Skip to main content
Log in

UV-Assisted Fabrication of Reduced Graphene Oxide Doped SiO2@TiO2 Nanocomposites as Efficient Photocatalyst for Photodegradation of Rhodamine B

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The core-shell nanostructure materials have gained great interests because of its excellent photocatalytic properties and promising applications in several fields. In this work, we prepared the core-shell SiO2@TiO2 nanocomposites by the versatile kinetics-controlled coating method. The graphene oxide (GO) was further reduced over SiO2@TiO2 using UV-assisted photocatalytic reduction method. The physicochemical properties of the as-prepared SiO2@TiO2/RGO nanocomposites were characterized by SEM, XRD, BET, EDS, and FTIR. Results showed that, TiO2 was mainly composed of anatase phase with high crystallinity. Their photocatalytic activities were examined by the degradation of Rhodamine B (RhB) under UV light irradiation. The presence of RGO obviously improved the adsorption ability and photodegradation performance of the composites to RhB. The degradation kinetics of RhB can be described by the pseudo-first-order model. The optimum mass ratio of SiO2@TiO2 to RGO in the composite was 1/0.05 and the rate constant was about 4 times greater than that of the SiO2@TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belhadi, A., Boumaza, S., and Trari, M., Appl. Energ., 2011, vol. 88, pp. 4490–4495.

    Article  CAS  Google Scholar 

  2. Zhang, Y., Tang, Z. R., Fu, X., and Xu, Y. J., Acs Nano, 2011, vol. 5, pp. 7426–7435.

    Article  CAS  PubMed  Google Scholar 

  3. Albu, S. P., Ghicov, A., Aldabergenova, S., Drechsel, P., Leclere, D., and Thompson, G.E., Adv. Mater., 2010, vol. 20, pp. 4135–4139.

    Google Scholar 

  4. Wang, J. and Lin, Z., J. Phys. Chem. C, 2009, vol. 113, pp. 4026–4030.

    Article  CAS  Google Scholar 

  5. Xu, X., Feng, B., Zhou, G., Bao, Z., and Hu, J., Mater. Design, 2016, vol. 101, pp. 95–101.

    Article  CAS  Google Scholar 

  6. Zhang, J., Kusumawati, Y., and Pauporté, T., Electrochimica Acta, 2016, vol. 201, pp. 125–133.

    Article  CAS  Google Scholar 

  7. Hao, X., Jin, Z., Xu, J., Min, S., and Lu, G., Superlattice. Microst., 2016, vol. 94, pp. 237–244.

    Article  CAS  Google Scholar 

  8. Yu, Y.H., Chen, Y.P., and Cheng, Z., Int. J. Hydrogen Energ., 2015, vol. 40, pp. 15994–16000.

    Article  CAS  Google Scholar 

  9. Xu, T., Zhang, L., Cheng, H., and Zhu, Y., Appl. Catal. B Environ., 2011, vol. 101, pp. 382–387.

    Article  CAS  Google Scholar 

  10. Fan, W., Lai, Q., Zhang, Q., and Wang, Y., J. Phys. Chem. C, 2011, vol. 115, pp. 10694–10701.

    Article  CAS  Google Scholar 

  11. Liu, F., Yan, X., Chen, X., Tian, L., Xia, Q., and Chen, X., Catal. Today, 2016, vol. 264, pp. 243–249.

    Article  CAS  Google Scholar 

  12. Wang, H., Yuan, X., Zeng, G., Wu, Y., Liu, Y., and Jiang, Q., Adv. Colloid Interface, 2015. vol. 221, pp. 41–59.

    Article  CAS  Google Scholar 

  13. Zielinska-Jurek, A., Kowalska, E., Sobczak, J.W., Lisowski, W., Ohtani, B., and Zaleska, A., Appl. Catal. B Environ., 2011, vol. 101, pp. 504–514.

    Article  CAS  Google Scholar 

  14. Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., and Su, F., Acs. Nano, 2011, vol. 5, pp. 590–596.

    Article  CAS  PubMed  Google Scholar 

  15. Serpone, N., J. Phys. Chem. B, 2007, vol. 110, pp. 24287–24293.

    Article  CAS  Google Scholar 

  16. Tingli, M., Morito, A., Eiichi, A., and Imai, I., Nano Lett., 2005, vol. 5, pp. 2543–2547.

    Article  CAS  Google Scholar 

  17. Manga, K.K., Wang, S., Jaiswal, M., Bao, Q., and Loh, K.P., Adv. Mater., 2010. vol. 22, pp. 5219–5219.

    Article  Google Scholar 

  18. Zhang, X.Y., Li, H.P., Cui, X.L., and Lin, Y., J. Mater. Chem., 2010, vol. 20, pp. 2801–2806.

    Article  CAS  Google Scholar 

  19. Zhou, F. and Zhu, Y., J. Adv. Ceram., 2012. vol. 1, pp. 72–78.

    Article  CAS  Google Scholar 

  20. Kim, S., Yin, Y., Alivisatos, A.P., Somorjai, G.A., and Jr, Y.J., J. Am. Chem. Soc., 2007. vol. 129, pp. 9510–9513.

    Article  CAS  PubMed  Google Scholar 

  21. Crossland, E. J., Noel, N., Sivaram, V., Leijtens, T., Alexander-Webber, J.A., and Snaith, H.J., Nature, 2013, vol. 495, pp. 215–219.

    Article  CAS  PubMed  Google Scholar 

  22. Shekhah, O., Ranke, W., Schüle, A., Kolios, G., and Schlögl, R., Angew. Chem. Int. Edition, 2003, vol. 42, pp. 5760–5763.

    Article  CAS  Google Scholar 

  23. Lee, H.W., Jin, Y.O., Lee, T.I., Jang, W.S., Yoo, Y. B., and Chae, S.S., Appl. Phys. Lett., 2013, vol. 102, pp. 193903–193904.

    Article  CAS  Google Scholar 

  24. Zhu, Y., Zhang, L., Yao, W., and Cao, L., Appl. Surf. Sci., 2000, vol. 158, pp. 32–37.

    Article  CAS  Google Scholar 

  25. Ji, L., Lin, Z., Alcoutlabi, M., and Zhang, X., Energ. Environ. Sci., 2011. vol. 4, pp. 2682–2699.

    Article  CAS  Google Scholar 

  26. Lee, J., Ji, C.P., and Song, H., Adv. Mater., 2008. vol. 20, pp. 1523–1528.

    Article  CAS  Google Scholar 

  27. Xiong, Z., Zhang, L.L., Ma, J., and Zhao, X.S., Chem. Commun., 2010, vol. 46, pp. 6099–60101.

    Article  CAS  Google Scholar 

  28. Li, K.T., Hsu, M.H., and Wang, I., Catal. Commun., 2008. vol. 9, pp. 2257–2260.

    Article  CAS  Google Scholar 

  29. Helden, A.K.V., Jansen, J.W., and Vrij, A., J. Colloid Interf. Sci., 1981, vol. 81, pp. 354–368.

    Article  Google Scholar 

  30. Ji, B. J., Qiao, Z., Lee, I., Dahl, M., Zaera, F., and Yin, Y., Adv. Funct. Mater., 2012. vol. 22, pp. 166–174.

    Article  CAS  Google Scholar 

  31. Zhang, H., Lv, X., Li, Y., Wang, Y., and Li, J., Acs. Nano, 2010, vol. 4, pp. 380–386.

    Article  CAS  PubMed  Google Scholar 

  32. Nethravathi, C. and Rajamathi, M., Carbon, 2008, vol. 46, pp. 1994–1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, J., Ding, Z. et al. UV-Assisted Fabrication of Reduced Graphene Oxide Doped SiO2@TiO2 Nanocomposites as Efficient Photocatalyst for Photodegradation of Rhodamine B. Russ J Appl Chem 91, 764–769 (2018). https://doi.org/10.1134/S1070427218050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218050063

Navigation