Skip to main content
Log in

Modern Achievements in the Field of Cyanoacrylate Adhesives. Mechanisms of Polymerization of Cyanoacrylates and Their Application Value

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This review presents the types of polymerization reactions of cyanoacrylates, which determine the characteristics of the polymers obtained and, as a result, the fields of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xinxing Zhang, Xin Tang, and Kit Bowen, “Photoelectron spectroscopic study of the ethyl cyanoacrylate anion,” Chem. Phys. Lett. 582, 21–23 (2013).

    Article  CAS  Google Scholar 

  2. L. H. Reddy and R. R. Murthy, “Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly (butylcyanoacrylate) nanoparticles,” Acta Pharm. 54, 103–118 (2004).

    CAS  PubMed  Google Scholar 

  3. H. Saade, S. Torres, C. Barrera, et al., “Effect of pH and monomer dosing rate in the anionic polymerization of ethyl cyanoacrylate in semicontinuous operation,” Int. J. Polym. Sci. 2015, Article ID 827059 (2015). https://doi.org/10.1155/2015/827059

  4. A. M. Polyakova, M. D. Suchkova, K. A. Mager, and V. V. Korshak, “Copolymerization of alpha-cyanoacrylic acid ethyl ester with di(alcyl)- and di(fluoroalcyl)methylene malonates,” Polym. Sci. U.S.S.R 26(1), 77–82 (1984).

    Article  Google Scholar 

  5. Lin Xiaona, Zhou Ruimei, Qiao Yong, et al., “Poly(ethylene glycol)/poly(ethyl cyanoacrylate) amphiphilic triblock copolymer nanoparticles as delivery vehicles for dexamethasone,” J. Polym. Sci. A: Polym. Chem. 46(23), 7809–7815 (2008).

    Article  CAS  Google Scholar 

  6. Ying Lei Zhai, Lian Dong Deng, Xiao Na Lin, et al., “Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone,” Chin. Sci. Bull. 54(17), 2919–2924 (2009).

    Article  CAS  Google Scholar 

  7. F. Ayadi, I. S. Bayer, D. Fragouli, et al., “Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment,” Cellulose 20(3), 1501–1509 (2013).

    Article  CAS  Google Scholar 

  8. S. L. Liu, Y. Z. Long, Y. Y. Huang, et al., “Solventless electrospinning of ultrathin polycyanoacrylate fibers,” Polym. Chem 4, 5696–5700 (2013).

    Article  CAS  Google Scholar 

  9. P. Hu, Y. Duan, D. Hu, et al., “Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature,” ACS Appl. Mater. Interfaces 7(8), 4720–4727 (2015). https://doi.org/10.1021/am5083683

    Article  CAS  PubMed  Google Scholar 

  10. Jingchao Chai, Jianjun Zhang, Pu Hu, et al., “Highvoltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries,” J. Mater. Chem. A, No. 14, 5191–5197 (2016).

  11. Yanyan Cui, Jingchao Chai, Huiping Du, et al., “Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries,” ACS Appl. Mater. Interfaces 9(10), 8737–8741 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. C. Dry, US Patent No. 9657205 (2017).

  13. Y. Okamoto and P. T. Klemarczyk, “Primers for bonding polyolefin substrates with alkyl cyanoacrylate adhesive,” J. Adhes. 40, 81–91 (1993).

    Article  CAS  Google Scholar 

  14. J. K. Fink, Reactive Polymers Fundamentals and Applications. A Concise Guide to Industrials Polymers (Elsevier Inc., 2013), 3rd ed., pp. 317–330.

  15. J. G. Woods and J. M. J. Fréchet, US Patent No. 6673192B1 (2004).

  16. P. Klemarczyk, “The Isolation of a zwitterionic initiating species for ethyl cyanoacrylate (ECA) polymerization and the identification of the reaction products between 1°, 2° and 3° amines with ECA,” Polymer 42(7), 2837–2848 (2001).

    Article  CAS  Google Scholar 

  17. I. Szanka, A. Szanka, and J. P. Kennedy, “Rubbery wound closure adhesives. I. Design, synthesis, characterization, and testing of polyisobutylene-based cyanoacrylate homo- and co-networks,” J. Polym. Sci. A: Polym. Chem. 53(14), 1640–1651 (2015).

    Article  CAS  Google Scholar 

  18. M. G. Han, S. Kim, and S. X. Liu, “Synthesis and degradation behavior of poly(ethyl cyanoacrylate),” Polym. Degrad. Stab. 93(7), 1243–1251 (2008).

    Article  CAS  Google Scholar 

  19. D. Kotzev and V. Kotzev, “Novel uses of cyanoacrylate adhesives—polycyanoacrylate foams,” Int. J. Adhes. Adhes. 12(3), 150–157 (1992).

    Article  CAS  Google Scholar 

  20. N. Arsu, A. Onen, and Y. Yagc̓, “Photoinitiated zwitterionic polymerization of alkyl cyanoacrylates by pyridinium salts,” Macromolecules 29(27), 8973–8974 (1996).

    Article  CAS  Google Scholar 

  21. A. Onen, N. Arsu, and Y. Yagc̓, “Photoinitiated polymerization of ethyl cyanoacrylate by phosphonium salts,” Angew. Makromol. Chem. 264, 56–59 (1999).

    Article  CAS  Google Scholar 

  22. E. Mele, J. A. Heredia-Guerrero, I. S. Bayer, et al., “Zwitterionic nanofibers of super-glue for transparent and biocompatible multi-purpose coatings,” Sci. Rep. 5 (2015). https://doi.org/10.1038/srep14019

  23. D. C. Pepper, “Transfer by weak acids in the slow-initiation-no-termination (SINT) polymerization of butyl cyanoacrylate,” Makromol. Chem. 188, 527–536 (1987).

    Article  CAS  Google Scholar 

  24. Ch. Loschen, N. Otte, and E. Radchenko, “Ab initio kinetic modeling of living anionic and zwitterionic chain polymerization mechanisms,” Macromolecules 43, 9674–9681 (2010).

    Article  CAS  Google Scholar 

  25. M. E. Cañizares, R. Mocelo, and J. Riumont, “Nueva visión de la etapa de iniciación en la polimerización de los 2-cianoacrilatos de alquilo,” Rev. Iberoam. Polím. 11(1), 17–25 (2010).

    Google Scholar 

  26. S. P. Wargacki, L. A. Lewis, and M. D. Dadmun, “Understanding the chemistry of the development of latent fingerprints by superglue fuming,” J. Forensic Sci. 52(5), 1057–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. I. S. Rustamov, Candidate’s Dissertation in Chemistry (Moscow, 2014).

  28. C. Duffy, P. B. Zetterlund, and F. Aldabbagh, “Radical polymerization of alkyl 2-cyanoacrylates,” Molecules 23 (465) (2018). https://doi.org/10.3390/molecules23020465

  29. D. R. Robello, T. D. Eldridge, and M. T. Swanson, “Degradation and stabilization of polycyanoacrylates,” J. Polym. Sci. A: Polym. Chem. 37, 4570–4581 (1999).

    Article  CAS  Google Scholar 

  30. G. H. Han and S. Kim, “Controlled degradation of poly (ethyl cyanoacrylate-co-methyl methacrylate) (PECAco-PMMA) copolymers,” Polymer 50, 1270–1280 (2009).

    Article  CAS  Google Scholar 

  31. H. A. A. Rasoul and H. K. Hall, Jr., “Cycloaddition and polymerization reactions of methyl α-cyanoacrylate with electron-rich olefins,” J. Org. Chem. 47, 2080–2083 (1982).

    Article  CAS  Google Scholar 

  32. T. I. Guseva, N. G. Senchenya, K. A. Mager, and Yu. G. Gololobov, “Copolymers of esters of α-cyano-acrylic acid with monomeric adamantane derivatives,” Plast. Massy (USSR), No. 8, 11–13 (1991).

  33. A. M. Polyakova, M. D. Suchkova, K. A. Mager, and V. V. Korshak, “Copolymerization of ethyl α-cyanoacrylate with fluorine-containing ethers of dimethylvinyl ethynylcarbinol,” Vysokomol. Soedin., Ser. B 25(5), 335–337 (1983).

    CAS  Google Scholar 

  34. V. V. Korshak, A. M. Polyakova, M. D. Suchkova, et al., “Ethyl α-cyanoacrylate copolymers with bispropargyl esters of dibasic carboxylic acids and their properties,” Dokl. Akad. Nauk USSR 275(4), 923–925 (1984).

    CAS  Google Scholar 

  35. L. M. Pritykin, O. V. Lakiza, G. A. Niazashvili, et al., “Investigation of the influence of the composition of 1,1,2-triclorobutadiene-1,3 copolymers with ethyl- and allyl cyanoacrylate on their adhesive propertiers,” Polym. Sci. U.S.S.R. 33(5), 930–937 (1991).

    Article  Google Scholar 

  36. N. G. Senchenya, P. V. Petrovskii, N. V. Klimentova, et al., “Copolymers of fluorine-containing 2-cyanoacrylates with 1,1,2-trichlorobutadiene-1,3,” Vysokomol. Soedin., Ser. A 39(4), 581–585 (1997).

    CAS  Google Scholar 

  37. A. B. Alovitdinov, N. Abdurakhimov, A. B. Kuchkarov, and Zh. M. Niyazova, “Phosphorus-containing copolymers of ethyl ether of α-cyanoacrylic acid,” Uzb. Khim. Zh., No. 2, 63–65 (1984).

  38. Yu. G. Gololobov, N. V. Klimentova, K. F. Mager, et al., “Copolymers of dimethyl 2-methyl-1,3-butadienuylphosphonic acid with 1,1,2-tricloro-1,3-butadiene and alpha-cyanoacrylic acid ethyl ester,” Polym. Sci. U.S.S.R 29(11), 2605–2611 (1987).

    Article  Google Scholar 

  39. V. K. Dikov, D. L. Kotzev, and V. S. Kabaivanov, “Polymerization of ethyl 2-cyanoacrylate in the presence of poly(butadiene-co-acrylonitrile),” Polym. Int. 20, 9–12 (1988).

    CAS  Google Scholar 

  40. K. A. Mager, et al., RF Patent No. 2039068 (1995).

  41. K. A. Mager, et al., RF Patent No. 2070892 (1996).

  42. C. Chauvierre, R. Manchanda, D. Labarre, et al., “Artificial oxygen carrier based on polysaccharidespoly(alkylcyanoacrylates) nanoparticle templates,” Biomaterials 31(23), 6069–6074 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. F. Hansali, G. Poisson, M. Wu, et al., “Miniemulsion polymerizations of n-butyl cyanoacrylate via two routes: Towards a control of particle degradation,” Colloids Surf. B: Biointerfaces 88, 332–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tang Houliang and N. V. Tsarevsky, “Preparation and functionalization of linear and reductively degradable highly branched cyanoacrylate-based polymers,” J. Polym. Sci. A: Polym. Chem. 54(23), 3683–3793 (2016).

    Article  CAS  Google Scholar 

  45. B. Sperlich and C. D. Eisenbach, “Copolymerization of ethyl cyanoacrylate and ethylene in the presence of zinc chloride or trifluoroacetic acid as complexing agent,” Acta Polym. 47, 280–284 (1996).

    Article  CAS  Google Scholar 

  46. C. Duffy, M. Phelan, P. B. Zetterlund, and F. Aldabbagh, “Reversible addition-fragmentation chain transfer polymerization of alkyl-2-cyanoacrylates: An assessment of livingness,” J. Polym. Sci. A, Polym. Chem. 55(8), 1397–1408 (2017).

    Article  CAS  Google Scholar 

  47. V. V. Korshak, E. E. Said-Galiev, L. M. Ashkhotova, et al., “Patterns of photo-initiation of polymerization of ethyl ester of α-cyanoacrylic acid,” Vysokomol. Soed., B 25(9), 668–671 (1983).

    CAS  Google Scholar 

  48. H. R. Misiak, US Patent No. 6734221B1 (2004).

  49. P. Fadaie, M. Atai, M. Imani, et al., “Cyanoacrylate—POSS nanocomposites: Novel adhesives with improved properties for dental applications,” Dental Mater. 29, e61–e69 (2013).

    Article  CAS  Google Scholar 

  50. C. T. Sanderson, B. J. Palmer, A. Morgan, et al., “Classical metallocenes as photoinitiators for the anionic polymerization of an alkyl 2-cyanoacrylate,” Macromolecules 35, 9648–9652 (2002).

    Article  CAS  Google Scholar 

  51. N. R. Brinkmann and H. F. Schaefer, “Can the radical anion of alkyl-2-cyanoacrylates initiate anionic polymerization of these instant adhesive monomers?,” J. Phys. Chem. A 106, 847–853 (2002).

    Article  CAS  Google Scholar 

  52. M. J. A. Lopez, et al., WIPO Patent No. WO2017021785A1 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aronovich.

Additional information

Russian Text © The Author(s), 2018, published in Klei, Germetiki, Tekhnologii, 2018, No. 12, pp. 2–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronovich, D.A. Modern Achievements in the Field of Cyanoacrylate Adhesives. Mechanisms of Polymerization of Cyanoacrylates and Their Application Value. Polym. Sci. Ser. D 12, 290–295 (2019). https://doi.org/10.1134/S1995421219030031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421219030031

Keywords

Navigation