Skip to main content
Log in

Communities of Soil Nematodes in the Subcrown Areas of Trees Introduced on the Territory of the Polar—Alpine Botanical Garden

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

We have studied communities of nematodes in the basal soil of woody plants introduced in the open areas of the Polar-Alpine Botanical Garden of the Karelian Scientific Center of the Russian Academy of Sciences (RAS) in Murmansk oblast. Under the conditions of introduction, we have identified nematodes belonging to 48 taxonomic categories with the maximum diversity of bacteriotrophes (56% of the total number of identified taxa) and plant parasites (21%). The tendency of reducing the number of genera in the series “deciduous breed-conifer breed-natural biocenosis” is shown; a similar pattern is shown for the group of plant parasites. We have found parasite taxa rare for the northwest of Russia. An adaptive mechanism was found in nematodes of the species Rhabditis producta Schneider, 1866, associated with delayed egg laying and their subsequent development to larvae in the body cavity of females, which is of great importance for the survival of offspring in adverse environmental conditions in the north. The study has revealed a significant correlation between the taxonomic diversity of nematodes and most of the soil properties (pH, ash content, N, and P); the relative abundance of polytrophs and nematodes associated with plants and the content of organic matter, organic carbon, as well as the C : N ratio; and the relative abundance of the group of nematode parasites of plants and the area of vegetation projective cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addis, T., Teshome, A., Strauch, O., and Ehlers, R.U., Life history trait analysis of the entomopathogenic nematode Steinernema riobrave, Nematology, 2014, vol. 16, pp. 929–936.

    Article  Google Scholar 

  • Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Manual on Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1970.

    Google Scholar 

  • Bezooijen van, J., Methods and Techniques for Nematology, Wageningen: Wageningen Univ. Press, 2006.

    Google Scholar 

  • Boag, B. and Yeates, G.W., Soil nematode biodiversity in terrestrial ecosystems, Biodiversity Conserv., 1998, vol. 7, pp. 617–630.

    Article  Google Scholar 

  • Brzeski, M.W., Nematodes of Tylenchina in Poland and Temperate Europe, Warszawa: Mus. Inst. Zool., Pol. Acad. Sci., 1998.

    Google Scholar 

  • Chalanska, A. and Labanowski, G., The effect of edaphic factors on the similarity of parasitic nematodes in the soil sampled in nurseries of ornamental trees and shrubs, J. Horticult. Res., 2014, vol. 22, no. 1, pp. 21–28. doi https://doi.org/10.2478/johr-2014-0002

    Article  Google Scholar 

  • Gruzdeva, L.I., Kovalenko, T.E., and Matveeva, E.M., Fauna of nematodes from islands of Kuzova Archipelago in the White Sea, Materialy IX mezhdunarodnoi konferentsii “Problemy izucheniya, ratsional’ogo ispol’zovaniya i okhrany resursov Belogo morya” (Proc. IX Int. Conf. “Study, Rational Use, and Protection of the White Sea Resources”), Petrozavodsk, 2005, pp. 81–86.

  • Gubin, A.I. and Sigareva, D.D., Species composition and structure of the communities of plant-parasitic and free-living soil nematodes in the greenhouses of botanical garden of Ukraine, Vestn. Zool., 2014, vol. 48, no. 3, pp. 195–202. doi https://doi.org/10.2478/vzoo-2014-0022

    Article  Google Scholar 

  • Hammer, O., Harper, D.A.T., and Ryan, P.D., Past: pale-ontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

    Google Scholar 

  • Hanel, L., Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession, Appl. Soil Ecol., 2008, vol. 40, no. 1, pp. 86–99. doi https://doi.org/10.1016/j.apsoil.2008.03.007

    Article  Google Scholar 

  • Johnigk, S.A. and Ehlers, R.U., Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply, Nematology, 1999, no. 1, pp. 717–726.

    Google Scholar 

  • Kalinkina, D.S., Sushchuk, A.A., and Matveeva, E.M., Characteristics of soil nematode communities under conditions of woody plant introduction, Russ. J. Ecol., 2016, vol. 47, no. 5, pp. 473–479. doi https://doi.org/10.1134/S1067413616050052

    Article  Google Scholar 

  • Keith, A.M., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P., and van der Wal, R., Strong impacts of belowground tree inputs on soil nematode trophic composition, Soil Biol. Biochem., 2009, vol. 41, pp. 1060–1065.

    Article  CAS  Google Scholar 

  • Lozzaro, L., Mazza, G., dErrico, G., Fabiani, A., Giuliani, C., Inghilesi, A.F., Lagomarsino, A., Landi, S., Lastrucci, L., Pastorelli, R., Roversi, P.F., Torrini, G., Tricarico, E., and Foggi, B., How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nem-atode, microarthropod, and plant communities, Sci. Total Environ., 2018, vols. 622–623, pp. 1509–1518. https://doi.org/10.1016/j.scitotenv.2017.10.017

    Article  CAS  Google Scholar 

  • Magnusson, C., Abundance and trophic structure of pine forest nematodes in relation to soil layers and ground cover, Holarctic Ecol., 1983, vol. 6, no. 2, pp. 175–182.

    Google Scholar 

  • Melekhina, E.N., Taxonomic diversity and areology of Oribatei in European north of Russia, Izv. Komi Nauchn. Tsentra, Ross. Akad. Nauk, Biol. Nauki, 2011, no. 2, pp. 30–37.

    Google Scholar 

  • Nielsen, U.N., Ayres, E., Wall, D.H., Li, G., Bardgett, R.D., Wu, T., and Garey, J.R., Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties, Global Ecol. Biogeogr., 2014, vol. 23, no. 9, pp. 968–978. doi https://doi.org/10.1111/geb.12177

    Article  Google Scholar 

  • Parinkina, O.M., Mikroflora tundrovykh pochv (Microflora of Tundra oils), Leningrad: Nauka, 1989.

    Google Scholar 

  • Pokharel, R., Marahatta, S.P., Handoo, Z.A., and Chitwood, D.J., Nematode community structures in different deciduous tree fruits and grape in Colorado, USA and impact of organic peach and apple production practices, Eur. J. Soil Biol., 2015, vol. 67, pp. 59–68. doi https://doi.org/10.1016/j.ejsobi.2015.02.003

    Article  Google Scholar 

  • Porazinska, D.L., Pratt, P.D., and Giblin-Davis, R.M., Consequences of Melaleuca quinquenervia invasion on soil nematodes in the Florida Everglades, J. Nematol., 2007, vol. 39, no. 4, pp. 305–312.

    PubMed  PubMed Central  Google Scholar 

  • Procter, D.L.C., Towards a biogeography of free-living soil nematodes. I. Changing species richness, diversity and densities with changing latitude, J. Biogeogr., 1984, vol. 11, pp. 103–117.

    Article  Google Scholar 

  • Putten van der, W.H., Yeates, G.W., Duyts, H., and Reis, S., Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges, Biol. Invasions, 2005, vol. 7, pp. 733–746. doi https://doi.org/10.1007/s10530-004-1196-3

    Article  Google Scholar 

  • Ryss, A.Y., Plant parasitic nematodes found in permafrost and in plant communities above it, Ecol. Parasitol., 1992, vol. 1, no. 1, pp. 57–63.

    Google Scholar 

  • Shitikov, V.K., Zinchenko, T.D., and Abrosimova, E.V., Nonparametric methods for comparative assessment of species diversity as applied to riverine macrozoobenthic communities, Zh. Obshch. Biol., 2010, vol. 71, no. 3, pp. 256–267.

    CAS  PubMed  Google Scholar 

  • Skwiercz, A.T., Nematodes (Nematoda) in Polish forests. I. Species inhabiting soils of nurseries, J. Plant Prot. Res., 2012, vol. 52, no. 1, pp. 169–179. 102478/v10045-012-0026-3

    Article  Google Scholar 

  • Sohlenius, B. and Bostrom, S., Annual and long-term fluctuations of the nematode fauna in a Swedish Scots pine forest soil, Pedobiologia, 2001, vol. 45, pp. 408–429.

    Article  Google Scholar 

  • Solov’eva, G.I., Ekologiya pochvennykh nematod (Ecology of Soil Nematodes), Leningrad: Nauka, 1986.

    Google Scholar 

  • Sushchuk, A.A. and Matveeva, E.M., Communities of soil nematodes of tundra ecosystems, Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Vliyanie tekhnogennoi transformatsii” (Proc. V All-Russ. Conf. with Int. Participation “Impact of Technogenic Transformation”), Apatity, 2014, part 2, pp. 72–75.

    Google Scholar 

  • Sushchuk, A.A., Kalinkina, D.S., and Platonova, E.A., Communities of soil nematodes in conditions of introduction of wood plants in the Botanical Garden of Petrozavodsk State University, Hortus Bot., 2016, vol. 11, pp. 157–170. http://hb.karelia.ru.

    Google Scholar 

  • Sushchuk, A.A., Matveeva, E.M., and Kalinkina, D.S., Soil nematodes of forest biocenoses of strictly protected natural territories, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2017, no. 4, pp. 49–61. doi https://doi.org/10.17076/them543

    Google Scholar 

  • Tabolin, S.B., Nematode-mycosis infections of rhizosphere of berry cultures and their biological preventions, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2010.

    Google Scholar 

  • Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K., and Bengtsson, J., Plant species effects on soil nematode communities in experimental grasslands, Appl. Soil Ecol., 2005, vol. 30, no. 2, pp. 90–103. doi https://doi.org/10.1016/j.apsoil.2005.02.007

    Article  Google Scholar 

  • Wu, T., Ayres, E., Bardgett, R.D., Wall, D.H., and Garey, J.R., Molecular study of world wide distribution and diversity of soil animals, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 43, pp. 17720–17725. doi https://doi.org/10.1073/pnas.1103824108

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakovlev, B.A., Klimat Murmanskoi oblasti (Climate of Murmansk Oblast), Murmansk: Murmansk. Knizhn. Izd., 1961.

    Google Scholar 

  • Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., and Georgieva, S.S., Feeding habits in soil nematode families and genera: an outline for soil ecologists, J. Nematol., 1993, vol. 25, no. 3, pp. 315–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhirov, V.K. and Luk’yznova, L.M., Establishment and development of the Avrorin Polar-Alpine Botanical Garden-Institute, Vestn. Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, 2009, no. 1, pp. 110–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kalinkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkina, D.S., Sushchuk, A.A., Matveeva, E.M. et al. Communities of Soil Nematodes in the Subcrown Areas of Trees Introduced on the Territory of the Polar—Alpine Botanical Garden. Contemp. Probl. Ecol. 12, 59–70 (2019). https://doi.org/10.1134/S1995425519010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425519010074

Keywords

Navigation