Skip to main content
Log in

Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The most widespread methods for the colloidal synthesis of highly luminescent CdSe, CdS, ZnSe and other AIIBVI core-shell colloidal quantum dots (QDs) are reviewed. Advantages and disadvantages of the currently developed one-pot QD synthesis as compared to the classical multistage approaches are discussed. The noninjection one-pot method starts with the growth of metastable magic-size seeds; their subsequent recrystallization ensures slow, controllable growth of highly monodisperse, defect-free core nanocrystals of desired sizes and shapes. Subsequent formation of a shell out of a semiconductor with a wider bandgap yields gradient core-shell QDs with a smooth potential barrier for electrons and holes, without strains or interfacial defects, and, as a consequence, a luminescence quantum yield (QY) approaching 100%. This approach can also be applied to other semiconductor systems to cover the broad spectral range from the near-ultraviolet (UV) to infrared (IR) regions of the optical spectrum. These nanocrystals may replace fluorescent organic dyes and rare-earth luminophores in their current applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  2. A. Henglein, “Q-particles: size quantization effect in colloidal semiconductors,” Progr. Colloid Polymer Sci. 73, 1–4 (1987).

    Article  CAS  Google Scholar 

  3. A. J. Nozik, F. Williams, M. T. Nenadovic, T. Rajh, and O. I. Mii, “Size quantization on small semiconductor particles,” J. Phys. Chem. 89, 397–399 (1985).

    Article  Google Scholar 

  4. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  5. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects for colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  6. N. Gaponik, S. G. Hickey, D. Dorfs, A. L. Rogach, and A. Eychmüller, “Progress in the light emission of colloidal semiconductor nanocrystals,” Small 6, 1364–1378 (2010).

    Article  CAS  Google Scholar 

  7. P. Reiss, M. Protiére, and L. Li, “Core-shell semiconductor nanocrystals,” Small 5, 154–168 (2009).

    Article  CAS  Google Scholar 

  8. X. Peng, “Band-gap and composition engineering on nanocrystal (BCEN) in solution,” Acc. Chem. Res. 43, 1387–1395 (2010).

    Article  CAS  Google Scholar 

  9. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  10. X. Peng, J. Wickham, and A. P. Alivisatos, “Kinetics of II–VI and III–V colloidal semiconductor nonocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  CAS  Google Scholar 

  11. Y. A. Yang, H. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. Int. Ed. 44, 6712–6715 (2005).

    Article  CAS  Google Scholar 

  12. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Yu. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art,” J. Phys. Chem. C 111, 14628–14637 (2007).

    Article  CAS  Google Scholar 

  13. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphibe mixture,” Nano Lett. 1, 207–211 (2001).

    Article  CAS  Google Scholar 

  14. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).

    Article  CAS  Google Scholar 

  15. Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126, 14336–14337 (2004).

    Article  CAS  Google Scholar 

  16. M. Protiere, N. Nerambourg, O. Renard, and P. Reiss, “Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals,” Nanoscale Res. Lett. 6, 472 (2011).

    Article  Google Scholar 

  17. H. Qian, X. Qiu, L. Li, and J. Ren, “Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots,” J. Phys. Chem. B 110, 9034–9040 (2006).

    Article  CAS  Google Scholar 

  18. D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach,” Adv. Mater. 17, 176–179 (2005).

    Article  Google Scholar 

  19. D. Zhou, J. Han, Y. Liu, M. Liu, X. Zhang, H. Zhang, and B. Yang, “Nucleation of aqueous semiconductor nanocrystals: a neglected factor for determining the photoluminescence,” J. Phys. Chem. C 114, 22487–22492 (2010).

    Article  CAS  Google Scholar 

  20. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, “CdS nanoclysters: synthesis, characterization, size-dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift,” J. Phys. Chem. 98, 7665–7673 (1994).

    Article  CAS  Google Scholar 

  21. V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Molecular limit of bulk semiconductor: size dependence of the «band gap» in CdSe cluster molecules,” J. Am. Chem. Soc. 122, 22673–2674 (2000).

    Article  CAS  Google Scholar 

  22. V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Size-dependent optical spectroscopy of homologous series of CdSe cluster molecules,” J. Am. Chem. Soc. 123, 2354–2364 (2001).

    Article  CAS  Google Scholar 

  23. Z. A. Peng and X. J. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” Am. Chem. Soc. 124, 3343–3353 (2002).

    Article  CAS  Google Scholar 

  24. A. Kasuya, R. Sivamohan, Yu. A. Barnakov, I. M. Dmitruk, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V. Belosludov, V. Sundararajan, and Y. Kawazoe, “Ultra stable nanoparticles of CdSe revealed from mass-spectrometry,” Nature Mater. 3, 99–102 (2004).

    Article  CAS  Google Scholar 

  25. E. Groeneveld, S. van Berkum, A. Meijerink, and C. de Mello Donega, “Growth and stability of ZnTe magic-size nanocrystals,” Small 7, 1247–1256 (2011).

    Article  CAS  Google Scholar 

  26. K. Yu, J. Ouyang, Md. B. Zaman, D. Johnston, F. J. Yan, G. Li, C. I. Ratcliffe, D. M. Leek, X. Wu, J. Stupak, Z. Yakubek, and D. Whitfield, “Single-sized CdSe nanocrystals with bandgap photoemission via noninjectionone-pot approach,” J. Phys. Chem. 113, 3390–3401 (2011).

    Google Scholar 

  27. J. Ouyang, Md. B. Zaman, F. J. Yan, D. Johnston, G. Li, X. Wu, D. Leek, C. I. Ratcliffe, J. A. Ripmeester, and K. Yu, “Multiply families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot synthesis,” J. Phys. Chem. C 112, 13805–13811 (2008).

    Article  CAS  Google Scholar 

  28. M. Li, J. Ouyang, C. I. Ratcliffe, L. Pietri, X. Wu, D. M. Leek, I. Moudrakovski, Q. Lin, B. Yang, and K. Yu, “CdSe magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation,” ACS Nano 3, 3832–3838 (2009).

    Article  CAS  Google Scholar 

  29. R. Wang, J. Ouyang, S. Nikolaus, L. Brestaz, Md. B. Zaman, X. Wu, D. Leek, C. I. Ratcliffe, and K. Yu, “Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence,” Chem. Commun., 962–964 (2009).

    Google Scholar 

  30. R. Wang, O. Calvignanello, C. I. Ratcliffe, X. Wu, D. M. Leek, Md. B. Zaman, D. Kingston, J. A. Rip- meester, and K. Yu, “Homogeneously alloyed CdTeSe single-sized nanocrystals with bandgap photoluminescence,” J. Phys. Chem. C 113, 3402–3408 (2009).

    Article  CAS  Google Scholar 

  31. S. Ithurria and B. Dubertret, “Quasi, 2D colloidal CdSe platelets with thicknesses controlled at the atomic level,” J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  32. S. Ithurria, G. Bosquet, and B. Dubertret, “Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets,” J. Am. Chem. Soc. 133, 3070–3077 (2011).

    Article  CAS  Google Scholar 

  33. A. D. Dukes, J. R. McBridge, and S. J. Rosenthal, “Synthesis of magic-sized CdSe and CdTe nanocrystals with diisooctylphosphinic acid,” Chem. Mater. 22, 6402–6408 (2010).

    Article  CAS  Google Scholar 

  34. Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc-blended CdTe/CdS magic-core/thick shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc. 132, 5592–5593 (2010).

    Article  CAS  Google Scholar 

  35. M. Sun and X. Yang, “Phosphine-free synthesis of high-quality CdSe nanocrystals in noncoordination solvents:’ activating agent’ and’ nucleating agent’ controlled nucleation and growth,” J. Phys. Chem. C 113, 8701–8709 (2009).

    Article  CAS  Google Scholar 

  36. M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron state in a dense quantum dot ensemble,” Phys. Rev. B 60, 1504–1506 (1999).

    Article  CAS  Google Scholar 

  37. L.-J. Zhang, X.-C. Shen, H. Liang, and J.-T. Yao, “Multiply families of magic-size ZnSe via non-injection one-pot and hot-injection synthesis,” J. Phys. Chem. C 114, 21921–21927 (2010).

    Article  CAS  Google Scholar 

  38. B. M. Cossairt and J. S. Owen, “CdSe clusters: at the interface of small molecules and quantum dots,” Chem. Mater. 23, 3114–3119 (2011).

    Article  CAS  Google Scholar 

  39. Q. Yu and C.-Y. Liu, “Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of magic-size clusters and mechanism implication,” J. Phys. Chem. C 113, 12766–12771 (2009).

    Article  CAS  Google Scholar 

  40. Z. Li, Y. Ji, R. Xie, S. Y. Grisham, and X. Peng, “Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development,” J. Am. Chem. Soc. 133, 17248–17256 (2011).

    Article  CAS  Google Scholar 

  41. R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc. 125, 7100–7106 (2003).

    Article  CAS  Google Scholar 

  42. M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nancorystals,” Acc. Chem. Rev. 43, 621–630 (2010).

    Article  CAS  Google Scholar 

  43. H. C. Poon, Z. C. Feng, Y. P. Feng, and M. F. Li, “Relativistic band structure of ternary II-VI semiconductor alloys containing Cd, Zn, Se and Te,” J. Phys.: Condens. Matter 7, 2783–2799 (1995).

    Article  CAS  Google Scholar 

  44. X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition tunable Zn{ti x}Cd1 − x Se nanocrystals with high luminescence and stability,” J. Am. Chem. Soc. 125, 8589–8594 (2003).

    Article  CAS  Google Scholar 

  45. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009).

    Article  CAS  Google Scholar 

  46. H. Lee, P. H. Holloway, and H. Yang, “Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods,” J. Chem. Phys. 125, 164711 (2006).

    Article  Google Scholar 

  47. E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun., 2964–2965 (2003).

    Google Scholar 

  48. F. C. Liu, T. L. Cheng, C. C. Shen, W. L. Tseng, and M. Y. Chiang, “Synthesis of cysteine-capped ZnxCd1 − x Se alloyed quantum dots emitted in the blue-green spectral range,” Langmuir 24, 2162–2167 (2008).

    Article  CAS  Google Scholar 

  49. A. M. Smith and S. Nie, “Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange,” J. Am. Chem. Soc. 133, 24–26 (2011).

    Article  CAS  Google Scholar 

  50. A. Prudnikau, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev, A. V. Baranov, S. A. Cherevkov, and A. V. Fedorov, “Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: spectroscopic and structural examination,” Mater Sci. Eng. B 177, 744–749 (2012).

    Article  CAS  Google Scholar 

  51. A. L. Rogach, A. Euchmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3, 536–557 (2007).

    Article  CAS  Google Scholar 

  52. F.-C. Liu, Y.-M. Chen, J.-H. Lin, and W. L. Tseng, “Synthesis of highly fluorescent glutatione-capped ZnxHg1 − x Se quantum dots and its application for sensing copper ions,” J. Coll. Interface. Sci. 337, 414–419 (2009).

    Article  CAS  Google Scholar 

  53. H. Quian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111, 16852–16857 (2007).

    Article  Google Scholar 

  54. S. Taniguchi, M. Green, and T. Lim, “The room temperature synthesis of anisotropic CdHgTe quantum dot alloys: a “molecular welding” effect,” J. Am. Chem. Soc. 133, 3328–3331 (2011).

    Article  CAS  Google Scholar 

  55. X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1 − x Se nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125, 13559–13563 (2003).

    Article  CAS  Google Scholar 

  56. X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1 − x Se nanocrystals with long-time thermal stability in size distribution and emission wavelength,” J. Phys. Chem. B 108, 15552–15559 (2004).

    Article  CAS  Google Scholar 

  57. Z. Deng, H. Yan, and Y. Liu, “Band-gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc., 17744–17745 (2009).

    Google Scholar 

  58. T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-scale synthesis of InPZnS alloy quantum dots with dodecanethiol as a composition controller,” J. Phys. Chem. Lett. 3, 214–218 (2012).

    Article  CAS  Google Scholar 

  59. L. Spanhel, M. Haase, H. Weller, and A. Henglein, “Photochemistry of colloidal semiconductors: 20. Surface modification and stability of strong luminescing CdS particles,” J. Am. Chem. Soc. 109, 5649–5655 (1987).

    Article  CAS  Google Scholar 

  60. M. J. Ferée, A. Watt, J. Warner, S. Cooper, N. Hecken- berg, and H. Rubinsztein-Dunlop, “Inorganic surface passivation of of PbS nanocrystals resulting in strong photoluminescent emission,” Nanotechnol. 14, 991–997 (2003).

    Article  Google Scholar 

  61. C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, “Demonstration of shell-core structure in layered cadmium selenide-zinc selenide small particles by X-ray photoelectron and Auger spectroscopies,” J. Phys. Chem. 96, 3812–3817 (1992).

    Article  CAS  Google Scholar 

  62. A. R. Kortran, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleaction and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micella media,” J. Am. Chem. Soc. 112, 1327–1332 (1990).

    Article  Google Scholar 

  63. M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  64. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  65. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chem. Mater. 8, 173–180 (1996).

    Article  CAS  Google Scholar 

  66. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  CAS  Google Scholar 

  67. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  CAS  Google Scholar 

  68. P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett. 2, 781–784 (2002).

    Article  CAS  Google Scholar 

  69. J. M. Tsay, S. Doose, F. Pinaud, and S. Weiss, “Enhansing the photoluminescence of peptide-coated nanocrystals with shell composition and UV radiation,” J. Phys. Chem. B 109, 1669–1674 (2005).

    Article  CAS  Google Scholar 

  70. T. Mokari and U. Banin, “Synthesis and properties of CdSe/ZnS core/shell nanorods,” Chem. Mater. 15, 3955–3960 (2003).

    Article  Google Scholar 

  71. I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, and H. Weller, “One-pot synthesis of highly luminescent CdSe/CdS core/shell nanocrystals via organometallic and «greener» chemical approaches,” J. Phys. Chem. B 107, 7454–7462 (2003).

    Article  CAS  Google Scholar 

  72. S. J. Lim, B. Chon, T. Joo, and S. K. Shin, “Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and theit luminescence in water,” J. Phys. Chem. C 112, 1744–1747 (2008).

    Article  CAS  Google Scholar 

  73. H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi, and S. J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108, 17119–17123.

  74. R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115, 3005–3010 (2011).

    Article  CAS  Google Scholar 

  75. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).

    Article  CAS  Google Scholar 

  76. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals,” J. Phys. Chem. B 108, 18826–18831 (2004).

    Article  CAS  Google Scholar 

  77. H. Zhu, A. Prakash, D. N. Benoit, C. J. Jones, and V. L. Colvin, “Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots,” Nanotechnol. 21, 255604 (2010).

    Article  Google Scholar 

  78. L. Manna, E. C. Scher, L. S. Li, and A. P. Alivisatos, “Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods,” J. Am. Chem. Soc. 124, 7136–7145 (2002).

    Article  CAS  Google Scholar 

  79. P. Yang, M. Ando, T. Taguchi, and N. Murase, “Highly luminescent CdSe/CdxZn1 − x S quantum dots with narrow spectrum and widely tunable wavelength,” J. Phys. Chem. C 115, 14455–14460 (2011).

    Article  CAS  Google Scholar 

  80. W. K. Bae, K. Char, H. Hur, and S. Lee, Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater 20, 531–539 (2008).

    Article  CAS  Google Scholar 

  81. D. Ratchford, K. Dziatkowski, T. Hartsfield, X. Li, Y. Gao, and Z. Tang, “Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface,” J. Appl. Phys. 109, 103509 (2011).

    Article  Google Scholar 

  82. S. K. Panda, S. G. Hickey, C. Waurisch, and A. Eych- müller, “Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications,” J. Mater. Chem. 21, 11550–11555 (2011).

    Article  CAS  Google Scholar 

  83. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Lee, C. Jung, K. Char, and S. Lee, “InP-ZnSeS core-composition gradient shell quantum dots with enhanced stability,” Chem. Mater. 23, 4459–4463 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Artemyev.

Additional information

Original Russian Text © P.S. Samokhvalov, M.V. Artemyev, I.R. Nabiev, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 5–6.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samokhvalov, P.S., Artemyev, M.V. & Nabiev, I.R. Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications. Nanotechnol Russia 8, 409–422 (2013). https://doi.org/10.1134/S1995078013030166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013030166

Keywords

Navigation