Skip to main content
Log in

DNA fragmentation of human lymphocytes in dynamics of development of apoptosis induced by action of UV radiation and reactive oxygen species

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

It was established that UV light (240–390 nm) at doses of 151, 1510, and 3020 J/m2; reactive oxygen species (ROS); and singlet oxygen induce the DNA fragmentation of human lymphocytic cells 20 h after exposure. Using DNA comet assay, DNA damage (monostrand breaks) has been revealed to occur immediately after the UV irradiation of lymphocytes at doses of 1510 and 3020 J/m2 or after the addition of hydrogen peroxide at a concentration of 10−6 mol/l (type-C1 comets) and to reach a maximum 6 h after action on cells of UV light or ROS (type-C2 and -C3 comets). A suggestion has been made about the leading role of the p53-dependent pathway in apoptosis in human lymphocytes under the conditions of the action of UV light and ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aragane, Y., Kulms, D., Metze, D., Wilkes, G., Pöppelmann, B., Luger, T.A., and Schwarz, T., Ultraviolet Light Induces Apoptosis via Direct Activation of CD95 (Fas/APO-1) Independently of Its Ligand CD95L, J. Cell. Biol., 1998, vol. 140, pp. 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Artyukhov, V.G., Nakvasina, M.A., Trubitsyna, M.S., Popova, T.N., and Iskusnykh, I.Yu., Receptor Caspase-Dependent and Caspase-Independent Ways of Human Lymphocytes Apoptosis Induced by UV-radiation, Radiats. Biol. Radioekol., 2009, vol. 49, no. 4, pp. 432–437.

    CAS  Google Scholar 

  • Attardi, L.D., Reczek, E.E., Cosmas, C., Demicco, E.G., McCurrach, M.E., Lowe, S.W., and Jacks, T., PERP, an Apoptosis-Associated Target of p53, Is a Novel Member of the PMP-22/gas3 Family, Genes Dev., 2000, vol. 14, pp. 704–718.

    PubMed  CAS  Google Scholar 

  • Bourdon, J.C., Renzing, J., Robertson, P.L., Fernandes, K.N., and Lane, D.P., Scotin, a Novel P53-Inducible Proapoptotic Protein Located in the ER and the Nuclear Membrane, J. Cell Biol., 2002, vol. 158, pp. 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, N.W. and Holdsworth, S.R., Hydroxyl Radical Mediation of Immune Renal Injury by Desferrioxamine, Kidney Int., 1986, vol. 30, pp. 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Caricchio, R., Reap, E.A, and Cohen, P.L., Fas/Fas Ligand Interactions Are Involved in Ultraviolet-B-Induced Human Lymphocyte Apoptosis, J. Immunol., 1998, vol. 161, pp. 241–251.

    PubMed  CAS  Google Scholar 

  • Chumakov, V.N. and Osinskaya, L.F., A Quantitative Method for Determining the Activity of Zinc-, Copper-Dependent Superoxide Dismutase in Biological Material, Vopr. Med. Khim., 1977, vol. 5, pp. 712–716.

    Google Scholar 

  • Collins, A.R., Ma, A.G., Duthie, S.J., The Kinetics of Repair of Oxidative DNA Damage (Strand Breaks and Oxidised Pyrimidine) in Human Cells, Mutat Res., 1995, vol. 336, pp. 69–77.

    PubMed  CAS  Google Scholar 

  • Curnutte, J.T. and Babior, B.M., Biological Defense Mechanisms. The Effect of Bacteria and Serum on Superoxide Production by Granulocytes, J. Clin. Invest., 1974, vol. 53, pp. 1662–1672.

    Article  PubMed  CAS  Google Scholar 

  • Dudnik, L.B., Tsyupko, A.N., Khrenov, A.V., and Alesenko, A.V., Effect of Bilirubin on Lipid Peroxidation, Sphingomyelinase Activity, and Apoptosis Induced by Sphingosine and UV Irradiation, Biokhimiya, 2001, vol. 66, no. 9, pp. 1252–1262.

    Google Scholar 

  • Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W.E., Vande Woude, G.F., O’Connor, P.M., and Appella, E., Wip1, a Novel Human Protein Phosphatase That Is Induced in Response to Ionizing Radiation in a p53-Dependent Manner, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6048–6053.

    Article  PubMed  CAS  Google Scholar 

  • Fortin, A., Cregan, S.P., MacLaurin, J.G., Kushwaha, N., Hickman, E.S., Thompson, C.S., Hakim, A., Albert, P.R., Cecconi, F., Helin, K., Park, D.S., and Slack, R.S., APAF1 Is a Key Transcriptional Target for P53 in the Regulation of Neuronal Cell Death, J. Cell Biol., 2001, vol. 155, pp. 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S. and Czapski, G., Mannitol as an OH· Scavenger in Aqueous Solutions and in Biological Systems, Int. J. Radiat. Biol., 1984, vol. 46, pp. 725–729.

    Article  CAS  Google Scholar 

  • Gottlieb, T.M. and Oren, M., P53 and Apoptosis, Semin. Cancer Biol., 1998, vol. 8, pp. 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, A., Agurell, E., Beevers, C., Brendler-Schwaab, S., Burlinson, B., Clay, P., Collins, A., Smith, A., Speit, G., Thybaud, V., and Tice, R.R., Recommendations for Conducting the in vivo Alkaline Comet Assay, Mutagenesis, 2003, vol. 18, pp. 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Hwang P. M., Bunz F., Yu J., Rago C., Chan T. A., Murphy M.P., Kelso G.F., Smith R.A., Kinzler K.W., Vogelstein B. Ferredoxin Reductase Affects p53-dependent, 5-fluorouracil-induced Apoptosis in Colorectal Cancer Cells. Nat. Med. 2001, vol. 7, pp. 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  • Kulms, D. and Schwarz, T., Molecular Mechanisms of UV-Induced Apoptosis, Photodermatol. Photoimmunol. Photomed., 2000, vol. 16, pp. 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., Ma, W., and Benchimol, S., Pidd, a New Death-Domain-Containing Protein, Is Induced by P53 and Promotes Apoptosis, Nat. Genet., 2000, vol. 26, pp. 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Lonskaya, I.A., Afanas’ev, V.N., Pechatnikov, V.A., Induction and Suppression of Apoptosis in Rat Thymocytes by Ultraviolet Irradiation, Biofizika, 1997, vol. 42, no. 3, pp. 680–685.

    CAS  Google Scholar 

  • Martin, S.J. and Gotter, T.G., Ultraviolet B Irradiation of Human Leukaemia HL-60 Cells in vitro Induces Apoptosis, Int. J. Radiat. Biol., 1991, vol. 59, pp. 1001–1016.

    Article  PubMed  CAS  Google Scholar 

  • Men’shchikova, E.B. and Zenkov, N.K., Oxidative Stress in Inflammation, Usp. Sovr. Biol., 1997, vol. 117, no. 2, pp. 155–157.

    Google Scholar 

  • Mironov, A.F., Photodynamic Therapy of Cancer—A New Effective Method for Diagnosing and Treatment of Malignant Tumors, Soros. Obrazovat. Zh., 1996, vol. 2, no. 8, pp. 32–40.

    Google Scholar 

  • Miyashita, T. and Reed, J.C., Tumor Suppressor p53 Is a Direct Transcriptional Activator of the Human bax Gene, Cell, 1995, vol. 80, pp. 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Moroni, M.C., Hickman, E.S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., Muller, H., and Helin, K., Apaf-1 Is a Transcriptional Target for E2F and p53, Nat. Cell Biol., 2001, vol. 3, pp. 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Murahashi, H., Azuma, H., Zamzami, N., Furuya, K., Ikebuchi, K., Yamaguchi, M., Yamada, Y., Sato, N., Fujihara, M., Kroemer, G., and Ikeda, H., Possible Contribution of Apoptosis-Inducing Factor (AIF) and Reactive Oxygen Species (ROS) to UVB-Induced Caspase-Independent Cell Death in the T Cell Line Jurkat, J. Leukocyte Biol., 2003, vol. 73, pp. 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Isolation of p53-Target Genes and Their Functional Analysis, Cancer Sci., 2004, vol. 95, pp. 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, K. and Vousden, K.H., Puma, a Novel Proapoptotic Gene, Is Induced by p53, Mol. Cell, 2001, vol. 7, pp. 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N., Noxa, a BH3-Only Member of the Bcl-2 Family and Candidate Mediator of P53-Induced Apoptosis, Science, 2000b, vol. 288, pp. 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y., p53AIP1, a Potential Mediator of P53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53, Cell, 2000a, vol. 102, pp. 849–862.

    Article  PubMed  CAS  Google Scholar 

  • Olive, P.L., Banath, J.P., and Durand, R.E., Heterogeneity in Radiation-Induced DNA Damage and Repair in Tumor and Normal Cells Measured Using the “Comet” Assay, Radiat. Res., 1990, vol. 122, pp. 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Ostling, O. and Johanson, K.J., Microelectrophorettic Study of Radiation-Induced DNA Damage in Individual Mammalian Cells, Biochem. Biophys. Res. Commun., 1984, vol. 123, pp. 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Owen-Schaub, L.B., Zhang, W., Cusack, J.C., Angelo, L.S., Santee, S.M., Fujiwara, T., Roth, J.A., Deisseroth, A.B., Zhang, W.W., Kruzel, E., and Radinsky, R., Wild-Type Human P53 and a Temperature-Sensitive Mutant Induce Fas/APO-1 Expression, Mol. Cell Biol., 1995, vol. 15, no. 6, pp. 3032–3040.

    PubMed  CAS  Google Scholar 

  • Ozawa, B.M., Ferenczi, K., Kikuchi, T., Cardinale, I., Austin, L.M., Coven, T.R., Burack, L.H., and Krueger, J.G., 312-Nanometer Ultraviolet B Light (Narrow-Band UVB) Induces Apoptosis of T Cells within Psoriatic Lesions, Exp. Med., 1999, vol. 189, pp. 711–718.

    Article  CAS  Google Scholar 

  • Pletjushkina, O.Yu., Fetisova, E.K., Lyamzaev, K.G., Ivanova, O.Yu., Domnina, L.V., Vysokikh, M.Yu., Pustovidko, A.V., Alekseevski, A.V., Alekseevski, D.A., Vasil’ev, Yu.M., Murphy, M.P., Chernyak, B.V., and Skulachev, V.P., Hydrogen Peroxide Produced Inside Mitochondria Takes Part in Cell-to-Cell Transmission of Apoptotic Signal, Biokhimiya, 2006, vol. 71, no. 1, pp. 75–84.

    Google Scholar 

  • Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., and Vogelstein, B., A Model for P53-Induced Apoptosis, Nature, 1997, vol. 389, pp. 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Robles, A.I., Bemmels, N.A., Foraker, A.B., and Harris, C.C., APAF-1 Is a Transcriptional Target of p53 in DNA Damage-Induced Apoptosis, Cancer Res., 2001, vol. 61, pp. 6660–6664.

    PubMed  CAS  Google Scholar 

  • Roos, D., The Metabolic Response to Phagocytosis, in The Cell Biology of Inflammation, Amsterdam: Elsevier, 1980, vol. 2, pp. 337–385.

    Google Scholar 

  • Rvachev, V.P., Vvedenie v biofizicheskuyu fotometriyu (Introduction to Biophysical Photometry), Lvov, 1966.

  • Servomaa, K. and Rytomaa, T., UV Light and Ionizing Radiations Cause Programmed Death of Rat Chlorleukemia Cells by Inducing Retropositions of a Mobile DNA Element (L1Rn), Int. J. Radiat. Biol., 1990, vol. 57, pp. 331–343.

    Article  PubMed  CAS  Google Scholar 

  • Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L., A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells, Exp. Cell Res., 1988, vol. 175, pp. 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Sirota, N.P. and Kuznetsova, E.A., The Level of Spontaneous DNA Lesions in Peripheral Blood Leukocytes of People of Different Age, Byull. Eksp. Biol. Med., 2008, vol. 145, no. 2, pp. 154–156.

    Article  Google Scholar 

  • Skulachev, V.P., The Phenomena of Programmed Death. Mitochondria, Cells, and Organs: The Role of Reactive Oxygen Species, Soros. Obrazovat. Zh., vol. 7, no. 6, pp. 4–10.

  • Steinbeck, M.J., Khan, A.U., and Karnovsky, M.J., Intracellular Singlet Oxygen Generation by Phagocytosing Neutrophils in Response to Particles Coated with a Chemical Trap, J. Biol. Chem., 1992, vol. 267, pp. 13425–13433.

    PubMed  CAS  Google Scholar 

  • Tronov, V.A. and Pelevina, I.I., The DNA-Comet Method for Individual Cells. The Principle and Use of the Method, Tsitologiia, 1996, vol. 38, no. 4/5, pp. 631–641.

    Google Scholar 

  • Tronov, V.A., Tereshchenko, D.G., and Konoplyannikov, M.A., Mechanism of Radiation Death of Human Peripheral Blood Lymphocytes, Assessed by the DNA-Comet Method, Biofizika, 1998, vol. 43, no. 1, pp. 115–124.

    PubMed  CAS  Google Scholar 

  • Vladimirskaya, E.B., Apoptosis and Its Role in the Regulation of Cell Equilibrium (A Lecture), Klin. Labor. Diagn., 2002, vol. 11, pp. 25–33.

    Google Scholar 

  • Vousden, K.H. and Lu, X., Live or Let Die: The Cell’s Response to p53, Nat. Rev. Cancer, 2002, vol. 2, pp. 594–604.

    Article  PubMed  CAS  Google Scholar 

  • Vousden, K.H., p53. Death Star, Cell, 2000, vol. 103, pp. 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G.S., Burns, T.F., McDonald, E.R., 3rd, Jiang, W., Meng, R., Krantz, I.D., Kao, G., Gan, D.D., Zhou, J.Y., Muschel, R., Hamilton, S.R., Spinner, N.B., Markowitz, S., Wu, G., and el-Deiry, W.S., KILLER/DR5 Is a DNA Damage-Inducible p53-Regulated Death Receptor Gene, Nat. Genet., 1997, vol. 17, pp. 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W., and Vogelstein, B., PUMA Induces the Rapid Apoptosis of Colorectal Cancer Cells, Mol. Cell., 2001, vol. 7, pp. 673–682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Artyukhov.

Additional information

Original Russian Text © V.G. Artyukhov, M.S. Trubitsyna, M.A. Nakvasina, E.V. Solov’eva, 2011, published in Tsitologiya, Vol. 53, No. 1, 2011, pp. 61–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artyukhov, V.G., Trubitsyna, M.S., Nakvasina, M.A. et al. DNA fragmentation of human lymphocytes in dynamics of development of apoptosis induced by action of UV radiation and reactive oxygen species. Cell Tiss. Biol. 5, 127–135 (2011). https://doi.org/10.1134/S1990519X11020039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X11020039

Keywords

Navigation