Skip to main content
Log in

Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using MRI and morphological investigation

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

MRI and morphological investigations into internal organ tissues and tumors in rats with liver cancer PC-1 under the intraperitoneal administration of magnetite hydrosols have been performed. The absence of any toxic effect of magnetite nanoparticles at low concentrations (0.325 mg/mL) has been determined using neutrophil granulocytes. A technique for the synthesis of citrate-stabilized magnetite hydrosols by the coprecipitation of Fe2+ and Fe3+ salts is described. Their electrokinetic potential is −32 ± 2 mV at pH 6.5 ± 0.1. The size distribution of magnetite nanoparticles is obtained by dynamic light scattering. The average size of magnetite nanoparticles is 23 ± 6 nm. The absorption spectra of magnetite hydrosols have been measured. The dependence of the optical density on the concentration has also been obtained. Molar absorption coefficients of magnetite nanoparticles have been calculated at the following wavelengths: 532, 633, 660, and 785 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Weissleder, A. Bogdanov, E. A. Neuwelt, and M. Papisov, “Longcirculating iron oxides for MR imaging,” Adv. Drug Deliv. Rev. 16, 321 (1995).

    Article  CAS  Google Scholar 

  2. P. Reimer and R. Weissleder, “Development and experimental application of receptor-specific MR contrast media,” Radiologe 36, 153 (1996).

    Article  CAS  Google Scholar 

  3. C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, and P. Jallet, “Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution,” J. Microencapsulat. 13, 245 (1996).

    Article  CAS  Google Scholar 

  4. E. Okon, D. Pouliquen, P. Okon, Z. V. Kovaleva, T. P. Stepanova, S. G. Lavit, B. N. Kudryavtsev, and P. Jallet, “Biodegradation of magnetite dextran manoparticles in the rat: a histologic and biophysical study,” Lab Invest. 71, 895 (1994).

    CAS  Google Scholar 

  5. C. W. Jung and P. Jacobs, “Physical and chemical properties of superparamagnetic iron-oxide MR contrast agents; ferumoxides, ferumoxtran, ferumoxsil,” Magn. Reson. Imaging 13, 661 (1995).

    Article  CAS  Google Scholar 

  6. Y. Jun, J.-H. Lee, and J. Cheon, “Chemical design of nanoparticle probes for high-performance magnetic resonance imaging,” Angewandte Chem. Int. Ed. 47, 5122 (2008).

    Article  CAS  Google Scholar 

  7. P. K. Gupta and C. T. Hung, “Magnetically controlled targeted microcarrier systems,” Life Sci. 44, 175 (1989).

    Article  CAS  Google Scholar 

  8. A. S. Lubbe, C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J. W. Brock, and D. Huhn, “Preclinical experiences with magnetic drug targeting: tolerance and efficacy,” Cancer Res. 56, 4694 (1996).

    CAS  Google Scholar 

  9. A. K. Gupta and A. S. G. Curtis, “Lactoferrin and ceruloplasmin derivatized superparamagneticiron oxide nanoparticles for targeting cell surface receptors,” Biomater. 25, 3029 (2004).

    Article  CAS  Google Scholar 

  10. D. C. F. Chan, D. Kirpotin, and P. A. Bunn, “Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequencyinduced hyperthermia of cancer,” J. Magn. Magn. Mater. 122, 374 (1993).

    Article  CAS  Google Scholar 

  11. U. Häfeli, W. Schütt, J. Teller, and M. Zborowski, Scientific and Clinical Applications of Magnetic Carriers (Plenum Press, New York, 1997).

    Google Scholar 

  12. M. Levy, F. Lagarde, V.-A. Maraloiu, M.-G. Blanchin, F. Gendron, C. Wilhelm, and F. Gazeau, “Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties,” Nanotecnol. 21, 395103 (2010).

    Article  Google Scholar 

  13. M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20, 4225 (2008).

    Article  CAS  Google Scholar 

  14. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications,” Chem. Rev. 108, 2064 (2008).

    Article  CAS  Google Scholar 

  15. R. M. Cornell and U. Schertmann, Iron Oxides in the Laboratory; Preparation and Characterization (VCH, Weinheim, 1991).

    Google Scholar 

  16. F. A. Cotton and G. Wilkinson, in Advanced Inorganic Chemistry (Wiley Intersci., New York, 1988).

    Google Scholar 

  17. P. V. Kamat, Nanoscale Materials (Kluwer Acad. Publ., Boston, 2003).

    Google Scholar 

  18. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, “Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles,” J. Magn. Magn. Mater. 225, 30 (2001).

    Article  CAS  Google Scholar 

  19. Y. Zhang, N. Kohler, and M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake,” Biomater. 23, 1553 (2002).

    Article  CAS  Google Scholar 

  20. E. Miller, N. A. Peppas, and D. N. Winslow, “Morphological changes of ethylene/vinyl acetate based on controlled delivery systems during release of water-soluble solutes,” J. Membr. Sci. 14, 79 (1983).

    Article  CAS  Google Scholar 

  21. X. Zhao and J. M. Harris, “Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein,” J. Pharm. Sci. 87, 1450 (1998).

    Article  CAS  Google Scholar 

  22. J. M. Ruiz and J. P. Benoit, “In vivo peptide release from poly(lactic-coglycolic acid) copolymer 50/50 microspheres,” J. Cont. Rel. 16, 177 (1991).

    Article  CAS  Google Scholar 

  23. J. K. Li, N. Wang, and X. E. Wu, “A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery,” J. Pharm. Sci. 86, 891 (1997).

    Article  CAS  Google Scholar 

  24. K. Akiyoshi and J. Sunmoto, “Supramolecular assembly of hydrophobized polysaccharides,” Supramol. Sci. 3, 157 (1996).

    Article  CAS  Google Scholar 

  25. H. G. Schwick and K. Heide, “Immunochemistry and immunology of collagen and gelatin,” Bibl. Haematol. 3, 111 (1969).

    Google Scholar 

  26. S. P. Massia, J. Stark, and D. S. Letbetter, “Surface immobilized dextran limits cell adhesion and spreading,” Biomater. 21, 2253 (2000).

    Article  CAS  Google Scholar 

  27. J. Yu, C.-W. Lee, S.-S. Im, and J.-S. Lee, “Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process,” Rev. Adv. Mater. Sci. 4, 55 (2003).

    Article  CAS  Google Scholar 

  28. M. Chen, S. Yamamuro, D. Farrell, and S. A. Majetich, “Gold-coated iron nanoparticles for biomedical applications,” J. Appl. Phys. 93, 7551 (2003).

    Article  CAS  Google Scholar 

  29. J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. E. Carpenter, and C. J. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly,” J. Solid State Chem. 159, 26 (2001).

    Article  CAS  Google Scholar 

  30. A. K. Gupta, C. Berry, M. Gupta, and A. Curtis, “Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis,” IEEE Trans. Nanobiosci. 2, 256 (2003).

    Article  Google Scholar 

  31. A. Moore, J. Basilion, E. A. Chiocca, and R. Weissleder, “Measuring transferrin receptor gene expression by NMR imaging,” Biochim. Biophys. Acta 1402, 239 (1998).

    Article  CAS  Google Scholar 

  32. C. C. Berry, S. Charles, S. Wells, M. J. Dalby, and A. S. G. Curtis, “The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture,” Int. J. Pharm. 269, 211 (2004).

    Article  CAS  Google Scholar 

  33. M. E. Baker, “Albumin’s role in steroid hormone action and the origins of vertebrates: is albumin an essential protein,” FEBS Lett. 439, 9 (1998).

    Article  CAS  Google Scholar 

  34. A. M. Jubb and H. C. Allen, “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition,” Appl. Mater. Interf. 10, 2804 (2010).

    Article  Google Scholar 

  35. R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs, and J. Lewis, “Superparamagnetic iron oxide: pharmacokinetics and toxicity,” Am. J. Roentgenol. 152, 167 (1989).

    Article  CAS  Google Scholar 

  36. A. S. Lubbe, C. Alexiou, and C. Bergemann, “Clinical applications of magnetic drug targeting,” J. Surg. Res. 95, 200 (2001).

    Article  CAS  Google Scholar 

  37. M. D. Kaminski and A. J. Rosengart, “Detoxification of blood using injectable magnetic nanoparticles: a conceptual technology description,” J. Magn. Magn. Mater. 293, 389 (2005).

    Article  Google Scholar 

  38. A. B. Chin and I. I. Yaacob, “Synthesis and characterization of magnetic iron oxide nanoparticles via microemulsion and massart’s procedure,” J. Mater. Process Technol. 191, 235 (2007).

    Article  CAS  Google Scholar 

  39. C. Albornoz and S. E. Jacobo, “Preparation of a biocompatible magnetic film from an aqueous ferrofluid,” J. Magn. Magn. Mater. 305, 12 (2006).

    Article  CAS  Google Scholar 

  40. E. H. Kim, H. S. Lee, B. K. Kwak, and B. K. Kim, “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent,” J. Magn. Magn. Mater. 289, 328 (2005).

    Article  CAS  Google Scholar 

  41. J. Wan, X. Chen, Z. Wang, X. Yang, and Y. Qian, “A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods,” J. Cryst. Growth 276, 571 (2005).

    Article  CAS  Google Scholar 

  42. M. Kimata, D. Nakagawa, and M. Hasegawa, “Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide,” Powder Technol. 132, 112 (2003).

    Article  CAS  Google Scholar 

  43. I. Martinez-Mera, M. E. Espinosa, R. Perez-Hernandez, and J. Arenas-Alatorre, “Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature,” J. Mater. Lett. 61, 4447 (2007).

    Article  CAS  Google Scholar 

  44. Y -K. Sun, M. Ma, Y. Zhang, and N. Gu, “Synthesis of nanometer-size maghemite particles from magnetite,” Colloids Surf. A: Physicochem. Eng. Asp. 245, 15 (2004).

    Article  CAS  Google Scholar 

  45. S.-J. Lee, J.-R. Jeong, S.-C. Shin, J.-C. Kim, and J. Kim, “Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique,” J. Magn. Magn. Mater. 282, 147 (2004).

    Article  CAS  Google Scholar 

  46. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Trans. Magn. 17, 1247 (1981).

    Article  Google Scholar 

  47. S.V. German, O.A. Inozemtseva, A.V. Markin, Kh. Metvalli, G.B. Khomutov, D.A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere”, Colloid Journal 75, No. 4, 483 (2013).

    Article  CAS  Google Scholar 

  48. I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324, 2958 (2012).

    Article  CAS  Google Scholar 

  49. Guide for Preclinical Tests of Medicinal Agents, Ed. by A. N. Mironov (Grif i K, Moscow, 2012), Part 1 [in Russian].

    Google Scholar 

  50. I. V. Podosinnikov, L. G. Nilova, and I. V. Babichenko, “The way to determine chemotactic activity for white blood cells,” Lab. Delo, No. 8, 68 (1981).

    Google Scholar 

  51. N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647 (2011).

    Article  CAS  Google Scholar 

  52. Yu. S. Tarakhovskii, Intelligent Lipidic Nanocontainers for Addressed Delivery of Pharmaceutical Substances (Izd. LKI, Moscow, 2011) [in Russian].

    Google Scholar 

  53. L. N. Donselaar and A. P. Philipse, “Interactions between Silica colloids with magnetite cores: diffusion, sedimentation and light scattering,” J. Colloid Interface Sci. 212, 14 (1999).

    Article  CAS  Google Scholar 

  54. A. K. Gupta and M. Gupta, “Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles,” Biomater. 26, 1565 (2005).

    Article  CAS  Google Scholar 

  55. S. N. Pleskova, E. N. Gorshkova, E. R. Mikheeva, and A. N. Shushunov, “The way to investigate biocompatibility between nanoparticles and fluorescence center of Er/Yb in neutrophilous granulocytes,” Tsitologiya 53(5), 444 (2011).

    CAS  Google Scholar 

  56. N. M. Anichkov and M. A. Pal’tsev, Pathoanatomy (Meditsina, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gorin.

Additional information

Original Russian Text © S.V. German, O.A. Inozemtseva, N.A. Navolokin, E.E. Pudovkina, V.V. Zuev, E.K. Volkova, A.B. Bucharskaya, S.N. Pleskova, G.N. Maslyakova, D.A. Gorin, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, S.V., Inozemtseva, O.A., Navolokin, N.A. et al. Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using MRI and morphological investigation. Nanotechnol Russia 8, 573–580 (2013). https://doi.org/10.1134/S1995078013040034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013040034

Keywords

Navigation