Skip to main content
Log in

Composite layers consisting of polyaniline and poly(o-phenylenediamine): Electrochemical deposition, electrochromic and electrocatalytic properties

  • Composites
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

The composite polymer layers consisting of polyaniline (PANI) and poly(o-phenylenediamine) (poly(o-PDA)) were electrodeposited on a platinum electrode by simultaneous electrochemical oxidation of corresponding monomers from aquaeous hydrochloric solutions. The growth of PANI and poly(o-PDA) occurs separately resulting in layers with two distinct, finely distributed phases. The first deposited layers are composed mainly of poly(o-PDA) and become richer in PANI as the electropolymerization proceeds. The aniline/o-PDA copolymer was not formed during electrodeposition, as evidenced by cyclic voltammetry and Fourier-transformed IR spectroscopy. It was demonstrated that the electrochromic properties of resulting composite layers are the combination of yellow/brown-reddish and green/dark blue observable color transitions which are characteristics of poly(o-PDA) and PANI, respectively. Electrocatalytic properties of the electrosynthesized composite layers were investigated on quinone/hydroquinone (Q/H2Q) redox system and it was shown that the composite layers increase the heterogeneous electron transfer rate with a magnitudes ranging from those obtained on pure poly(o-PDA) to those obtained on pure PANI layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Levi and E. Y. Pisarevskaya, Electrochim. Acta 37, 635 (1992).

    Article  CAS  Google Scholar 

  2. M. D. Levi and E. Y. Pisarevskaya, Synth. Met. 55, 1377 (1993).

    Article  CAS  Google Scholar 

  3. A. Malinauskas, Synth. Met. 107, 75 (1999).

    Article  CAS  Google Scholar 

  4. M. J. Lobo, A. J. Miranda, J. M. Lopez-Fonseca, and P. Tunon, Anal. Chim. Acta 325, 33 (1996).

    Article  CAS  Google Scholar 

  5. A. Kitani, J. Yano, and K. Sasaki, J. Electroanal. Chem. 209, 227 (1986).

    Article  CAS  Google Scholar 

  6. Z. Puskas and G. Inzelt, Electrochim. Acta 50, 1481 (2005).

    Article  CAS  Google Scholar 

  7. K. Chiba, T. Ohsaka, Y. Ohnuki and N. Oyama, J. Electroanal. Chem. 219, 117 (1987).

    Article  CAS  Google Scholar 

  8. K. Martinusz, E. Czirok, and G. Inzelt, J. Electroanal. Chem. 379, 437 (1994).

    Article  Google Scholar 

  9. K. Martinusz, G. Inzelt, and G. Horanyi, J. Electroanal. Chem. 395, 293 (1995).

    Article  Google Scholar 

  10. K. Martinusz, G. Inzelt, and G. Horanyi, J. Electroanal. Chem. 404, 143 (1996).

    Article  Google Scholar 

  11. T. Komura, Y. Funahasi, T. Yamaguti, and K. Takahasi, J. Electroanal. Chem. 446, 113 (1998).

    Article  CAS  Google Scholar 

  12. J. Desilvestro and W. J. Scheifele, J. Math. Chem. 3, 263 (1993).

    Article  CAS  Google Scholar 

  13. C. H. Yang and T.-C. Wen, J. Electrochem. Soc. 144, 2078 (1997).

    Article  CAS  Google Scholar 

  14. Lj. Duić, M. Kraljić, and S. Grigić, J. Polym. Sci., Part A: Polym. Chem. 42, 1599 (2004).

    Article  Google Scholar 

  15. M. Kraljić, M. Žic, and Lj. Duić, Bull. Electrochem. 20, 567 (2004).

    Google Scholar 

  16. A. Malinauskas, M. Bron, and R. Holze, Synth. Met. 92, 127 (1998).

    Article  CAS  Google Scholar 

  17. M. Kraljić, Z. Mandić, and Lj. Duić, Corros. Sci. 45, 181 (2003).

    Article  Google Scholar 

  18. Z. Mandić, Lj. Duić, and F. Kovaćićek, Electrochim. Acta 42, 1389 (1997).

    Article  Google Scholar 

  19. Lj. Duićand Z. Mandić, J. Electroanal. Chem. 335, 207 (1992).

    Article  Google Scholar 

  20. K. Ogura, M. Kokura, J. Yano, and H. Shiigi, Electrochim. Acta 40, 2707 (1995).

    Article  CAS  Google Scholar 

  21. T. Tonosaki, T. Oho, K. Isomura, and K. Ogura, J. Electroanal. Chem. 520, 89 (2002).

    Article  CAS  Google Scholar 

  22. Z. Ping, G. E. Nauer, H. Neugebauer, and J. Theiner, J. Electroanal. Chem. 420, 301 (1997).

    Article  CAS  Google Scholar 

  23. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Sunders College, London, 1998).

    Google Scholar 

  24. S. Mu, Electrochim. Acta 51, 3434 (2006).

    Article  CAS  Google Scholar 

  25. C. Barbero, J. J. Silber, and L. Sereno, J. Electroanal. Chem. 263, 333 (1989).

    Article  CAS  Google Scholar 

  26. D. W. Hatchett, M. Josowicz, and J. Janata, J. Electrochem. Soc. 146, 4535 (1999).

    Article  CAS  Google Scholar 

  27. A. Malinauskas and R. Holze, Synth. Met. 97, 31 (1998).

    Article  CAS  Google Scholar 

  28. D. E. Stilwell and S. M. Park, J. Electrochem. Soc. 136, 427 (1989).

    Article  CAS  Google Scholar 

  29. Z. Mandić and Lj. Duić, J. Electroanal. Chem. 403, 133 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Mandić.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duić, L., Kraljić Roković, M. & Mandić, Z. Composite layers consisting of polyaniline and poly(o-phenylenediamine): Electrochemical deposition, electrochromic and electrocatalytic properties. Polym. Sci. Ser. B 52, 431–437 (2010). https://doi.org/10.1134/S1560090410070067

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090410070067

Keywords

Navigation