Skip to main content
Log in

Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The electrostatic interaction between positively charged copper nanoparticles aggregates (ζ = +15.9 ± 8.63 mV) and negatively charged surface of E. coli K12 TG1 cells (ζ = -50.0 ± 9.35 mV) has been established. The time-dependent decline of bacterial cells zeta potential and the coupled inhibition of constitutive bioluminescence level are the results of this interaction. The development of oxidative stress, probably defined by the electron transfer from the cytoplasmic membrane respiratory chains through membrane-integrated copper nanoparticle to the molecular oxygen, is shown as luminescence induction in superoxide- and peroxide-inducible E. coli K-12 MG1655 pSoxS::lux and pKatG::lux reporter strains. The final result of this process, which is responsible for the development of the bactericidal effect of copper nanoparticles, is DNA damage by active oxygen species detected by SOS-inducible E. coli pRecA::lux luminescent strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Timofeev, M. V. Protopopova, and A. V. Koles- nichenko, “Nanomaterials toxicity: 15-year research,” Ross. Nanotekh. 3(3–4), 54–61 (2008).

    Google Scholar 

  2. I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru, “Ecotoxicity of nanoparticles of CuO and ZnO in natural water,” Environ. Pollut. 158(1), 41–47 (2010).

    Article  CAS  Google Scholar 

  3. N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P. G. Zambonin, and E. Traversa, “Copper nanoparticle / polymer composites with antifungal and bacteriostatic properties,” Chem. Mater. 17(21), 5255–5262 (2005).

    Article  CAS  Google Scholar 

  4. A. A. Rakhmetova, T. P. Alekseeva, O. A. Bogoslovskaya, I. O. Leipunskii, I. P. Ol’khovskaya, A. N. Zhigach, and N. N. Glushchenko, “Wound-healing properties of copper nanoparticles as a function of physicochemical parameters,” Nanotechnologies in Russia 5(3–4), 271–276 (2010).

    Article  Google Scholar 

  5. M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, and A. Kahru, “Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus,” Chemosphere 71(7), 1308–1316 (2008).

    Article  CAS  Google Scholar 

  6. P. Gajjar, B. Pettee, D. W. Britt, W. Huang, W. P. Johnson, and A. J. Anderson, “Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440,” J. Biol. Eng. 3, 9 (2009). doi:10.1186/1754-1611-3-9.

    Article  Google Scholar 

  7. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomater. 4(3), 707–716 (2008).

    Article  CAS  Google Scholar 

  8. I. V. Babushkina, V. B. Borodulin, G. V. Korshunov, and D. M. Puchin’yan, “Comparative study of antibacterial action of iron and copper nanoparticles on clinical Staphylococcus aureus strains,” Saratovsk. Nauch.-Med. Zh. 6(1), 11–14 (2010).

    CAS  Google Scholar 

  9. F. Rispoli, A. Angelov, D. Badia, A. Kumar, S. Seal, and V. Shah, “Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli,” J. Hazard. Mater. 80(1–3), 212–216 (2010).

    Article  Google Scholar 

  10. D. G. Deryabin, Bacterial Bioluminescence: Fundamental and Applied Aspects (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  11. M. Mortimer, K. Kasemets, M. Heinlaan, I. Kurvet, and A. Kahru, “High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles,” Toxicol. in vitro, No. 5, 1412–1417 (2008).

    Google Scholar 

  12. G. B. Zavilgelsky, V. Yu. Kotova, and I. V. Manukhov, “Titanium dioxide (TiO2) nanoparticles induce bacterial stress response detectable by the specific lux biosensors,” Nanotechnologies in Russia 6(5–6), 401–406 (2011).

    Article  Google Scholar 

  13. Methodological Recommendations no. 1.2.2634-10: Microbiological and Molecular-Genetic Estimation of Nanomaterials Effect onto Microbiocenosis (Federal Centre for Hygiene and Epidemiological in Moscow, Moscow, 2010) [in Russian].

  14. M. L. Kuskov, I. O. Leipunskii, N. I. Stoenko, V. B. Storozhev, and A. N. Zhigach, “The way to produce superfine metals powders, alloys, metals jointing by means of Gene-Muller method: history, modern state, trends,” Ross. Nanotekhnol. 7(3-4), 28–37 (2012).

    Google Scholar 

  15. I.P. Arsenteva, T. A. Bajtukalov, N. N. Glushchenko, E. L. Dzidziguri, E. S. Zotova, E. N. Sidorova, O. A. Bogoslovskaya, “Certification of nanoparticles of copper and magnesium and application of them in medicine,” Materialoved., No. 4, 54–57 (2007).

    Google Scholar 

  16. V. S. Danilov, A. P. Zarubina, G. E. Eroshnikov, L. N. Soloveva, F. V. Kartashov, and G. B. Zavilgelsky, “The bioluminescent sensor systems with lux-operons from various species of luminescent bacteria,” Vestn. Mosk. Univ. Ser. 16. Biol., No. 3, 20–24 (2002).

    Google Scholar 

  17. D. G. Deryabin, E. S. Aleshina, and L. V. Efremova, “Application of the inhibition of bacterial bioluminescence test for assessment of toxicity of carbon-based nanomaterials,” Mikrobiol. 81(4), 492–497 (2012).

    CAS  Google Scholar 

  18. Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, and L. Wan, “Acute toxicological effects of copper nanoparticles in vivo,” Toxicol. Lett. 163(2), 109–120 (2006).

    Article  CAS  Google Scholar 

  19. M. Kosmulski, “pH-dependent surface charging and points of zero charge. IV. Update and new approach,” J. Colloid Interface Sci. 337, 439–448 (2009).

    Article  CAS  Google Scholar 

  20. A. Kumar, A. K. Pandey, S. S. Singh, R. Shanker, and A. Dhawan, “Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli,” Free Radical Biol. Med. 51(10), 1872–1881 (2011).

    Article  CAS  Google Scholar 

  21. D. G. Deryabin, E. S. Aleshina, and A. S. Tlyagulova, “Acute toxicity of carbon-based nanomaterials to Escherichia coli is partially dependent on the presence of process impurities,” Nanotechnologies in Russia 6(7–8), 528–534 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Deryabin.

Additional information

Original Russian Text © D.G. Deryabin, E.S. Aleshina, A.S. Vasilchenko, T.D. Deryabina, L.V. Efremova, I.F. Karimov, L.B. Korolevskaya, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deryabin, D.G., Aleshina, E.S., Vasilchenko, A.S. et al. Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russia 8, 402–408 (2013). https://doi.org/10.1134/S1995078013030063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013030063

Keywords

Navigation