Skip to main content
Log in

The pH Effect on Thermal Response of Fluorescence Spectroscopy of Graphene Quantum Dots for Nanoscale Thermal Characterization

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Accurate and sensitive nanoscale thermal probing for thermophysical property characterization is appealing but still a challenge to date. Previous studies have revealed that graphene quantum dots (GQDs) are good temperature markers for their small dimension and superior fluorescence excitation. In this work, we show that the thermal response of fluorescence spectrum of GQDs is strongly pH-dependent. Significant decrease (about 56% to 30%) for temperatureinduced intensity reduction within a small range of 75°C under different excitation wavelengths of 370 nm, 390 nm, and 410 nm is observed as pH value increases from pH = 1 to pH = 13. The temperature coefficients of peak wavelength change from positive to negative with the increase of pH value, meaning that the blue shift happens as the condition is changed from acidity to alkalinity. Temperature dependence of peak width is also studied with the largest coefficient of 0.2255nm/°C, which is remarkable. These suggest that when using GQDs in nanoscale thermal probing, the pH value is an important factor that should be considered besides the excitation wavelength. Regarding the superior biocompatibility and low cytotoxicity, GQDs could play an important role in thermal probing or mapping in a complex biology system such as a cell, and help to develop novel treatments and diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brus, L.E., A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites, J. Chem. Phys., 1983, vol. 79, no. 11, pp. 5566–5571.

    Article  ADS  Google Scholar 

  2. Leutwyler, W.K., Bü rgi, S.L., and Burgl, H., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 1996, vol. 271, no. 5251, pp. 933–937.

    Article  Google Scholar 

  3. Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., and Geim, A.K., Chaotic Dirac Billiard in Graphene Quantum Dots, Science, 2008, vol. 320, no. 5874, pp. 356–358.

    Article  ADS  Google Scholar 

  4. Reiss, P., Protière, M., and Li, L., Core/Shell Semiconductor Nanocrystals, Small, 2009, vol. 5, no. 2, pp. 154–168.

    Article  Google Scholar 

  5. Bacon, M., Bradley, S.J., and Nann, T., Graphene Quantum Dots, Part. Part. Syst. Char., 2014, vol. 31, no. 4, pp. 415–428.

    Article  Google Scholar 

  6. Tyrakowski, C.M. and Snee, P.T., A Primer on the Synthesis,Water-Solubilization and Functionalization of Quantum Dots, Their Use as Biological Sensing Agents, and Present Status, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 3, pp. 837–855.

    Article  Google Scholar 

  7. Xue, Q., Huang, H., Wang, L., Chen, Z., Wu, M.H., Li, Z., and Pan, D.Y., Nearly Monodisperse Graphene Quantum Dots Fabricated by Amine-Assisted Cutting and Ultrafiltration, Nanoscale, 2013, vol. 5, no. 24, pp. 12098–12103.

    Article  ADS  Google Scholar 

  8. Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H., Quantum Dot Bioconjugates for Imaging, Labeling and Sensing, Nat. Mater., 2005, vol. 4, no. 6, pp. 435–446.

    Article  ADS  Google Scholar 

  9. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, 2005, vol. 307, no. 5709, pp. 538–544.

    Article  ADS  Google Scholar 

  10. Zhu, S.J., Zhang, J.H., Qiao, C.Y., Tang, S.J., Li, Y.F., Yuan, W.J., Li, B., Tian, L., Liu, F., Hu, R., Gao, H.N., Wei, H.T., Zhang, H., Sun, H.C., and Yang, B., StronglyGreen-PhotoluminescentGrapheneQuantum Dots for Bioimaging Applications, Chem. Commun., 2011, vol. 47, no. 24, pp. 6858–6860.

    Article  Google Scholar 

  11. Pan, D.Y., Guo, L., Zhang, J.C., Xi, C., Xue, Q., Huang, H., Li, J.H., Zhang, Z.W., Yu, W.J., Chen, Z.W., Li, Z., and Wu, M.H., Cutting Sp2 Clusters in Graphene Sheets into Colloidal Graphene Quantum Dots with Strong Green Fluorescence, J. Mater. Chem., 2012, vol. 22, no. 8, pp. 3314–3318.

    Article  Google Scholar 

  12. Zhang, L.M., Xing, Y.D., He, N.Y., Zhang, Y., Lu, Z.X., Zhang, J.P., and Zhang, Z.J., Preparation of Graphene Quantum Dots for Bioimaging Application, J. Nanosci. Nanotech., 2012, vol. 12, no. 3, pp. 2924–2928.

    Article  Google Scholar 

  13. Schaller, R.D. and Klimov, V.I., High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion, Phys. Rev. Lett., 2004, vol. 92, no. 18, p. 186601.

    Article  ADS  Google Scholar 

  14. Koleilat, G.I., Levina, L., Shukla, H., Myrskog, S.H., Hinds, S., Pattantyus-Abraham, A.G., and Sargent, E.H., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots, ACS Nano, 2008, vol. 2, no. 5, pp. 833–840.

    Article  Google Scholar 

  15. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., and Li, C.M., LayeredGraphene/Quantum Dots for Photovoltaic Devices, Angew. Chem. Int. Ed., 2010, vol. 49, no. 17, pp. 3014–3017.

    Article  Google Scholar 

  16. Yan, X., Cui, X., Li, B., and Li, L.S., Large Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics, Nano Lett., 2010, vol. 10, no. 5, pp. 1869–1873.

    Article  ADS  Google Scholar 

  17. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., and Chand, S., Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices, J. Am. Chem. Soc., 2011, vol. 133, no. 26, pp. 9960–9963.

    Article  Google Scholar 

  18. Li, Y., Hu, Y., Zhao, Y., Shi, G.Q., Deng, L., Hou, Y.B., and Qu, L.T., An Electrochemical Avenue to Green- Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics, Adv. Mater., 2011, vol. 23, no. 6, pp. 776–780.

    Article  Google Scholar 

  19. Shen, J.H., Zhu, Y.H., Yang, X.L., Zong, J., Zhang, J.M., and Li, C.Z., One-Pot Hydrothermal Synthesis of Graphene Quantum Dots Surface-Passivated by Polyethylene Glycol and Their Photoelectric Conversion under Near-Infrared Light, New J. Chem., 2012, vol. 36, no. 1, pp. 97–101.

    Article  Google Scholar 

  20. Ip, A.H., Thon, S.M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L.R., Carey, G.H., Fischer, A., Kemp, K.W., Kramer, I.J., Ning, Z., Labelle, A.J., Chou, K.W., Amassian, A., and Sargent, E.H., Hybrid Passivated Colloidal Quantum Dot Solids, Nat. Nanotech., 2012, vol. 7, no. 9, pp. 577–582.

    Article  ADS  Google Scholar 

  21. Ran, X., Sun, H.J., Pu, F., Ren, J.S., and Qu, X.G., Ag Nanoparticle-Decorated Graphene Quantum Dots for Label-Free, Rapid and Sensitive Detection of Ag+ and Biothiols, Chem. Commun., 2013, vol. 49, no. 11, pp. 1079–1081.

    Article  Google Scholar 

  22. Wang, F.X., Gu, Z.Y., Lei, W., Wang, W.J., Xia, X.F., and Hao, Q.L., Graphene Quantum Dots as a Fluorescent Sensing Platform for Highly Efficient Detection of Copper(II) Ions, Sensor. Actuat. B-Chem., 2014, vol. 190, pp. 516–522.

    Article  Google Scholar 

  23. Snee, P.T., Somers, R.C., Nair, G., Zimmer, J.P., Bawendi, M.G., and Nocera, D.G., A Ratiometric CdSe/ZnS Nanocrystal pH Sensor, J. Am. Chem. Soc., 2006, vol. 128, no. 41, pp. 13320/13321.

    Article  Google Scholar 

  24. Frasco, M.F. and Chaniotakis, N., Semiconductor Quantum Dots in Chemical Sensors and Biosensors, Sensors, 2009, vol. 9, no. 9, pp. 7266–7286.

    Article  Google Scholar 

  25. Shi, J.Y., Chan, C.Y., Pang, Y., Ye, W.W., Tian, F., Lyu, J., Zhang, Y., and Yang, M., A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Graphene Quantum Dots (GQDs) and Gold Nanoparticles (AuNPs) for the Detection of MecA Gene Sequence of Staphylococcus Aureus, Biosens. Bioelectron., 2014, vol. 67, no. 5, pp. 595–600.

    Google Scholar 

  26. Wu, Z.L., Gao, M.X., Wang, T.T., Wan, X.Y., Zheng, L.L., and Huang, C.Z., A General Quantitative pH Sensor Developed with Dicyandiamide N-Doped High Quantum Yield Graphene Quantum Dots, Nanoscale, 2014, vol. 6, no. 7, pp. 3868–3874.

    Article  ADS  Google Scholar 

  27. Dai, Y.T., Fan, J.C., Chen, Y.F., Lin, R.M., Lee, S.C., and Lin, H.H., Temperature Dependence of Photoluminescence Spectra in InAs/GaAs Quantum Dot Superlattices with Large Thicknesses, J. Appl. Phys., 1997, vol. 82, no. 9, pp. 4489–4492.

    Article  ADS  Google Scholar 

  28. Walker, G.W., Sundar, V.C., Rudzinski, C.M., Wun, A.W., Bawendi, M.G., and Nocera, D.G., Quantum-Dot Optical Temperature Probes, Appl. Phys. Lett., 2003, vol. 83, no. 17, pp. 3555–3557.

    Article  ADS  Google Scholar 

  29. Al Salman, A., Tortschanoff, A., Mohamed, M., Tonti, D., Van Mourik, F., and Chergui, M., Temperature Effects on the Spectral Properties of Colloidal CdSe Nanodots, Nanorods, and Tetrapods, Appl. Phys. Lett., 2007, vol. 90, no. 9, p. 093104.

    Article  ADS  Google Scholar 

  30. Yue, Y.N. and Wang, X.W., Nanoscale Thermal Probing, Nano Rev., 2012, vol. 3, p. 11586.

    Article  Google Scholar 

  31. Li, S., Zhang, K., Yang, J.M., Lin, L.W., and Yang, H., Single Quantum Dots as Local TemperatureMarkers, Nano Lett., 2007, vol. 7, no. 10, pp. 3102–3105.

    Article  ADS  Google Scholar 

  32. Gu, P.F., Zhang, Y., Feng, Y., Zhang, T.Q., Chu, H.R., Cui, T., Wang, Y.D., Zhao, J., and William, W.Y., Real-Time and On-Chip Surface Temperature Sensing of GaN LED Chips Using PbSe Quantum Dots, Nanoscale, 2013, vol. 5, no. 21, pp. 10481–10486.

    Article  ADS  Google Scholar 

  33. Yue, Y.N., Zhang, J.C., Xie, Y.S., Chen, W., and Wang, X.W., Energy Coupling across Low-Dimensional Contact Interfaces at the Atomic Scale, Int. J. Heat Mass Transfer, 2017, vol. 110, pp. 827–844.

    Article  Google Scholar 

  34. Wan, X., Li, C.Z., Yue, Y.N., Xie, D.M., Xue, M.X., and Hu, N.S., Development of Steady-State Electrical- Heating Fluorescence-Sensing (SEF) Technique for Thermal Characterization of One-Dimensional (1D) Structures by Employing Graphene Quantum Dots (GQDs) as Temperature Sensors, Nanotech., 2016, vol. 27, no. 44, p. 445706.

    Article  ADS  Google Scholar 

  35. Wu, H., Cai, K., Zeng, H.T., Zhao, W.S., Xie, D.M., Yue, Y.N., Xiong, Y.H., and Zhang, X., Time-Domain Transient Fluorescence Spectroscopy for Thermal Characterization of Polymers, Appl. Therm. Eng., 2018, vol. 138, pp. 403–408.

    Article  ADS  Google Scholar 

  36. Li, C.Z. and Yue, Y.N., Fluorescence Spectroscopy of Graphene Quantum Dots: Temperature Effect at Different ExcitationWavelengths, Nanotech., 2014, vol. 25, no. 43, p. 435703.

    Article  ADS  Google Scholar 

  37. Wang, L., Wang, Y.L., Xu, T., Liao, H.B., Yao, C.J., Liu, Y., Li, Z.W., Chen, Z.W., Pan, D.Y., and Sun, L.T., Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties, Nat. Commun., 2014, vol. 5, pp. 5357–5365.

    Article  ADS  Google Scholar 

  38. Dai, Q.Q., Zhang, Y., Wang, Y.N., Hu, M.Z., Zou, B., Wang, Y.D., and Yu, W.W., Size-Dependent Temperature Effects on PbSe Nanocrystals, Langmuir, 2010, vol. 26, no. 13, pp. 11435–11440.

    Article  Google Scholar 

  39. Joshi, A., Narsingi, K., Manasreh, M., Davis, E., and Weaver, B., Temperature Dependence of the Band Gap of Colloidal CdSe/ZnS Core/Shell Nanocrystals Embedded into an Ultraviolet Curable Resin, Appl. Phys. Lett., 2006, vol. 89, no. 13, p. 131907.

    Article  ADS  Google Scholar 

  40. Sanchez-Ruiz, J.M., Protein Kinetic Stability, Biophys. Chem., 2010, vol. 148, no. 148, pp. 1–15.

    Article  Google Scholar 

  41. Suzuki, M., Tseeb, V., Oyama, K., and Ishiwata, S., Microscopic Detection of Thermogenesis in a Single HeLa Cell, Biophys. J., 2007, vol. 92, no. 6, pp. L46–L48.

    Article  Google Scholar 

  42. Chapman, C., Liu, Y., Sonek, G., and Tromberg, B., The Use of Exogenous Fluorescent Probes for Temperature Measurements in Single Living Cells, Photochem. Photobiol., 1995, vol. 62, no. 3, pp. 416–425.

    Article  Google Scholar 

  43. Vetrone, F., Naccache, R., Zamarron, A., Juarranz de la Fuente, A., Sanz-Rodriguez, F., Martinez Maestro, L., Martin Rodriguez, E., Jaque, D., Garcia Solé, J., and Capobianco, J.A., Temperature Sensing Using Fluorescent Nanothermometers, ACS Nano, 2010, vol. 4, no. 6, pp. 3254–3258.

    Article  Google Scholar 

  44. Yang, J.M., Yang, H., and Lin, L.W., Quantum Dot Nano Thermometers Reveal Heterogeneous Local Thermogenesis in Living Cells, ACS Nano, 2011, vol. 5, no. 6, pp. 5067–5071.

    Article  Google Scholar 

  45. Donner, J.S., Thompson, S.A., Kreuzer, M.P., Baffou, G., and Quidant, R., Mapping Intracellular Temperature Using Green Fluorescent Protein, Nano Lett., 2012, vol. 12, no. 4, pp. 2107–2111.

    Article  ADS  Google Scholar 

  46. Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., and Uchiyama, S., Intracellular Temperature Imaging with a Fluorescent Polymeric Thermometer and Fluorescence Lifetime Imaging Microscopy, Nat. Commun., 2012, vol. 25, no. 2, pp. 23–25.

    Google Scholar 

  47. Kucsko, G., Maurer, P., Yao, N., Kubo, M., Noh, H., Lo, P., Park, H., and Lukin, M., Nanometre-Scale Thermometry in a Living Cell, Nature, 2013, vol. 500, no. 7460, pp. 54–58.

    Article  ADS  Google Scholar 

  48. Tomasulo, M., Yildiz, I., and Raymo, F.M., pH-sensitive Quantum Dots, J. Phys. Chem. B, 2006, vol. 110, no. 9, pp. 3853–3855.

    Article  Google Scholar 

  49. Deng, Z.T., Zhang, Y., Yue, J.C., Tang, F.Q., and Wei, Q., Green and Orange CdTe Quantum Dots as Effective pH-sensitive Fluorescent Probes for Dual Simultaneous and Independent Detection of Viruses, J. Phys. Chem. B, 2007, vol. 111, no. 41, pp. 12024–12031.

    Article  Google Scholar 

  50. Liu, Y.S., Sun, Y., Vernier, P.T., Liang, C.H., Chong, S.Y.C., and Gundersen, M.A., pH-sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells, J. Phys. Chem. C, 2007, vol. 111, no. 7, pp. 2872–2878.

    Article  Google Scholar 

  51. Yang, F., Zhao, M.L., Zheng, B.Z., Xiao, D., Wu, L., and Guo, Y., Influence of pH on the Fluorescence Properties of Graphene Quantum Dots Using Ozonation Pre-Oxide Hydrothermal Synthesis, J. Mater. Chem., 2012, vol. 22, no. 48, pp. 25471–25479.

    Article  Google Scholar 

  52. Liu, R.L., Wu, D.Q., Feng, X.L., and Mullen, K., Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology, J. Am. Chem. Soc., 2011, vol. 133, no. 39, pp. 15221–15223.

    Article  Google Scholar 

  53. Shen, J.H., Zhu, Y.H., Yang, X.L., and Li, C.Z., Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices, Chem. Commun., 2012, vol. 48, no. 31, pp. 3686–3699.

    Article  Google Scholar 

  54. Gao, M., Kirstein, S., Möhwald, H., Rogach, A.L., Kornowski, A., Eychmüller, A., and Weller, H., Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification, J. Phys. Chem. B, 1998, vol. 102, no. 43, pp. 8360–8363.

    Article  Google Scholar 

  55. Zhang, H., Zhou, Z., Yang, B., and Gao, M.Y., The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles, J. Phys. Chem. B, 2002, vol. 107, no. 1, pp. 8–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, J., Xiong, Q. et al. The pH Effect on Thermal Response of Fluorescence Spectroscopy of Graphene Quantum Dots for Nanoscale Thermal Characterization. J. Engin. Thermophys. 27, 345–356 (2018). https://doi.org/10.1134/S1810232818030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232818030104

Navigation