Skip to main content
Log in

Electrode for a Supercapacitor Based on Electrochemically Synthesized Multilayer Graphene Oxide

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Multilayer graphene oxide was synthesized by anodic oxidation of dispersed graphite, and the efficiency of its use as an electrode material for a supercapacitor was shown. In an alcohol suspension, the thickness of multilayer graphene oxide particles is less than 0.1 μm with an area of more than 100 μm2. The multilayer graphene oxide electrode has a high specific capacity of 107 F g–1 and a high charge retention rate of 97% after 5000 cycles at a current of 2 A g–1. The multilayer graphene oxide electrode demonstrated a maximum specific energy of 8.7 W h kg–1 at a current density of 0.1 A g–1 and a maximum power of 2291.1 W kg–1 at a current density of 4 A g–1. The impedance data at various DC voltages showed that after 5000 cycles, the charge transfer resistance increases by 26%. It was found that multilayer graphene oxide synthesized by the electrochemical method is a promising electrode material for producing a symmetric supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dreyer, D.R., Jia, H.P., and Bielawski, C.W., Angew. Chem. Int. Ed. Engl., 2010, vol. 49, no. 38, pp. 6965–6968. https://doi.org/10.1002/anie.201002160

    Article  CAS  Google Scholar 

  2. Li, Q., Guo, X., Zhang, Y., Zhang, W., Ge, C., Zhao, L., Wang, X., Zhang, H., Chen, J., Wang, Z., and Sun, L., J. Mater. Sci. Technol.. 2017, vol. 33, no. 8, pp. 793–799. https://doi.org/10.1016/j.jmst.2017.03.018

    Article  CAS  Google Scholar 

  3. Yang, S., Lohe, M.R., Müllen, K., and Feng, X., Adv. Mater. 2016, vol. 28, no. 29, pp. 6213–6221. https://doi.org/10.1002/adma.201505326

    Article  CAS  PubMed  Google Scholar 

  4. Yakovlev, A.V., Zabudʹkov, S.L., Yakovleva, E.V., and Finaenov, A.I., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, pp. 1600–1604. https://doi.org/10.1134/S1070427206100077 

    Article  CAS  Google Scholar 

  5. Wang, P., Yao, T., Sun, B., Fan, X., Dong, S., Bai, Y., and Shi, Y., Colloids Surf. A, 2017, vol. 513, pp. 396–401. https://doi.org/10.1016/j.colsurfa.2016.11.002

    Article  CAS  Google Scholar 

  6. Yakovlev, A.V., Yakovleva, E.V., Tseluikin, V.N., Krasnov, V.V., Mostovoy, A.S., Rakhmetulina, L.A., and Frolov, I.N., Russ. J. Electrochem., 2019, vol. 55, no. 12, pp. 1196–1202. https://doi.org/10.1134/S102319351912019X

    Article  CAS  Google Scholar 

  7. Pei, S., Wei, Q., Huang, K., Cheng, H.-M., and Ren, W., Nat. Commun., 2018, vol. 9, p. 145. https://doi.org/10.1038/s41467-017-02479-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao, J., He, P., Mohammed, M., Zhao, X., Young, R., Derby, B., Kinloch, I., and Dryfe, R., J. Am. Chem. Soc., 2017, vol. 139, pp. 17446–17456. https://doi.org/10.1021/jacs.7b08515

    Article  CAS  PubMed  Google Scholar 

  9. Ali, G., Yusoff, M.M., and Chong, K.-F., ARPN J. Eng. Appl. Sci., 2016, vol. 11, no. 16, pp. 9712–9717.

    CAS  Google Scholar 

  10. Jiang, B., Tian, C., Wang, L., Sun, L., Chen, C., Nong, X., Qiao, Y., and Fu, H., Appl. Surf. Sci., 2012, vol. 258, pp. 3438–3443. https://doi.org/10.1016/j.apsusc.2011.11.091

    Article  CAS  Google Scholar 

  11. Li, Z., Gadipelli, S., Yang, Y., and Guo, Z., Small, 2017, vol. 13, no. 44, pp. 1702474. https://doi.org/10.1002/smll.201702474

    Article  CAS  Google Scholar 

  12. Yakovlev, A.V., Yakovleva, E.V., Tseluikin, V.N., Krasnov, V.V., Mostovoy, A.S., Vikulova, M.A., Frolov, I.H., and Rakhmetulina, L.A., Russ. J. Appl. Chem., 2020, vol. 93, no. 2, pp. 219−224. https://doi.org/10.1134/S1070427220020093

    Article  CAS  Google Scholar 

  13. Ye, J., Zhang, H., Chen, Y., Cheng, Z., Hu, L., and Ran, Q., J. Power Sources, 2012, vol. 212, pp. 105–110. https://doi.org/10.1016/j.jpowsour.2012.03.101

    Article  CAS  Google Scholar 

  14. Wang, J., Salihi, E., and Šiller, L., Mater. Sci. Eng. C, 2017, vol. 72, pp. 1–6. https://doi.org/10.1016/j.msec.2016.11.017

    Article  CAS  Google Scholar 

  15. Edwards, R.S., Coleman, K.S., Nanoscale, 2013, vol. 5, no. 1, pp. 38–51. https://doi.org/10.1039/c2nr32629a

    Article  CAS  PubMed  Google Scholar 

  16. Avouris, P., Dimitrakopoulos, C., Mater. Today, 2012, vol. 15, no. 3, pp. 86–97. https://doi.org/10.1016/S1369-7021(12)70044-5

    Article  CAS  Google Scholar 

  17. Hou, R., Gund, G.S., Qi, K., Nakhanivej, P., Liu, H., Li, F., and Park, H.S., Energy Stor. Mater., 2019, vol. 19, pp. 212–241. https://doi.org/10.1016/j.ensm.2019.03.002

    Article  Google Scholar 

  18. Salitra, G., Soffer, A., Eliad, L., Cohen, Y., and Aurbach, D., J. Electrochem. Soc., 2000, vol. 147, pp. 2486–2493. https://doi.org/10.1149/1.1393557

    Article  CAS  Google Scholar 

  19. Li, Z., Chen, J., Microelectron. Eng., 2008, vol. 85, no. 7, pp. 1549–1554. https://doi.org/10.1016/j.mee.2008.02.016

    Article  CAS  Google Scholar 

  20. Fic, K., He, M., Berg, E.J., Novák, P., and Frackowiak, E., Carbon, 2017, vol. 120, pp. 281–293. https://doi.org/10.1016/j.carbon.2017.05.061

    Article  CAS  Google Scholar 

  21. He, M., Fic, K., Frąckowiak, E., Novák, P., and Berg, E.J., ChemElectroChem., 2019, vol. 6, no. 2, pp. 566–573. https://doi.org/10.1002/celc.201801146

    Article  CAS  PubMed  Google Scholar 

  22. Liu, F., Cao, X., Cui, L., Yue, L., Jia, D., and Liu, J., J. Power Sources, 2019, vol. 421, pp. 169–178. https://doi.org/10.1016/j.jpowsour.2019.03.011

    Article  CAS  Google Scholar 

  23. Rui, B., Yang, M., Zhang, L., Jia, Y., Shi, Y., Histed, R., and Fan, L., J. Appl. Electrochem., 2020, vol. 50, pp. 407–420. https://doi.org/10.1007/s10800-020-01397-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

N.V. Gorshkov would like to thank the German Academic Exchange Service (DAAD), as well as D.A. Mikhailova (IFW Dresden) and M.V. Gorbunov (IFW Dresden) for discussing the mechanisms of accumulation of electrochemical energy by carbon materials.

Funding

Financial support for the work in carrying out the synthesis of multilayer graphene oxide by anodic oxidation of dispersed graphite and SEM was provided by the Russian Science Foundation (contract no. 19-73-10133). Preparation of a multilayer graphene oxide electrode and electrochemical tests were carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 18-29-19048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovlev.

Ethics declarations

The authors declare that they have no conflicts of interest warranting disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 388–396, January, 2021 https://doi.org/10.31857/S0044461821030142

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, N.V., Yakovleva, E.V., Krasnov, V.V. et al. Electrode for a Supercapacitor Based on Electrochemically Synthesized Multilayer Graphene Oxide. Russ J Appl Chem 94, 370–378 (2021). https://doi.org/10.1134/S1070427221030149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221030149

Keywords:

Navigation