Skip to main content
Log in

Effect of surface modification of bentonite nanoclay with polymers on its stability in an electrolyte solution

  • Medical Polymers
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

Recently surface modification of clay minerals has become increasingly important for improving the practical applications of clays and clay minerals. In this research work surface modifications of bentonite nanoclay particles were carried out by chemical grafting of different copolymers including poly(1-vinyl pyrrolidone-co-styrene) (PVP), poly(methyl methacrylate-co-methacrylic acid) (PMMA) and poly (acrylamide-co-diallyl dimethyl ammonium chloride) (PDADMAC). The efficiency of the grafting reactions was investigated using FTIR, TGA and XRD methods. It was shown that PVP as well as PDADMAC copolymers had been grafted successfully on the exterior of the nanoclay tactoids surfaces, while most of the PMMA molecules had entered the galleries and grafted on the inner surfaces of the nanoclay. Turbidimetry, zeta potentiometry and dynamic light scattering (DLS), were employed to analyze the dispersion stability of the unmodified and modified nanoclays in an electrolyte solution with high salinity. The turbidimetry results showed that stabilities of unmodified and modified nanoclay particles in the electrolyte solutions decreased as the time passed from their preparation, and after 24 h they settled completely in the solutions. However, rates of the settlement of unmodified and modified particles differed from each other, that of the modified ones being lower. This difference was attributed to the grafted copolymers on the modified particles surfaces. Also, the results of the zeta potentiometry and DLS were in harmony with the turbidimetry observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Starov and N. Kovalchuk, Adv. Colloid Interface Sci. 147, 144 (2009).

    Article  Google Scholar 

  2. J. C. Baird and J. Y. Walz, J. Colloid Interface Sci. 297, 161 (2006).

    Article  CAS  Google Scholar 

  3. W. X. Zhang and Y.-P. Sun, Colloids Surf. A 308, 60 (2007).

    Article  Google Scholar 

  4. M. Turesson, T. Akesson, and J. Forsman, J. Colloid Interface Sci. 329, 67 (2009).

    Article  CAS  Google Scholar 

  5. T. Sennerfors and F. Tiberg, J. Colloid Interface Sci. 238, 129 (2001).

    Article  CAS  Google Scholar 

  6. P. F. Luckham and S. Rossi, Adv. Colloid Interface Sci. 82, 43 (1999).

    Article  CAS  Google Scholar 

  7. J. W. Tavacoli, P. J. Dowding, and A. F. Routh, Colloids Surf. A, 293, 167 (2007).

    Article  CAS  Google Scholar 

  8. J. M. Sequaris, A. Hild, and D. Narres, J. Colloid Interface Sci. 230, 73 (2000).

    Article  CAS  Google Scholar 

  9. P. Mpofu, J. A. Mensah, and J. Ralston, Int. J. Miner. Process. 75, 155 (2005).

    Article  CAS  Google Scholar 

  10. A. V. Dobrynin, Curr. Opin. Colloid Interface Sci. 13, 376 (2008).

    Article  CAS  Google Scholar 

  11. E. Stela Dragan, M. Mihai, and S. Schwarz, Colloids Surf. A 290, 213 (2006).

    Article  CAS  Google Scholar 

  12. M. J. McCuire and J. A. Mensah, Colloids Surf. A 275, 153 (2006).

    Article  Google Scholar 

  13. H. Kang, B. Peng, Y. Liang, X. Han, and H. Liu, J. Colloid Interface Sci. 333, 135 (2009).

    Article  CAS  Google Scholar 

  14. G. Petzold, M. Mende, and K. Lunkwitz, J. Colloid Interface Sci. 218, 47 (2003).

    CAS  Google Scholar 

  15. R. Sethi and M. Elimelech, J. Colloid Interface Sci. 324, 71 (2008).

    Article  Google Scholar 

  16. S. Minko, M. Motornov, and R. Sheparovych, J. Colloid Interface Sci. 310, 481 (2007).

    Article  Google Scholar 

  17. M. L. Taylor, G. E. Morris, and P. G. Self, J. Colloid Interface Sci. 250, 28 (2002).

    Article  CAS  Google Scholar 

  18. K. Rhodes, R. H. Lambeth, J. Gonzales, J. S. Moore, and J. A. Lewis, Langmuir 25, 13336 (2009).

    Article  Google Scholar 

  19. E. Ruiz-Hitzky and P. Aranda, Adv. Mater. (Weinheim, Fed. Repub. Ger. 2, 545 (1990).

    Article  CAS  Google Scholar 

  20. D. J. Greenland, J. Colloid Sci. 18, 647 (1963).

    Article  CAS  Google Scholar 

  21. K. Nakashima and P. Bahadur, Adv. Colloid Interface Sci. 123, 75 (2006).

    Article  Google Scholar 

  22. G. Diaconu, M. Micusik, A. Bonnefond, M. Paulis, and R. Leiza, Macromolecules 42, 3316 (2009).

    Article  CAS  Google Scholar 

  23. P. Liu and J. Guo, Colloids Surf. A 282–283, 498 (2006).

    Article  Google Scholar 

  24. P. Liu, Appl. Clay Sci. 38, 64 (2007).

    Article  CAS  Google Scholar 

  25. F. Zhang, W. Qiu, L. Yang, T. Endo, and T. Hirotsu, J. Mater. Chem. 12, 24 (2002).

    Article  Google Scholar 

  26. N. Kim, S. Malhotra, and M. Xanthos, Micropor. Mesopor. Mater. 96, 29 (2006).

    Article  CAS  Google Scholar 

  27. C. Wan, X. Bao, F. Zhao, B. Kandasubamanian, and M. P. Duggan, J. Appl. Polym. Sci. 110, 550 (2008).

    Article  CAS  Google Scholar 

  28. Y. Deng, B. J. Dixon, and G. N. White, Soil Sci. Soc. Am. J. 70, 297 (2006).

    Article  CAS  Google Scholar 

  29. Y. Deng and J. B. Dixon, Colloids Surf. A 281, 82 (2006).

    Article  CAS  Google Scholar 

  30. J. M. Urreaga, J. Colloid Interface Sci. 342, 185 (2010).

    Article  Google Scholar 

  31. R. Tiwari, K. C. Khilar, and U. Natarajan, Appl. Clay Sci. 38, 203 (2008).

    Article  CAS  Google Scholar 

  32. I. Brnardic, M. Huskic, M. Zigon, and M. J. Ivankovic, J. Non-Cryst. Solids 354, 1986 (2008).

    Article  CAS  Google Scholar 

  33. C. O. Rohlmann, M. F. Horst, L. M. Quinzani, and M. D. Failla, Eur. Polym. J. 44, 2749 (2008).

    Article  CAS  Google Scholar 

  34. L. Zhou, H. Chena, X. Jiang, F. Lua, Y. Zhou, W. Yinb, and X. Ji, J. Colloid Interface Sci. 332, 16 (2009).

    Article  CAS  Google Scholar 

  35. M. Huskic, I. Brnardic, M. Zigon, and M. Ivankovic, J. Non-Cryst. Solids 354, 3326 (2008).

    Article  CAS  Google Scholar 

  36. J. Malanie, J. Addai-Mensah, and K. E. Bremmell, Colloids Surf. A 275, 153 (2006).

    Article  Google Scholar 

  37. G. Ying Xu, A. Min Chen, Y. Lian Yang, S. Ling Yuan, and L. Zheng, Colloids Surf. A 256, 69 (2005).

    Article  CAS  Google Scholar 

  38. A. P. Chiriac, E. Nitx, I. Neamtxu, and M. Bercea, Polym. Test. 28, 886 (2009).

    Article  CAS  Google Scholar 

  39. L. Peng, W. Qisui, L. Xi, and Z. Chaocan, Powder Technol. 193, 46 (2009).

    Article  Google Scholar 

  40. M. Alkan, M. Karadas, M. Dogan, and Q. Demirbas, Colloids Surf. A 259, 155 (2005).

    Article  CAS  Google Scholar 

  41. H. Xiao and N. Cezar, J. Colloid Interface Sci. 267, 343 (2003).

    Article  CAS  Google Scholar 

  42. V. N. Chornaya, T. T. Todosiichuk, G. Y. Menzheres, and Yu. S. Lipatov, Colloids Surf. A 318, 53 (2008).

    Article  CAS  Google Scholar 

  43. J.-M. Sequaris, A. Hild, H. D. Narres, and M. J. Schwuger, J. Colloid Interface Sci. 230, 73 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hashemi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshniyat, A., Hashemi, A., Sharif, A. et al. Effect of surface modification of bentonite nanoclay with polymers on its stability in an electrolyte solution. Polym. Sci. Ser. B 54, 61–72 (2012). https://doi.org/10.1134/S1560090412010034

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090412010034

Keywords

Navigation