussView, Ver. 5, Shawnee Mission, KS: Semichem Inc., 2009.

    Google Scholar 

  40. Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.

    Article  Google Scholar 

  41. Wang, W. and Mortier, W., J. Am. Chem. Soc., 1986, vol. 108, p. 5708.

    Article  Google Scholar 

  42. Khaled, K.F., Electrochim. Acta, 2010, vol. 22, p. 6523.

    Article  Google Scholar 

  43. Koopmans, T., Physica, 1933, vol. 1, p. 104.

    Article  Google Scholar 

  44. Sastri, V.S. and Perumareddi, J.R., Corrosion, 1997, vol. 53, p. 617.

    Article  Google Scholar 

  45. Nataraja, S.E., Venkatesha, T.V., Tandon, H.C., and Shylesha, B.S., Corros. Sci., 2011, vol. 53, p. 4109.

    Article  Google Scholar 

  46. Nataraja, S.E., Venkatesha, T.V., and Tandon, H.C., Corros. Sci., 2012, vol. 60, p. 214.

    Article  Google Scholar 

  47. Politzer, P. and Murray, J., Theor. Chem. Acc., 2002, vol. 108, p. 134.

    Article  Google Scholar 

  48. Scrocco, E. and Tomasi, J., Adv. Quantum Chem., 1979, vol. 11, p. 115.

    Article  Google Scholar 

  49. Luque, F.J., Lopez, J.M., and Orozco, M., Theor. Chem. Acc., 2000, vol. 103, p. 343.

    Article  Google Scholar 

  50. Okulik, N. and Jubert, A.H., Internet Electron. J. Mol. Des., 2000, vol. 4, p. 17.

    Google Scholar 

  51. Politzer, P. and Truhlar, D.G., Chemical Applications of Atomic and Molecular Electrostatic Potentials., New York: Plenum, 1981.

    Book  Google Scholar 

  52. Pearson, R.G., J. Am. Chem. Soc., 1985, vol. 107, p. 6801.

    Article  Google Scholar 

  53. Thanthiriwatte, K.S. and Nalin de Silva, K.M., J. Mol. Struct.: THEOCHEM, 2002, vol. 617, p. 169.

    Article  Google Scholar 

  54. Kleinman, D.A., Phys. Rev., 1962, vol. 126, p. 1977.

    Article  Google Scholar 

  55. Jian, F.F., Zhao, P.S., Bai, Z.S., and Zhang, L., Struct. Chem., 2005, vol. 16, p. 635.

    Article  Google Scholar 

  56. Yıldız, M., Ünver, H., Erdener, D., et al., Cryst. Res. Technol., 2006, vol. 41, p. 600.

    Article  Google Scholar 

  57. Ünver, H. and Durlu, T.N., J. Mol. Struct., 2003, vol. 655, p. 369.

    Article  Google Scholar 

  58. Elmali, A., Elerman, Y., and Zeyrek, C.T., J. Mol. Struct., 1998, vol. 443, p. 123.

    Article  Google Scholar 

  59. Elmali, A., Kabak, K., Kavlakoglu, E., et al., J. Mol. Struct., 1999, vol. 510, p. 207.

    Article  Google Scholar 

  60. Ünver, H., Kabak, M., Zengin, M., and Durlu, T.N., J. Chem. Crystallogr., 2001, vol. 31, p. 203.

    Article  Google Scholar 

  61. Politzer, P. and Murray, J.S., in Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, vol. 2: Protein, Beveridge, D.L. and Lavery, R., Eds., Schenectady, N. Y.: Adenine Press, 1991, chap. 13.

  62. Scrocco, E. and Tomasi, J., Top. Curr. Chem., 1973, vol. 42, p. 95.

    Google Scholar 

  63. Politzer, P., Conca, M.J., and Murray, J.S., Int. J. Quantum Chem., 2000, vol. 80, p. 184.

    Article  Google Scholar 

  64. Fukui, K., Yonezawa, T., and Shingu, H., J. Chem. Phys., 1952, vol. 20, p. 722.

    Article  Google Scholar 

  65. Yuce, A.O. and Kardas, G., Corros. Sci., 2012, vol. 58, p. 86.

    Article  Google Scholar 

  66. John, S. and Joseph, A., Mater. Chem. Phys., 2012, vol. 133, p. 1083.

    Article  Google Scholar 

  67. Lukovits, I., Kalman, E., and Zucchi, F., Corrosion, 2011, vol. 57, p. 3.

    Article  Google Scholar 

  68. Andraud, C., Brotin, T., Garcia, C., et al., J. Am. Chem. Soc., 1994, vol. 116, p. 2094.

    Article  Google Scholar 

  69. Tanak, H., J. Mol. Struct.: THEOCHEM, 2010, vol. 950, p. 5.

    Article  Google Scholar 

  70. Yavuz, M. and Tanak, H., J. Mol. Struct.: THEOCHEM, 2010, vol. 961, p. 9.

    Article  Google Scholar 

  71. Ruiz Delgado, M.C., Hernandez, V., Casado, J., et al., J. Mol. Struct.: THEOCHEM, 2004, vol. 709, p. 187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celal Tuğrul Zeyrek.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeyrek, C.T., Boyacioglu, B. & Ünver, H. Density functional modelling studies of chloride-substituted Schiff bases as corrosion inhibitors: Optimized geometries, atomic charges, solvent and non-linear optical effects. Prot Met Phys Chem Surf 53, 159–176 (2017). https://doi.org/10.1134/S2070205116060241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116060241

Navigation