Skip to main content
Log in

Quantum-chemical study of adsorption of Ag2, Ag4, and Ag8 on different parts of the TiO2 surface

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Quantum-chemical study of the adsorption of two-, four- and eight-atomic silver clusters on stoichiometric and partially reduced rutile (110) surface, and of silver tetramer on the surface of anatase (101) was carried out in the framework of periodic DFT model. The most energetically favorable positions of clusters on the surface of TiO2 and the mechanism of binding the clusters with the substrate were revealed. According to the calculations, the adsorption of silver clusters on the surface of stoichiometric rutile (110) is more preferable than on the partially reduced one. The mechanism of binding the clusters with the surface of anatase and rutile is shown to be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37.

    Article  CAS  Google Scholar 

  2. Diebold, U., Surf. Sci. Rep., 2003, vol. 48, p. 53.

    Article  CAS  Google Scholar 

  3. Tran, J.S., Chiang, K., and Amal, R.J., J. Photochem. Photobiol., A: Chem., 2006, vol. 183, p. 41.

    Article  CAS  Google Scholar 

  4. Shchukin, D., Ustinovich, E., Sviridov, D., and Pichat, P., Photochem. Photobiol. Sci., 2004, vol. 3, p. 142.

    Article  CAS  Google Scholar 

  5. Feldhoff, A., Mendive, C., Bredow, T., and Bahnemann, D., Chem. Phys. Chem., 2007, vol. 8, p. 805.

    Article  CAS  Google Scholar 

  6. Grünert, W., Bruckner, A., Hofmeister, H., and Claus, P., J. Phys. Chem., B, 2004, vol. 108, p. 5709.

    Article  Google Scholar 

  7. Chrétien, S. and Metiu, H., J. Chem. Phys., 2007, vol. 127, p. 084704.

    Article  Google Scholar 

  8. Chrétien, S. and Metiu, H., J. Chem. Phys., 2007, vol. 127, p. 244708.

    Article  Google Scholar 

  9. Vittadini, A. and Selloni, A., J. Chem. Phys., 2002, vol. 117, p. 353.

    Article  CAS  Google Scholar 

  10. Han, Y., Liu, C.-J., and Ge, Q., J. Phys. Chem., B, 2006, vol. 110, p. 7463.

    Article  CAS  Google Scholar 

  11. Zhang, J., Zhang, M., Han, Y., Li, W., Meng, X., and Zong, B., J. Phys. Chem., C, 2008, vol. 112, p. 19506.

    Article  CAS  Google Scholar 

  12. Pacchioni, G.G., Bredow, T., and Sanz, J.F., Surf. Sci., 2001, vol. 471, p. 21.

    Article  Google Scholar 

  13. Pillay, D, Wang, Y., and Hwang, G.S., Catal. Today, 2005, vol. 105, p. 78.

    Article  CAS  Google Scholar 

  14. Mazheika, A.S., Matulis, V.E., and Ivashkevich, O.A., J. Mol. Str. (Theochem.), 2010, vol. 942, p. 47.

    Article  CAS  Google Scholar 

  15. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev., B, 1996, vol. 54, p. 16533.

    Article  CAS  Google Scholar 

  16. Baroni, S., Dal Corso, A., de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Chiarotti, G., Focher, P., Pasquarello, A., Laasonen, K., Trave, A., Car, R., Marzari, N., and Kokalj, A., www.pwscf.org .

  17. Vanderbilt, D., Phys. Rev., B, 1990, vol. 41, p. 7892.

    Article  CAS  Google Scholar 

  18. Monkhorst, H.J. and Pack, J.D., Phys. Pev., B, 1976, vol. 13, p. 5188.

    Google Scholar 

  19. Charlton, G., Howes, P.B., Nicklin, C.L., Steadman, P., Taylor, J.S.G., Muryn, C.A., Harte, S.P., Mercer, J., McGrath, R., Norman, D., Turner, T.S., and Thornton, G., Phys. Rev. Lett., 1997, vol. 78, p. 495.

    Article  CAS  Google Scholar 

  20. Vilay, A., Mills, G., and Metiu, H., J. Chem. Phys., 2003, vol. 118, p. 6536.

    Article  Google Scholar 

  21. Matulis, V.E., Ivashkevich, O.A., and Gurin, V.S., J. Mol. Struct. (Theochem.), 2003, vol. 665, p. 291.

    Article  Google Scholar 

  22. Zhao, G.F., Lei, Y., and Zeng, Z., Chem. Phys., 2006, vol. 327, p. 261.

    Article  CAS  Google Scholar 

  23. Tong, X., Benz, L., Chrétien, S., Kemper, P., Kolmakov, A., Metiu, H., Bowers, M.T., and Buratto, S.K., Chem. Phys., 2005, vol. 123, p. 204701.

    Google Scholar 

  24. Tong, X., Benz, L., Kolmakov, A., Chrétien, S., Metiu, H., and Buratto, S.K., Surf. Sci., 2005, vol. 575, p. 60.

    Article  CAS  Google Scholar 

  25. Mazheika, A.S., Matulis, V.E., and Ivashkevich., O.A., J. Mol. Struct. (Theochem.), 2009, vol. 909, p. 75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Matulis.

Additional information

Original Russian Text © V.E. Matulis, A.S. Mozheiko, O.A. Ivashkevich, 2010, published in Zhurnal Obshchei Khimii, 2010, Vol. 80, No. 6, pp. 898–907.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matulis, V.E., Mozheiko, A.S. & Ivashkevich, O.A. Quantum-chemical study of adsorption of Ag2, Ag4, and Ag8 on different parts of the TiO2 surface. Russ J Gen Chem 80, 1068–1077 (2010). https://doi.org/10.1134/S107036321006006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321006006X

Keywords

Navigation