Skip to main content
Log in

Oligomerization of L-asparaginase from Erwinia carotovora

  • Experimental Studies
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Bacterial L-asparaginases catalyzing hydrolysis of L-asparagine to L-aspartate and ammonia, are used in medical practice for treatment of acute lymphoblastic leukemia. The long-term therapy with these preparations is accompanied by a number of side effects, which are attributed to glutaminase activity of L-asparaginase. Substrate specificity and activity of L-asparaginases are directly associated with the oligomerization process of this enzyme, which is active only as the tetramer because its active sites are located in the contact areas between monomers. The present work is devoted to homology modeling of spatial structure of L-asparaginase from Erwinia carotovora, the comparative molecular-graphic analysis of subunit interfaces, and the development of a new experimental approach for studies of enzyme oligomerization. L-Asparaginase was immobilized on a surface of CM5 optical chip of biosensor Biacore 3000, which is based on the surface plasmon resonance technology. The dissociation process of enzyme tetrameric complexes up to monomers and subsequent oligomerization process have been registered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghaiypour, K., Wlodawer, A., and Lubkowski, J., Biochem., 2001, vol. 40, pp. 5655–5664.

    Article  CAS  Google Scholar 

  2. Kotzia, G.A. and Labrou, N.E., J. Biotechnol., 2005, vol. 119, pp. 309–323.

    Article  CAS  Google Scholar 

  3. Howard, J.B., and Carpenter, F.H., J. Biol. Chem., 1972, vol. 247, pp. 1020–1030.

    CAS  Google Scholar 

  4. Derst, C., Henseling, J., and Ruhm, K.-H., Protein Sci., 2000, vol. 9, pp. 2009–2017.

    Article  CAS  Google Scholar 

  5. Schwartz, J.H., Reevesi, J.Y., and Broome, J.D., Proc. Natl. Acad. Sci. USA, 1966, vol. 56, pp. 1516–1519.

    Article  CAS  Google Scholar 

  6. Pinheiro, J.P., and Boos, J., Br. J. Haematol., 2004, vol. 125, pp. 117–127.

    Article  Google Scholar 

  7. Rizzari, C., Zucchetti, M., Conter, V., Diomede, L., Bruno, A., Gavazzi, L., Paganini, M., Sparano, P., Lo Nigro, L., Arico, M., Milani, M., and D’Incalci, M., Ann. Oncol., 2000, vol. 11, pp. 189–193.

    Article  CAS  Google Scholar 

  8. Sokolov, N.N., Eldarov, M.A., Sidoruk, K.V., Zhgun, A.A., Borisova, A.A., Aleksandrova, S.S., Omelyanchuk, N.M., Bogush, V.G., Krasotkina, J.V., Gervasiev, Yu.V., Pokrovskaya, M.V., Sokov, B.N., Berezov, T.T., Skryabin, K.G., and Archakov, A.I., Mol. Meditzina, 2005, vol. 1, pp. 45–53.

    Google Scholar 

  9. Cammack, K.A., Marlborough, D.I., and Miller, D.S., Biochem. J., 1972, vol. 126, pp. 361–379.

    CAS  Google Scholar 

  10. Muller, H.J., Beier, R., Loning, L., Blutters-Sawatzki, R., Dorffel, W., Maass, E., Muller-Weihrich, S., Scheel-Walter, H.G., Scherer, F., Stahnke, K., Schrappe, M., Horn, A., Lumkemann, K., and Boos, J., Br. J. Haematol., 2001, vol. 114, pp. 794–799.

    Article  CAS  Google Scholar 

  11. Goodsell, D.S., Stem cell, 2005, vol. 23, pp. 710–711.

    Article  Google Scholar 

  12. Marlborough, D.I., Miller, D.S., and Cammack, K.A., Biochim. Biophys. Acta, 1975, vol. 386, pp. 576–589.

    CAS  Google Scholar 

  13. Shifrin, S., Parrott, C.L., and Luborsky, S.W., J. Biol. Chem., 1974, vol. 249, pp. 1335–1340.

    CAS  Google Scholar 

  14. Krasotkina, J., Borisova, A.A., Gervaziev, Yu.V., Zanin, A.S., and Sokolov, N.N., Biotechnol. Applied Biochem., 2004, vol. 39, pp. 215–221.

    Article  CAS  Google Scholar 

  15. Lubkowski, J., Dauter, M., Aghaiypour, K., Wlodawera, A., and Dauter, Z., Acta Cryst., 2003, vol. 59, pp. 84–92.

    Article  CAS  Google Scholar 

  16. Borek, D, and Jaskolski, M., Acta Biochim. Pol., 2001, vol. 48, pp. 893–902.

    CAS  Google Scholar 

  17. Bell, K.S., Sebaihia, M., Pritchard, L., Holden, M.T.G., Hyman, L.J., Holeva, M.C., Thomson, N.R., Bentley, S.D., Churcher, L.J.C., Mungall, K., Atkin, R., Bason, N., Brooks, K., Chillingworth, T., Clark, K., Doggett, J., Fraser, A., Hance, Z., Hauser, H., and Toth, I.K., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 11105–11110.

    Article  CAS  Google Scholar 

  18. Apweiler, R., Bairoch A., and Wu, C.H., Curr. Opin. Chem. Biol., 2004, vol. 8, pp. 76–80.

    Article  CAS  Google Scholar 

  19. Swain, A.L., Jaskolski, M., Housset, D., Rao, J.K., and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 1474–1478.

    Article  CAS  Google Scholar 

  20. Lubkowski, J., Palm, G.J., Gilliland, G.L., Derst, C., Rohm, K.H., and Wlodawer, A., Eur.J.Biochem., 1996, vol. 241, pp. 201–207.

    Article  CAS  Google Scholar 

  21. Jakob, C.G., Lewinski, K., LaCount, M.W., Roberts, J., and Lebioda, L., Biochem, 1997, vol. 36, pp. 923–931.

    Article  CAS  Google Scholar 

  22. Lubkowski, J., Dauter, M., Aghaiypour, K., Wlodawer, A., and Dauter, Z., Acta Crystallogr. Sect. D, 2003, vol. 59, p. 84.

    Article  CAS  Google Scholar 

  23. Jaskolski, M., Kozak, M., Lubkowski, J., Palm, G., and Wlodawer, A., Acta Crystallogr. Sect. D, 2001, vol. 57, pp. 369–377.

    Article  CAS  Google Scholar 

  24. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Boume, P.E., Nucleic Acids Res., 2000, vol. 28, pp. 235–242.

    Article  CAS  Google Scholar 

  25. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S., J. Mol. Biol., 2004, vol. 340, pp. 783–795.

    Article  CAS  Google Scholar 

  26. Higgins, D.G., Thompson, J.D., and Gibson, T.J., Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  Google Scholar 

  27. Kortemme, T., Kim, D.E., and Baker, D., Sci. STKE, 2004, vol. 219, p. 12.

    Google Scholar 

  28. Kim, D.E., Chivian, D., and Baker, D., Nucleic Acids Res., 2004, vol. 32, pp. 526–531.

    Article  CAS  Google Scholar 

  29. Sybyl 6.9, Tripos Inc., (1699) South Hanley Road, St Louis, Missouri, 63144, USA.

  30. Powell, M.J.D., Mathematical Programming, 1977, vol. 12, pp. 241–254.

    Article  Google Scholar 

  31. Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thomton, J.M., J. Appl. Cryst., 1993, vol. 26, pp. 283–291.

    Article  CAS  Google Scholar 

  32. Zemla, A., Nucleic Acids Res., 2003, vol. 31, pp. 3370–3374.

    Article  CAS  Google Scholar 

  33. Myszka, D.G., Curr. Opin. Biotechnol., 1997, vol. 8, pp. 50–57.

    Article  CAS  Google Scholar 

  34. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I., Sjolander, R., Stenberg, E., Stahlberg, R., Urbaniczky, C., Ostlin, H., and Malmqvist, M., BioTechniques., 1991, vol. 11, pp. 620–627.

    CAS  Google Scholar 

  35. Kislitsyn, Yu.A., Kravchenko, O.V., Nikonov, S.V., and Kuranova, I.P., Crystallography Reports, 2006, vol. 51, pp. 811–816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ivanov.

Additional information

Original Russian Text © Yu.V. Mezentsev, A.A. Molnar, O.V. Gnedenko, Yu.V. Krasotkina, N.N. Sokolov, A.S. Ivanov, 2007, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezentsev, Y.V., Molnar, A.A., Gnedenko, O.V. et al. Oligomerization of L-asparaginase from Erwinia carotovora . Biochem. Moscow Suppl. Ser. B 1, 58–67 (2007). https://doi.org/10.1134/S199075080701009X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075080701009X

Key words

Navigation