Skip to main content
Log in

Antimicrobial properties of polypropylene yarn modified by metal nanoparticles stabilized by polyethylene

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A new approach to the creation of polypropylene fiber materials with barrier antimicrobial properties was proposed. It is based on the modification of polypropylene yarns in the process of their production by metal-containing nanoparticles with biocidal properties. Nanoparticles were used in the stabilized by polyethylene form to prevent aggregation. It has been shown that the ability of the modified yarns to inhibit the activity of pathogenic microorganisms depends on the type of metal-containing nanoparticles, the stabilizing polymer matrix, and the concentration of nanoparticles in the yarn. Nanoparticles of manganese, iron, and nickel provide a very good antimicrobial effect when exposed to Gram-positive bacteria Staphylococcus aureus and fungi of the genus Candida (Candida albicans), but lead only to a slight reduction in the number of colonies of gram-negative bacterial test strain Escherichia coli. Nanoparticles of gold and palladium have little effect on pathogenic bacteria, but have a good antimicrobial effect in contact with yeast fungi of the genus Candida (C. albicans). The antimicrobial activity of nanoparticles increases with their concentration in the polymer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Nadtochenko, M. A. Radtsig, and I. A. Khmel’, “Antimicrobial effect of metallic and semiconductor nanoparticles,” Nanotechnol. Russ. 5,277(2010).

    Article  Google Scholar 

  2. K. Kon and M. Rai, “Metallic nanoparticles: mechanism of antibacterial action and influencing factors,” J. Compar. Clin. Pathol. Res., No. 2/1, 160–174 (2013).

    Google Scholar 

  3. H. Wang, A. Zakirov, S. U. Yuldashev, J. Lee, D. Fu, and T. Kang, “ZnO films grown on cotton fibers surface at low temperature by simple two-step process,” Mater Lett. 65, 1316–1327 (2011).

    Article  Google Scholar 

  4. G. Borkow and J. Gabbay, “Copper, an ancient remedy returning to fight microbial and viral infections,” Curr. Chem. Biol. 3, 272–278 (2009).

    Google Scholar 

  5. O. V. Abramov, A. Gedanken, Y. Koltypin, N. Perkas, I. Perelshtein, E. Joyce, and T. J. Mason, “Pilot scalesonochemical coating of nanoparticles onto textile to produce biocidal fabrics,” Surf. Coat. Technol.204(5), 718–722 (2009).

    Article  Google Scholar 

  6. R. Rajendran, C. Balakumar, A. Hasabo, M. Ahammed, S. Jayakumar, K. Vaideki, and E. Rajesh, “Zinc oxide nanoparticles for production of antimicrobial textiles,” Int. J. Eng. Sci. Technol. 2, 202–208 (2010).

    Google Scholar 

  7. C. Y. Chen and C. L. Chiang, “Preparation of cotton with antibacterial silver nanoparticles,” Mater Lett. 62, 3607–3609 (2008).

    Article  Google Scholar 

  8. N. Duran, P. D. Marcarto, G. I. H. de Souza, O. L. Alves, and E. Esposito, “Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effuent treatment,” J. Biomed. Nanotech. 3, 203–208 (2007).

    Article  Google Scholar 

  9. I. M. El-Nahhal, S. M. Zourab, F. S. Kodeh, M. Selmane, I. Genois, and F. Babonneau, “Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications,” Int. Nano Lett.2(14) (2012). http://www.inl-journal.com/content/2/1/14

    Google Scholar 

  10. G. Borkow and J. Gabbay, “Putting copper into action: copper impregnates products with potent biocidal activities,” FASEB J.18(14), 1728–1730 (2004).

    Google Scholar 

  11. G. Mary, S. K. Bajpai, and N. Chand, “Copper(II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties,” J. Appl. Polym. Sci.113(2), 757–766 (2009).

    Article  Google Scholar 

  12. E. Falletta, M. Bonini, E. Fratini, Nostro A. Lo, G. Pesavento, A. Becheri, P. lo Nostro, P. Canton, and P. Baglioni, “Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics,” J. Phys. Chem. C 112, 11758–11766 (2008).

    Article  Google Scholar 

  13. H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, “A study on multifunctional wool textiles treated with nano-sized silver,” J. Mater. Sci. 42, 8020–8024 (2007).

    Article  Google Scholar 

  14. H. J. Lee and S. H. Jeong, “Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics,” Text. Res. J. 75, 551–556 (2005).

    Article  Google Scholar 

  15. W. Zhang, Y. H. Zhang, J. H. Ji, J. Zhao, Q. Yan, and P. K. Chu, “Antimicrobial properties of copper plasmamodified polyethylene,” Polymer47(21), 7441–7445 (2006).

    Article  Google Scholar 

  16. A. Muñoz-Bonilla and M. Fernandez-Garcia, “Polymeric materials with antimicrobial activity,” Progress Polym. Sci. 37, 281–339 (2012).

    Article  Google Scholar 

  17. H. Palza, “Antimicrobial polymers with metal nanoparticles,” Int. J. Mol. Sci. 16, 2099–2116 (2015).

    Article  Google Scholar 

  18. N. Cioffi, L. Torsi, N. Ditarantano, G. Tantalillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P. G. Zambonin, and E. Traversa, “Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties,” Chem. Mater.17(21), 5255–5262 (2005).

    Article  Google Scholar 

  19. H. Palza, S. Gutiérrez, K. Delgado, O. Salazar, V. Fuenzalida, J. Avila, G. Figueroa, and R. Quijada, “Toward tailor-made biocide materials based on polypropylene/ copper nanoparticles,” Macromol. Rapid Commun. 31, 563–569 (2010).

    Article  Google Scholar 

  20. K. Delgado, R. Quijada, R. Palma, and H. Palza, “Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent,” Lett. Appl. Microbiol. 53, 50–54 (2011).

    Article  Google Scholar 

  21. N. P. Prorokova, S. Yu. Vavilova, M. I. Biryukova, G. Yu. Yurkov, and V. M. Buznik, “Modification of polypropylene filaments with metal-containing nanoparticles immobilized in a polyethylene matrix,” Nanotechnol. Russ. 9, 533–540 (2014).

    Article  Google Scholar 

  22. N. P. Prorokova, S. Yu. Vavilova, M. I. Biryukova, G. Yu. Yurkov, and V. M. Buznik, “Polypropylene filaments modified by stabilized in a polyethyleneby ironcontaining nanoparticles,” Khim. Volokna, No.2(2015, in press).

    Google Scholar 

  23. S. P. Gubin, I. D. Kosobudskii, G. A. Petrakovskii, V. P. Piskorskii, L. V. Kashkina, and V. N. Kolomeichuk, “Ligand-free metal clusters in the ‘inert’ polymer matrix,” Dokl. Akad. Nauk SSSR260(3), 655–657 (1981).

    Google Scholar 

  24. S. P. Gubin and I. D. Kosobudskii, “One-phase metal polymers,” Dokl. Akad. Nauk SSSR272(5), 1155–1158 (1983).

    Google Scholar 

  25. S. P. Gubin and I. D. Kosobudskii, “Metallic clusters in polymer matrices,” Russ. Chem. Rev. 52, 766–774 (1983).

    Article  Google Scholar 

  26. S. P. Gubin, Yu. I. Spichkin, Yu. A. Koksharov, G. Yu. Yurkov, A. V. Kozinkin, T. I. Nedoseikina, M. S. Korobov, and A. M. Tishin, “Magnetic and structural properties of Co nanoparticles in polymeric matrix,” J. Magn. Magn. Mater.265(2), 234–242 (2003).

    Article  Google Scholar 

  27. T. N. Rostovshchikova, O. I. Kiseleva, G. Yu. Yurkov, S. P. Gubin, D. A. Pankratov, Yu. D. Perfil’ev, V. V. Smirnov, P. A. Chernavskii, and G. V. Pankina, “Catalysis of allyl-like chloroolefin reactions by nanosized iron oxides,” Vestn. Mosk. Univ., Ser. 2: Khim.42(5), 419–425 (2001).

    Google Scholar 

  28. S. Yu. Vavilova, N. N. Prorokova, and A. P. Pikalov, “Effect of molding conditions and orientation extending of polypropylene fiber on its physical-mechanical properties,” Izv. Vyssh. Uchebn. Zaved., Tekhnol. Legk. Promyshl.12(2),17(2011).

    Google Scholar 

  29. ASTM E2149-10Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (USA, 2001).

  30. A. V. Razuvaev, “The final finishing of textile materials by biocides,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.53(8), 3–7 (2010).

    Google Scholar 

  31. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, “Antimicrobial effects of silver nanoparticles,” Nano-Med.3(1), 95–101 (2007).

    Google Scholar 

  32. E. N. Taylor and T. J. Webster, “The use of superparamagnetic nanoparticles for prosthetic biofilm prevention,” Int. J. Nanomed. 4, 145–152 (2009).

    Article  Google Scholar 

  33. I. V. Babushkina, V. B. Borodulin, G. V. Korshunov, and D. M. Puchinjan, “Comparative study of anti-bacterial action of iron and copper nanoparticles on clinical Staphylococcus aureus strains,” Saratov J. Med. Sci. Res. 6, 11–14 (2010).

    Google Scholar 

  34. N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster, “Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus,” Int. J. Nanomed. 5, 277–283 (2010).

    Google Scholar 

  35. S. Prabhu and E. K. Poulose, “Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects,” Int. Nano Lett. 32, 2–10 (2012).

    Google Scholar 

  36. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Appl. Environ. Microbiol.73(6), 1712–1720 (2007).

    Article  Google Scholar 

  37. J. A. Lemire, J. J. Harrison, and R. J. Turner, “Antimicrobial activity of metals: mechanisms, molecular targets and applications,” Nat. Rev. Microbiol. 11, 371–384 (2013).

    Article  Google Scholar 

  38. C. Gunawan, W. Y. Teoh, C. P. Marquis, and R. Amal, “Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts,” ACS Nano5(9), 7214–7225 (2011).

    Article  Google Scholar 

  39. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, “The bactericidal effect of silver nanoparticles,” Nanotechnology 16, 2346–2353 (2005).

    Article  Google Scholar 

  40. Yu. A. Krutyakov, A. A. Kudrinskii, A. Yu. Olenin, and G. V. Lisichkin, “Synthesis and properties of silver nanoparticles: advances and prospects,” Russ. Chem. Rev. 77, 233–257 (2008).

    Article  Google Scholar 

  41. I. Dragieva, S. Stoeva, P. Stoimenov, E. Pavlikianov, and K. Klabunde, “Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process,” Nanostruct. Mater. 12, 267–270 (1999).

    Article  Google Scholar 

  42. T. Hamouda, A. Myc, B. Donovan, A. Shih, J. D. Reuter, and J. R. Baker, “A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi,” Microbiol. Res. 156, 1–7 (2000).

    Article  Google Scholar 

  43. M. Singh, S. Sing, S. Prasad, and I. S. Gambhir, “Nanotechnology in medicine and antibacterial effect of silver nanoparticles,” Digest J. Nanomater. Biostruct. 3, 115–122 (2008).

    Google Scholar 

  44. P. Appendini and J. H. Hotchkiss, “Review of antimicrobial food packaging,” Innov. Food Sci. Emerg. Technol. 3, 113–126 (2002).

    Article  Google Scholar 

  45. T. M. Ton-That and B.-J. Jungnickel, “Water diffusion into transcrystalline layers on polypropylene,” J. Appl. Polym. Sci. 74, 3275–3285 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Prorokova.

Additional information

Original Russian Text © N.P. Prorokova, S.Yu. Vavilova, O.Yu. Kuznetsov, V.M. Buznik, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prorokova, N.P., Vavilova, S.Y., Kuznetsov, O.Y. et al. Antimicrobial properties of polypropylene yarn modified by metal nanoparticles stabilized by polyethylene. Nanotechnol Russia 10, 732–740 (2015). https://doi.org/10.1134/S1995078015050171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015050171

Keywords

Navigation