Skip to main content
Log in

Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery

  • Composites
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this report, the synthesis of a novel biocompatible magnetic hydrogel nanocomposite based on carboxymethyl cellulose (CMC), as an eco-friend, biocompatible and green polysaccharide, is described via a facile one pot approach using magnetic iron oxide nanoparticles (MIONs) as a crosslinker. The structure of the prepared MION–CMC hydrogel nanocomposite was examined by various analytical techniques such as FTIR spectroscopy, TGA thermal analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The MIONs were generated in situ during the hydrogel formation with an average diameter size of 10 nm and a narrow size distribution. The sample was superparamagnetic with large saturation magnetization at room temperature. MION–CMC hydrogel nanocomposite showed a good ability for releasing of doxorubicin as an anticancer drug at pH 7 with case II (relaxational) transport mechanism. This outcome demonstrated that MION–CMC hydrogel nanocompositeis an attractive biocompatible candidate for widespread biomedical applications, particularly in controlled drug-targeting delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kopecek, J. Polym. Sci., Part A: Polym. Chem. 47, 5929 (2009).

    Article  CAS  Google Scholar 

  2. L. Kopecek and J. Yang, Polym. Int. 56, 1078 (2007).

    Article  CAS  Google Scholar 

  3. E. M. Ahmed, J. Adv. Res. 6, 105 (2015).

    Article  CAS  Google Scholar 

  4. K. Y. Lee and D. J. Mooney, Chem. Rev. 101, 1869 (2001).

    Article  CAS  Google Scholar 

  5. B. Balakrishnan and R. Banerjee, Chem. Rev. 111, 4453 (2011).

    Article  CAS  Google Scholar 

  6. W. Zhao, X. Jin, Y. Cong, Y. Liu, and J. Fu, J. Chem. Technol. Biotechnol. 88, 327 (2013).

    Article  CAS  Google Scholar 

  7. Y. Qiu and K. Park, Adv. Drug Delivery Rev. 53, 321 (2001).

    Article  CAS  Google Scholar 

  8. D. E. Discher, D. J. Mooney, and P. W. Zandstra, Science 324, 1673(2009).

    Article  CAS  Google Scholar 

  9. A. H. Lu, E. L. Salabas, and F. Schüth, Angew. Chem., Int. Ed. 46, 1222 (2007).

    Article  CAS  Google Scholar 

  10. L. Nuñez, and M. D. Kaminski, J. Magn. Magn. Mater. 194, 102 (1999).

    Article  Google Scholar 

  11. H. Parham, B. Zargar, and M. Rezazadeh, Mater. Sci. Eng., C 32, 2109 (2012).

    Article  CAS  Google Scholar 

  12. B. R. White, B. T. Stackhouse, and J. A. Holcombe, J. Hazard. Mater. 161, 848 (2009).

    Article  CAS  Google Scholar 

  13. J. K. Oh, and J. M. Park, Prog. Polym. Sci. 36, 168 (2011).

    Article  CAS  Google Scholar 

  14. S. Sharifi, H. Seyednejad, S. Laurent, F. Atyabi, A. A. Saei, and M. Mahmoudi, Contrast Media Mol. Imaging 10, 329 (2015).

    Article  CAS  Google Scholar 

  15. A. K. Gupta and A. S. G. Curtis, J. Mater. Sci.: Mater. Med. 15, 493 (2004).

    CAS  Google Scholar 

  16. N. Tran and T. J. Webster, J. Mater. Chem. 20, 8760 (2010).

    Article  CAS  Google Scholar 

  17. Y. X. J. Wang, S. Xuan, M. Port, and J. M. Idee, Curr. Pharm. Des. 19, 6575 (2013).

    Article  CAS  Google Scholar 

  18. S. Giri, B. G. Trewyn, M. P. Stellmaker, and V. S. Y. Lin, Angew. Chem., Int. Ed. 44, 5038 (2005).

    Article  CAS  Google Scholar 

  19. G. Rezanejade Bardajee, and Z. Hooshyar, Carbohydr. Polym. 101, 741 (2014).

    Article  Google Scholar 

  20. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. D. Deimling, N. Waldoefner, R. Felix, and A. Jordan, J. Neuro-Oncol. 81, 53 (2007).

    Article  CAS  Google Scholar 

  21. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z. P. Luo, K. Park, J. T. Markert, and C. Li, J. Phys. Chem. C 111, 6245 (2007).

    Article  CAS  Google Scholar 

  22. A. Bumb, M. W. Brechbiel, P. L. Choyke, L. Fugger, A. Eggeman, D. Prabhakaran, J. Hutchinson, and P. J. Dobson, Nanotechnology 19, 335601 (2008).

    Article  CAS  Google Scholar 

  23. A. M. G. C. Dias, A. Hussain, A. S. Marcos, and A. C. A. Roque, Biotechnol. Adv. 29, 142 (2011).

    Article  CAS  Google Scholar 

  24. R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, and W. J. Stark, Small 5, 383 (2009).

    Article  CAS  Google Scholar 

  25. R. Hernández and C. Mijangos, Macromol. Rapid. Commun. 30, 176 (2009).

    Article  Google Scholar 

  26. E. Y. Chung, H. M. Kim, G. H. Lee, B. K. Kwak, J. S. Jung, H. J. Kuh, and J. Lee, Carbohydr. Polym. 90, 1725 (2012).

    Article  CAS  Google Scholar 

  27. H. Hezaveh and I. I. Muhamad, Carbohydr. Polym. 89, 138 (2012).

    Article  CAS  Google Scholar 

  28. J. Lee, M. J. Jung, Y. H. Hwang, Y. J. Lee, S. Lee, D. Y. Lee, and H. Shin, Biomaterials 33, 4861 (2012).

    Article  CAS  Google Scholar 

  29. A. Brunsen, S. Utech, M. Maskos, W. Knoll, and U. Jonas, J. Magn. Magn. Mater. 324, 1488 (2012).

    Article  CAS  Google Scholar 

  30. A. C. A. Roque, A. Bicho, I. L. Batalha, A. S. Cardoso, and A. Hussain, J. Biotechnol. 144, 313 (2009).

    Article  CAS  Google Scholar 

  31. A. J. Cole, A. E. David, J. Wang, C. J. Galban, and V. C. Yang, Biomaterials 32, 6291 (2011).

    Article  CAS  Google Scholar 

  32. L. Zhou, B. He, and F. Zhang, ACS Appl. Mater. Interfaces 4, 192 (2012).

    Article  CAS  Google Scholar 

  33. T. Heinze and T. Liebert, Prog. Polym. Sci. 26, 1689 (2001).

    Article  CAS  Google Scholar 

  34. T. Agarwal, S. N. G. H. Narayana, K. Pal, K. Pramanik, S. Giri, and I. Banerjee, Int. J. Biol. Macromol. 75, 409 (2015).

    Article  CAS  Google Scholar 

  35. M. J. Ramazani-Harandi, M. J. Zohuriaan-Mehr, A. A. Yousefi, A. Ershad-Langroudi, and K. Kabiri, Polym. Test. 25, 470 (2006).

    Article  CAS  Google Scholar 

  36. R. W. Eyler, E. D. Klug, and F. Diephus, Anal. Chem. 19, 24 (1947).

    Article  CAS  Google Scholar 

  37. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. G. Meldrum, Polymer 39, 3459 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kurdtabar.

Additional information

The article is published in the original, supplementary materials are available for this article at 10.1134/S1560090418020021 and are accessible for authorized users.

Electronic supplementary material

11499_2018_9779_MOESM1_ESM.pdf

Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdtabar, M., Nezam, H., Rezanejade Bardajee, G. et al. Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery. Polym. Sci. Ser. B 60, 231–242 (2018). https://doi.org/10.1134/S1560090418020021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090418020021

Navigation