Skip to main content
Log in

Theory of surface chemical reactivity

  • Special Issue: Theoretical Modeling of Energetics and Kinetics of Chemical Processes on Transition Metal Surfaces
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Fundamental reactivity concepts of relevance to the reactivity of transition metal surfaces are reviewed using elementary quantum-chemical concepts. The Newns-Anderson tight binding model of chemisorption is presented and subsequently used to outline the electronic structure characteristics of weak versus strong chemisorption. Fundamental concepts such as electron localization and surface complex embedding energies are defined and used to help explain surface reactivity. The emphasis here is on establishing an understanding of the surface chemical bond as a function of adatom coordination number, degree of coordinative unsaturation of the surface atoms and electron occupation of the d-type valence electron band. We derive from formal chemisorption theory the important relationships that exist between measured chemisorption properties and the average position of the d-valence electron band. The Newns-Anderson model is also used to show the relationship that exists between the d-band center and the coordinative unsaturation of the metal surface atoms. The general conclusion is that for Group VIII metals the shift of the average energy of the surface local density of states correlates with the strength of the interaction of the surface atoms with the metal atoms next to the surface layer. The same model is then used to analyze the Shustorovich bond order conservation model. The BOC or its modern version UBI-QEP is found to be consistent with a surface interaction potential comprised of a two-body repulsive term along with a constant attractive interaction independent of the number of coordinating atoms. The concepts of weak and strong chemisorption provide a very good basis for the subsequent analysis of the Brønsted-Eyring-Polanyi (BEP) relation. The extreme values of the BEP proportionality constant are related to the concept of loose and tight transition states. This proportionality constant between transition state energy and reaction energy can be expressed in parameters from the Newns-Anderson model by identifying loose transition states with intermediates in which the bond to be activated has not yet been broken, whereas in tight transition states this bond can be considered to be broken. We conclude the paper with an analysis of surface reconstruction. The power of the surface-molecule complex view of chemisorption will be quite apparent. The paper has an extensive introductory section to relate the topics of the four sections that follow with important classical catalytic notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Clark, The Theory of Adsorption and Catalysis (Academic, New York, 1970).

    Google Scholar 

  2. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  3. M. Boudart, Adv. Catal. 20, 153 (1969).

    CAS  Google Scholar 

  4. M. Che and C. O. Bennet, Adv. Catal. 36, 55 (1989).

    CAS  Google Scholar 

  5. C. R. Henry, C. Chapon, S. Giorgio, and C. Goyhenex, in Chemisorption and Reactivity on Supported Clusters and Thin Films, Ed. by R. M. Lambert and G. Pacchioni (Kluwer, 1997), pp. 117–152.

  6. J. H. Sinfelt, J. L. Carter, and D. J. C. Yates, J. Catal. 24, 283 (1972).

    Article  CAS  Google Scholar 

  7. W. M. H. Sachtler and R. A. van Santen, Adv. Catal. 26, 69 (1977).

    Article  CAS  Google Scholar 

  8. B. Hammer and J. K. Nørskov, Adv. Catal. 45, 71 (2000).

    CAS  Google Scholar 

  9. A. Grosz, Top. Catal. 37, 29 (2006).

    Article  CAS  Google Scholar 

  10. M. Mavrikakis, B. Hammer, and J. K. Nørskov, Phys. Rev. Lett. 81, 2819 (1998).

    Article  Google Scholar 

  11. E. M. Shustorovich, Surf. Sci. Rep. 6, 1 (1986).

    Article  CAS  Google Scholar 

  12. R. Hoffmann, Solids and Surfaces (VCH, 1988).

  13. J. K. Nørskov and N. D. Lang, Phys. Rev. B: Condens. Matter 12, 2136 (1980); J. K. Nørskov, Phys. Rev. B: Condens. Matter 26, 2875 (1982).

    Google Scholar 

  14. B. Hammer, Top. Catal. 37, 3 (2006).

    Article  CAS  Google Scholar 

  15. M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B: Condens. Matter 24, 3037 (1980).

    Google Scholar 

  16. D. M. Newns, Phys. Rev. 178, 1123 (1969); P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  CAS  Google Scholar 

  17. M. Neurock et al., to appear.

  18. E. M. Shustorovich, J. Phys. Chem. B 1, 307 (2007).

    Google Scholar 

  19. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).

    Article  CAS  Google Scholar 

  20. R. A. van Santen and M. Neurock, Catal. Rev. Sci. Eng. 37, 557 (1993).

    Article  Google Scholar 

  21. R. A. van Santen and J. W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum, New York, 1995), pp. 199, 230.

    Google Scholar 

  22. R. A. van Santen and M. Neurock, Molecular Heterogeneous Catalysis (Wiley-VCH, 2006).

  23. O. K. Rice, Statistical Mechanics: Thermodynamics and Kinetics (W.H. Freeman, 1967).

  24. P. Sabatier, La Catalyse en Chimie Organique (Libraire Polytechnique, Paris, 1913).

    Google Scholar 

  25. A. M. Argo, J. F. Odzak, F. S. Lai, and B. C. Gates, Nature (London) 415, 623 (2002).

    Article  CAS  Google Scholar 

  26. G. Wulff, Z. Kristallogr. 34, 449 (1901).

    CAS  Google Scholar 

  27. J. Wang, C. Y. Fan, K. Jacobi, and G. Ertl, Surf. Sci. 481, 113 (2001).

    Article  CAS  Google Scholar 

  28. M. Neurock and D. Mei, Top. Catal. 20, 1 (2002); C. G. M. Hermse, F. Frechard, A. P. van Bavel, et al., J. Chem. Phys. 118, 7081 (2003).

    Article  Google Scholar 

  29. B. P. Crawford and P. Hu, J. Chem. Phys. 124, 044705 (2006).

    Google Scholar 

  30. F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940).

    Google Scholar 

  31. R. A. van Santen, Theoretical Heterogeneous Catalysis (World Sci., Singapore, 1991).

    Google Scholar 

  32. F. Fréchard, R. A. van Santen, A. Siokon, et al., J. Chem. Phys., p. 8124 (1999).

  33. W. Biemolt, Quantum Chemical Studies in Catalysis: Thesis (Eindhoven, 1995).

  34. M. T. M. Koper, T. E. Shubina, and R. A. van Santen, J. Phys. Chem. B 106, 686 (2002).

    Article  CAS  Google Scholar 

  35. N. Lopez and J. K. Nørskov, Surf. Sci. 477, 59 (2001).

    Article  CAS  Google Scholar 

  36. N. Mott, Metal-Insulator Transition (Taylor and Fransis, New York, 1974).

    Google Scholar 

  37. E. M. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 1 (1998).

    Article  CAS  Google Scholar 

  38. H. Sellers and E. M. Shustorovich, Surf. Sci. 504, 167 (2002).

    Article  CAS  Google Scholar 

  39. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, Ithaca, 1939).

    Google Scholar 

  40. G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).

    Article  CAS  Google Scholar 

  41. B. S. Bunnik and G. J. Kramer, unpublished.

  42. Q. Ge and M. Neurock, J. Am. Chem. Soc. 126, 1551 (2004).

    Article  CAS  Google Scholar 

  43. A. Eichler and J. Hafner, Chem. Phys. Lett. 343, 383 (2004).

    Article  Google Scholar 

  44. J. K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Catal. 209, 275 (2002).

    Article  CAS  Google Scholar 

  45. P. van Beurden and G. J. Kramer, J. Chem. Phys. 121, 2317 (2004).

    Article  CAS  Google Scholar 

  46. J. K. Nørskov, Surf. Sci. 299/300, 690 (1994).

    Article  Google Scholar 

  47. F. Fréchard and R. A. van Santen, Surf. Sci. 407, 200 (1998).

    Article  Google Scholar 

  48. A. B. Hayden, P. Pervan, and D. P. Woordruff, Surf. Sci. 306, 99 (1994).

    Article  CAS  Google Scholar 

  49. J. E. Kirsch and S. Harris, Surf. Sci. 522, 125 (2003).

    Article  CAS  Google Scholar 

  50. I. Ciobica and R. A. van Santen, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. van Santen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Santen, R.A., Neurock, M. Theory of surface chemical reactivity. Russ. J. Phys. Chem. B 1, 261–291 (2007). https://doi.org/10.1134/S1990793107040021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793107040021

Keywords

Navigation