Skip to main content
Log in

Practical and theoretical study on the α-substituent effect on α-diimine Nickel(II) and Cobalt(II)-based catalysts for polymerization of ethylene

  • Catalysis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

The Late transition metal catalysts based on Ni(II) and Co(II) were synthesized and their structure and activity in polymerization of ethylene were compared. Methylaluminoxane (MAO) was used as a co-catalyst. To discover the optimum polymerization conditions, the effect of polymerization temperature, monomer pressure, [Al]: [Ni] molar ratio and time of polymerization were studied. Activity of the catalysts was promoted by increasing of the monomer pressure. The viscosity average molecular weights M v of the synthesized polymers using 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide were increased with increasing of the monomer pressure from 1 up to 6 bar which studied. Explicitly, the ortho-substituent has a significant effect on the catalyst behavior. Melting point and crystallinity of the obtained polyethylene using 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide catalyst were increased with enhancing monomer pressure. The optimum and stable structures were computed and some factors related to the activity were studied. Catalyst 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide had the highest activity with the highest quantities of dipole moment (18.29 Debye), charge of Mullikan on metal atom (1.48) and Sum of electronic and thermal Energies (–7906.52 e.u.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Pullukat and R. E. Patterson, in Handbook of Transitional Metal Polymerization Catalysts (Wiley, New Jersey, 2010).

    Google Scholar 

  2. T. E. Nowlin, R. I. Mink, and Y. V. Kissin, in Handbook of Transitional Metal Polymerization Catalysts (Wiley, New Jersey, 2010).

    Google Scholar 

  3. L. Wu and S. E. Wanke, in Handbook of Transitional Metal Polymerization Catalysts (Wiley, New Jersey, 2010).

    Google Scholar 

  4. M. P. McDaniel, in Handbook of Transitional Metal Polymerization Catalysts (Wiley, New Jersey, 2010).

    Google Scholar 

  5. L. K. Johnston, C. M. Killian, and M. Brookhart, J. Am. Chem. Soc. 117 (23), 6414 (1995).

    Article  Google Scholar 

  6. W. Kaminsky, J. Polym. Sci., Part A: Polym. Chem. 42, 3911 (2004).

    Article  CAS  Google Scholar 

  7. W. E. Piers and T. Chivers, Chem. Soc. Rev. 26, 345 (1997).

    Article  CAS  Google Scholar 

  8. Sh. Matsui and T. Fujita, Catal. Today 66, 63 (2001).

    Article  CAS  Google Scholar 

  9. J. Huang, B. Lian, Y. Qian, and W. Zhou, Macromolecules 35, 4871 (2002).

    Article  CAS  Google Scholar 

  10. G. H. Zohuri, S. Damavandi, S. Ahmadjo, R. Sandaroos, and A. M. Shamekhi, Polyolefins J. 1, 25 (2014).

    Google Scholar 

  11. S. N. Sauca and J. M. Asua, Chem. Eng. J. 168, 1319 (2011).

    Article  CAS  Google Scholar 

  12. L. Wang and Q. Wu, Eur. Polym. J. 43, 3970 (2007).

    Article  CAS  Google Scholar 

  13. B. R. James and L. D. Markham, J. Catal. 27, 442 (1972).

    Article  CAS  Google Scholar 

  14. G. W. Son, K. B. Bijal, D. W. Park, Ch. S. Ha, and I. Kim, Catal. Today 111, 412 (2006).

    Article  CAS  Google Scholar 

  15. S. Collins, in Handbook of Transitional Metal Polymerization Catalysts (Wiley, New Jersey, 2010).

    Google Scholar 

  16. H. Pourtaghi-Zahed and G. H. Zohuri, J. Polym. Res. 19, 9996 (2012).

    Article  Google Scholar 

  17. J. Merna, Z. Hostalek, J. Peleska, and J. Roda, Polym. J. 50, 5016 (2009).

    Article  CAS  Google Scholar 

  18. J. P. L. Santos, M. Castier, and P. A. Melo, Polym. J. 48, 5152 (2007).

    Article  CAS  Google Scholar 

  19. M. Delferro and T. J. Marks, Chem. Rev. 111 (3), 2474 (2011).

    Article  Google Scholar 

  20. S. Damavandi, N. Samadieh, S. Ahmadjo, Z. Etemadinia, and G. H. Zohuri, Eur. Polym. J. 64, 118 (2015).

    Article  CAS  Google Scholar 

  21. G. J. P. Britovsek, S. P. D. Baugh, O. Hoarau, V. C. Gibson, D. F. Wass, A. J. P. White, and D. J. Williams, Inorg. Chim. Acta. 345, 279 (2003).

    Article  CAS  Google Scholar 

  22. I. Kim, B. H. Han, Y. S. Ha, Ch. S. Ha, and D. W. Park, Catal. Today} 93, 281 (2004).

  23. L. K. Johnson, S. Mecking, and M. Brookhart, J. Am. Chem. Soc. 118, 267 (1996).

    Article  CAS  Google Scholar 

  24. H. Zou, F. M. Zhu, Q. Wu, J. Y. Ai and A. Lin, J. Polym. Sci., Part A: Polym. Chem. 43, 1325 (2005).

    Article  CAS  Google Scholar 

  25. H. Zou, Sh. Hu, H. Huang, F. Zhu, and Q. Wu, Eur. Polym. J. 43, 3882 (2007).

    Article  CAS  Google Scholar 

  26. M. Jeon, Ch. J. Han, and S. Y. Kim, Macromol. Res. 14(3), 306 (2006).

    Article  CAS  Google Scholar 

  27. J. Long, H. Gao, F. Liu, K. Song, L. Zhang, F. Zhu, Q. Wu, and H. Hu, Inorg. Chim. Acta. 362, 3035 (2009).

    Article  CAS  Google Scholar 

  28. H. Liu, W. Sun, and W. Zhang, WO Patent No. 2012122854 A1 (2012).

  29. L. Li, M. Jeon, and S. Y. Kim, J. Mol. Catal. A: Chem. 303, 110 (2009).

    Article  CAS  Google Scholar 

  30. S. A. Sangokoya, EP Patent No. 0463555 B1 (1996).

  31. J. Brandrup and E. H. Immergut, Polymer Handbook (Wiley, New York, 1989).

    Google Scholar 

  32. L. Wang and J. Sun, Inorg. Chim. Acta. 361, 1843 (2008).

    Article  CAS  Google Scholar 

  33. K. P. Bryliakov, E. P. Talsi, and M. Bochmann, Organometallics 23, 149 (2004).

    Article  CAS  Google Scholar 

  34. G. H. Zohuri, S. Ahmadjo, S. Damavandi, and R. Sandaroos, Polym. Bull. 66, 1051 (2011).

    Article  CAS  Google Scholar 

  35. E. N. Jacobson and R. Breinbauer, Science 287, 437 (2000).

    Article  Google Scholar 

  36. G. H. Zohuri, S. Damavandi, S. Ahmadjo, R. Sandaroos, and M. A. Shamekhi, Polyolefins J. 1, 25 (2014).

    Google Scholar 

  37. L. C. Simona, C. P. Williams, J. B. P. Soares, and R. F. de Souza, J. Mol. Catal. A: Chem. 165, 55 (2001).

    Article  Google Scholar 

  38. H. Arabi, M. S. Beheshti, M. Yousefi, N. Ghasemi Hamedani, and M. Ghafelebashi, Polym. Bull. 70, 2765 (2013).

    Article  CAS  Google Scholar 

  39. Zh. Guan and Ch. S. Popeney, Top. Organomet. Chem. 24, 179 (2009).

    Google Scholar 

  40. M. Vatankhah-Varnoosfaderani, S. Pourmahdian, and F. Afshar-Taromi, Iran. Polym. J. 20(11), 897 (2011).

    CAS  Google Scholar 

  41. S. P. Netalkar, S. Budagumpi, H. H. Abdallah, P. P. Netalkar, and K. Revankar, J. Mol. Struct. 1075, 559 (2014).

    Article  CAS  Google Scholar 

  42. G. H. Zohuri, R. Sandaroos, A. Mohammadi, S. M. Seyedi, and S. Damavandi, Catal. Lett. 140, 160 (2010).

    Article  CAS  Google Scholar 

  43. N. Bahri-Laleh, M. Nekoomanesh-Haghighi, and S. A. Mirmohammadi, J. Organomet. Chem. 719, 74 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Zohuri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshsefat, M., Beheshti, N., Zohuri, G.H. et al. Practical and theoretical study on the α-substituent effect on α-diimine Nickel(II) and Cobalt(II)-based catalysts for polymerization of ethylene. Polym. Sci. Ser. B 58, 487–494 (2016). https://doi.org/10.1134/S1560090416050067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090416050067

Navigation