Skip to main content
Log in

Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

The behavior of polymorphic transformations in the solid phase under the action of strong electric fields in crystallizable ferroelectric polymers based on PVDF was analyzed. The occurrence of two transitions, α → α p and α → β, was revealed by means of IR spectroscopy in homopolymer films crystallized as a mixture of the nonpolar α phase and the polar β phase. If such films were crystallized into the ferroelectric β phase, the action of the field reduced to the processes of reorientation of chain segments in the all-trans (planar zigzag) conformation. Reversible and irreversible changes in the crystallinity are possible in this case. A shift in the frequency of some skeletal-vibration bands indicates a change in the mechanical stress on atomic bonds. For vinylidene fluoride copolymers in polar crystals, the field can initiate molecular rearrangements, which lead to an increase in the interchain density of chain packing in the lattice. It was assumed that the delayed kinetics of field-induced solid-state transformations is controlled by two factors. On the one hand, the nucleation of the new phase follows the fluctuation mechanism of appearance of conformation defects of the kink-link type in the initial crystal. An important role is played in such processes by the dynamics of amorphous-phase tie chains bordering the crystals, when a decrease in their activation energy in micro-Brownian motion processes increases the probability of a conformational defect appearing in the crystal. On the other hand, the role of space charge (including the charge due to carrier injection from the electrode metal) in the formation of a local electric field is substantial. Allowance for both factors may provide a qualitative explanation of the specifics of the kinetics of these structural transformations in an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bauer, J. Appl. Phys. 80, 5531 (1996).

    Article  CAS  Google Scholar 

  2. C. H. Wang, H. W. Guan, and S. H. Gu, J. Non Cryst. Solids 172–174, 705 (1994).

    Article  Google Scholar 

  3. M. A. Firestone, M. A. Ratner, and T. J. Marks, Macromolecules 28, 6296 (1995).

    Article  CAS  Google Scholar 

  4. M. A. Pauley, C. H. Wang, and A. K.-J. Jen, Macromolecules 29, 7064 (1996).

    Article  CAS  Google Scholar 

  5. X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, Appl. Phys. Lett. 69, 3629 (1996).

    Article  CAS  Google Scholar 

  6. A. V. Vannikov, A. D. Grishina, R. V. Rikhval’skii, and A. T. Ponomarenko, Usp. Khim. 67, 507 (1997).

    Google Scholar 

  7. S. Saal and W. Haase, Chem. Phys. Lett. 278, 127 (1997).

    Article  CAS  Google Scholar 

  8. N. Tirelli, U. W. Suter, A. Altomare, et al., Macromolecules 31, 2152 (1998).

    Article  CAS  Google Scholar 

  9. R. D. Dureiko, D. E. Schuele, and K. D. Singer, J. Opt. Soc. Am. B 15, 338 (1998).

    Article  CAS  Google Scholar 

  10. J. A. Joung, B. L. Farmer, and J. A. Hinkley, Polymer 40, 2787 (1999).

    Article  Google Scholar 

  11. P. M. Borsenberger, W. T. Gruenbaum, E. H. Magin, et al., J. Polym. Sci., Part B: Polym. Phys. 37, 349 (1999).

    Article  CAS  Google Scholar 

  12. C. Zhang, C. Wang, J. Yang, et al., Macromolecules 34, 235 (2001).

    Article  CAS  Google Scholar 

  13. G. Knabke and H. Franke, Appl. Phys. Lett. 58, 678 (1991).

    Article  CAS  Google Scholar 

  14. H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).

    Article  CAS  Google Scholar 

  15. T. Furukawa, M. Date, K. Nakajima, et al., Jpn. J. Appl. Phys. 25, 1178 (1986).

    Article  CAS  Google Scholar 

  16. S. Tasaka, N. Inagaki, N. Okutani, and S. Miyata, Polymer 30, 1639 (1989).

    Article  CAS  Google Scholar 

  17. D. Zou, S. Iwasaki, T. Tsutsui, et al., Polymer 31, 1888 (1990).

    Article  CAS  Google Scholar 

  18. Y. Ohta, R. Chujo, and M. Kishimoto, Polymer 31, 1581 (1990).

    Article  CAS  Google Scholar 

  19. Y. Inoue, Y. Murayama, M. Sakarai, et al., Polymer 31, 1594 (1990).

    Article  CAS  Google Scholar 

  20. Y. Inoue, Y. Murayama, M. Sakarai, et al., Polymer 31, 850 (1990).

    Article  CAS  Google Scholar 

  21. S. C. Mathur, B. A. Newman, and J. I. Scheinbeim, J. Polym. Sci., Part B: Polym. Phys. 26, 447 (1988).

    Article  CAS  Google Scholar 

  22. B. A. Newman and J. I. Scheinbeim, J. Mater. Sci. 25, 1779 (1990).

    Article  CAS  Google Scholar 

  23. J. I. Scheinbeim, J. W. Lee, and B. A. Newman, Macromolecules 25, 3729 (1992).

    Article  CAS  Google Scholar 

  24. Von Berlepsch, W. Kunstler, A. Wedel, et al., IEEE Trans. Electr. Insul. 24, 357 (1989).

    Article  Google Scholar 

  25. Y. Takahashi, S. Ukashima, M. Ijima, and E. Fukada, J. Appl. Phys. 70, 6983 (1991).

    Article  CAS  Google Scholar 

  26. S. Tasaka, T. Shouko, and N. Inugaki, Jpn. J. Appl. Phys., Part 2 3, L1086 (1992).

  27. J. Su, Q. M. Fhang, C. H. Kim, et al., J. Appl. Polym. Sci. 65, 1363 (1997).

    Article  CAS  Google Scholar 

  28. Y. Tajitsu, K. Ishida, S. Kanbara, et al., Jpn. J. Appl. Phys. 37, 5375 (1998).

    Article  CAS  Google Scholar 

  29. N. Tsutsumi, Y. Okabe, and W. Sakai, Macromolecules 32, 3249 (1999).

    Article  CAS  Google Scholar 

  30. E. Fukada, Jpn. J. Appl. Phys. 37, 2775 (1998).

    Article  CAS  Google Scholar 

  31. V. V. Kochervinskii, Usp. Khim. 62, 383 (1994).

    Google Scholar 

  32. J. X. Wen, Polym. J. (Tokyo) 17, 399 (1985).

    CAS  Google Scholar 

  33. V. V. Kochervinskii, Kristallografiya 48, 699 (2003).

    Google Scholar 

  34. J. W. Day, C. A. Hamilton, R. L. Peterson, et al., Appl. Phys. Lett. 24, 456 (1974).

    Article  CAS  Google Scholar 

  35. F. Bauer, Ferroelectrics 49, 231 (1983).

    CAS  Google Scholar 

  36. J. A. Giacometti, S. Fedosov, and M. M. Costa, Braz. J. Phys. 29, 269 (1999).

    Article  CAS  Google Scholar 

  37. A. G. Kravtsov and H. Brunig, Polymer Science, Ser. B 42, 163 (2000) [Vysokomol. Soedin., Ser. B 42, 1074 (2000)].

    Google Scholar 

  38. T. Fukada, H. Matsuda, T. Kimura, et al., Polym. Adv. Technol. 11, 583 (2000).

    Article  Google Scholar 

  39. C. K. Ong, Z. G. Song, and H. Gong, J. Phys.: Condens. Matter 9, 9289 (1997).

    Article  CAS  Google Scholar 

  40. G. M. Sessler and G. M. Yang, Braz. J. Phys. 29, 233 (1999).

    CAS  Google Scholar 

  41. J. Ide, S. Tasaka, and N. Inagaki, Jpn. J. Appl. Phys. 38, 2049 (1999).

    Article  CAS  Google Scholar 

  42. V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).

    CAS  Google Scholar 

  43. V. V. Kochervinskii, Crystallogr. Rep., Suppl. 1, 51(6), S88 (2006).

    Article  CAS  Google Scholar 

  44. N. C. Banic, P. L. Taylor, and A. J. Hopfinger, Appl. Phys. Lett. 37, 49 (1980).

    Article  Google Scholar 

  45. A. Buchtemann, W. Stark, and D. Geiss, Acta Polym. 39, 171 (1988).

    Article  Google Scholar 

  46. A. Buchtemann and D. Geiss, Polymer 32, 215 (1991).

    Article  Google Scholar 

  47. A. Buchtemann, I. Muller, and W. Stark, Acta Polym. 43, 1 (1992).

    Article  Google Scholar 

  48. A. Buchtemann, W. Stark, and W. Kunstler, Vibr. Spectrosc. 4, 231 (1993).

    Article  Google Scholar 

  49. T. Takahashi, M. Date, and E. Fukada, Ferroelectrics 32, 73 (1981).

    CAS  Google Scholar 

  50. R. D. Southgate, Appl. Phys. Lett. 28, 250 (1976).

    Article  CAS  Google Scholar 

  51. D. Naegele and D. Y. Yoon, Appl. Phys. Lett. 33, 132 (1978).

    Article  CAS  Google Scholar 

  52. D. A. Jarvis, I. J. Hutchinson, D. I. Bower, and I. M. Ward, Polymer 21, 41 (1980).

    Article  CAS  Google Scholar 

  53. V. V. Kochervinskii, Usp. Khim. 68, 821 (1999).

    CAS  Google Scholar 

  54. K. Takahashi, H. Lee, R. E. Salomon, and M. M. Labes, J. Appl. Phys. 48, 4694 (1977).

    Article  CAS  Google Scholar 

  55. D. Geiss and C. Ruscher, Prog. Colloid Polym. Sci. 80, 119 (1989).

    Article  CAS  Google Scholar 

  56. Q. N. Zhang, V. Bharti, and X. Zhao, Science (Washington, D. C.) 280, 2101 (1998).

    Article  CAS  Google Scholar 

  57. F. J. Lu and S. L. Hsu, Polymer 25, 1247 (1984).

    Article  CAS  Google Scholar 

  58. S. N. Zhurkov, V. I. Vettegren’, V. I. Korsukov, and I. I. Novak, Fiz. Tverd. Tela (Leningrad) 11, 290 (1969).

    CAS  Google Scholar 

  59. V. I. Vettegren’ and A. A. Kusov, Fiz. Tverd. Tela (Leningrad) 24, 1598 (1982).

    CAS  Google Scholar 

  60. V. I. Vettegren’, Fiz. Tverd. Tela (Leningrad) 26, 1699 (1984).

    CAS  Google Scholar 

  61. A. E. Gal’, V. I. Vettegren’, and K. E. Perepelkin, Vysokomol. Soedin., Ser. B 27, 615 (1985).

    CAS  Google Scholar 

  62. R. P. Wool and R. H. Boyd, J. Appl. Phys. 51, 5116 (1980).

    Article  CAS  Google Scholar 

  63. R. P. Wool, J. Polym. Sci., Part B: Polym. Phys. 19, 449 (1981).

    CAS  Google Scholar 

  64. R. S. Bretzlaff and R. P. Wool, Macromolecules 16, 1907 (1983).

    Article  CAS  Google Scholar 

  65. L. J. Fina, D. J. Bower, and I. M. Ward, Polymer 29, 2136 (1988).

    Article  Google Scholar 

  66. B. J. Kip, C. P. Van Eijk, and R. J. Meier, J. Polym. Sci., Part B: Polym. Phys. 29, 99 (1991).

    Article  CAS  Google Scholar 

  67. R. A. Ingemey, G. Strohe, and W. S. Veeman, Appl. Spectrosc. 50, 1360 (1996).

    Article  CAS  Google Scholar 

  68. Y. Takahashi, Jpn. J. Appl. Phys., Part 1 33, 202 (1994).

    Article  CAS  Google Scholar 

  69. M. G. Broadhurst and G. T. Davis, Ferroelectrics 32, 177 (1981).

    Article  CAS  Google Scholar 

  70. W. P. Mason, Phys. Rev. 72, 854 (1947).

    Article  CAS  Google Scholar 

  71. R. J. Kepler and R. A. Anderson, J. Appl. Phys. 49, 1232 (1978).

    Article  CAS  Google Scholar 

  72. V. V. Kochervinskii, Polymer Science, Ser. A 42, 1077 (2000) [Vysokomol. Soedin., Ser. A 42, 1669 (2000)].

    Google Scholar 

  73. N. D. Gavrilova, V. V. Kochervinskii, I. P. Malyshkina, et al., Polymer Science, Ser. A 41, 954 (1999) [Vysokomol. Soedin., Ser. A 41, 1473 (1999)].

    Google Scholar 

  74. V. V. Kochervinskii, Polymer Science, Ser. A 44, 20 (2002) [Vysokomol. Soedin., Ser. A 44, 27 (2002)].

    Google Scholar 

  75. S. Tasaka and S. Miyata, J. Appl. Phys. 57, 906 (1985).

    Article  CAS  Google Scholar 

  76. H. Dvey-Aharon, T. J. Sluckin, P. L. Taylor, and A. J. Hopfmger Phys. Rev. B: Condens. Matter 21, 3700 (1980).

    CAS  Google Scholar 

  77. J. D. Clark, P. L. Taylor, and A. J. Hopfmger, J. Appl. Phys. 52, 5903 (1981).

    Article  CAS  Google Scholar 

  78. J. D. Clark and P. L. Taylor, Phys. Rev. Lett. 49, 1532 (1982).

    Article  CAS  Google Scholar 

  79. V. V. Kochervinskii, Polymer Science, Ser. C 48, 38 (2006) [Vysokomol. Soedin., Ser. C 48, 1263 (2006)].

    Article  Google Scholar 

  80. T. Furukawa and G. E. Johnson, Appl. Phys. Lett. 38, 1027 (1981).

    Article  CAS  Google Scholar 

  81. T. Furukawa, M. Date, and G. E. Johnson, J. Appl. Phys. 54, 1540 (1983).

    Article  CAS  Google Scholar 

  82. K. Matsushige, S. Imada, and T. Takemura, Polym. J. (Tokyo) 13, 493 (1981).

    CAS  Google Scholar 

  83. H. L. W. Chan, Z. Zhao, K. W. Kwok, et al., J. Appl. Phys. 65, 541 (1989).

    Article  Google Scholar 

  84. A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, Macromolecules 21, 78 (1988).

    Article  CAS  Google Scholar 

  85. J. B. Lando and W. W. Doll, J. Macromol. Sci., Phys. 2, 205 (1968).

    Article  CAS  Google Scholar 

  86. V. V. Kochervinskii, S. N. Sulyanov, and K. A. Dembo, J. Appl. Polym. Sci. (in press).

  87. K. Koga, N. Nakano, T. Hattori, and H. Ohigashi, J. Appl. Phys. 67, 965 (1990).

    Article  CAS  Google Scholar 

  88. D. L. Winsor, J. I. Scheinbeim, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 37, 29 (1999).

    Article  CAS  Google Scholar 

  89. Y. Murata, Polym. J. (Tokyo) 19, 337 (1987).

    CAS  Google Scholar 

  90. V. V. Kochervinskii, V. V. Volkov, and K. A. Dembo, Fiz. Tverd. Tela (St. Petersburg) 48, 1019 (2006).

    Google Scholar 

  91. M. A. Doverspike, M. S. Conradi, A. S. DeReggi, and R. E. Cais, J. Appl. Phys. 65, 541 (1989).

    Article  CAS  Google Scholar 

  92. S. L. Hsu, F. J. Lu, A. Waldman, and M. Mathukumar, Macromolecules 18, 2583 (1985).

    Article  CAS  Google Scholar 

  93. F. J. Lu and S. L. Hsu, Macromolecules 19, 326 (1986).

    Article  CAS  Google Scholar 

  94. H. L. Marand, R. S. Stein, and G. M. Stack, J. Polym. Sci., Part B: Polym. Phys. 26, 1361 (1988).

    Article  CAS  Google Scholar 

  95. H. L. Marand and R. S. Stein, J. Polym. Sci., Part B: Polym. Phys. 27, 1089 (1989).

    Article  CAS  Google Scholar 

  96. P. Sajkiewicz, J. Polym. Sci., Part B: Polym. Phys. 32, 313 (1994).

    Article  CAS  Google Scholar 

  97. R. S. Stein and M. B. Rhodes, J. Appl. Phys. 31, 1873 (1960).

    Article  CAS  Google Scholar 

  98. V. V. Kochervinskii, T. E. Danilyuk, and L. Ya. Madorskaya, Vysokomol. Soedin., Ser. A 28, 619 (1986).

    CAS  Google Scholar 

  99. D. T. Grubb, P. Cebe, and K. W. Choi, Ferroelectrics 57, 121 (1984).

    CAS  Google Scholar 

  100. T. T. Wang and J. E. West, J. Appl. Phys. 53, 6552 (1982).

    Article  CAS  Google Scholar 

  101. V. V. Kochervinskii, Polymer Science, Ser. A 35, 1674 (1993) [Vysokomol. Soedin., Ser. A 35, 1978 (1993)].

    Google Scholar 

  102. Y. Takahashi, Y. Nakagawa, H. Miyaji, and K. Asai, J. Polym. Sci., Part C: Polym. Lett. 25, 153 (1987).

    Article  CAS  Google Scholar 

  103. J. I. Scheinbeim, B. A. Newman, and A. Sen, Macromolecules 19, 1454 (1986).

    Article  CAS  Google Scholar 

  104. P. S. Dai, P. Cebe, M. Capel, et al., Macromolecules 36, 4042 (2003).

    Article  CAS  Google Scholar 

  105. M. C. Christie, J. I. Scheinbeim, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 35, 2671 (1997).

    Article  CAS  Google Scholar 

  106. M. Suzuki, T. Nakanishi, and H. Ohigashi, Rep. Prog. Polym. Phys. Jpn. 25, 505 (1982).

    Google Scholar 

  107. G. T. Davis, M. G. Broadhurst, A. J. Lovinger, and T. Furukawa, Ferroelectrics 57, 73 (1984).

    CAS  Google Scholar 

  108. H. Arisawa, O. Yano, and Y. Wada, Ferroelectrics 32, 39 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kochervinskii.

Additional information

Original Russian Text © V.V. Kochervinskii, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2008, Vol. 50, No. 7, pp. 1407–1440.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochervinskii, V.V. Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields. Polym. Sci. Ser. C 50, 93–121 (2008). https://doi.org/10.1134/S1811238208010062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238208010062

Keywords

Navigation