Skip to main content
Log in

Histochemical Study of Xylem Cells in In Vitro Culture of Iris sibirica L.

  • Plant Biopolymers
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, lignin content data are presented for annual regenerant Iris sibirica plants, comparable to those in six-year-old intact plants. The structure of the shoots of Iris sibirica grown on artificial nutrient media was studied by the histochemical method. Features of the formation of the xylem in Iris sibirica on artificial nutrient media were revealed. Regenerants very quickly developed a complex system consisting of vascular bundles containing sieve tubes, vessels and tracheids, and hydrocyte systems. Hydrocytes of Iris sibirica were tracheids with lignified thickening, but, in contrast to tracheids and vessels of xylem (they are formed based on procambium or cambium—special lateral primary or secondary meristem), hydrocytes differentiated from the cells of permanent tissues (like phellogen), which probably possessed meristematic activity at the time of differentiation. In Iris sibirica hydrocytes covered the vascular bundle by the thick layer and strung along it up to a certain height. High lignin content in young regenerant Iris sibirica plants was due to the formation of the dense tissue from lignified tracheal elements. The study of the differentiation of xylem elements under controlled conditions can serve as a model for our understanding of wood formation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Turner, J.A., Buongiorno, J., Maplesden, F., Zhu, S., Bates, S., and Li, R., World wood industries outlook, Forest Res. Bull., 2006, vol. 230, pp. 2005–2030.

    Google Scholar 

  2. Turner, S., Gallois, P., and Brown, D., Tracheary element differentiation, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 407–433.

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda, H., Plant tracheary elements, Encycl. Life Sci., 2010, pp. 1–5.

    Book  Google Scholar 

  4. Bollhoner, B., Prestele, J., and Tuominen, H., Xylem cell death: emerging understanding of regulation and function, J. Exp. Bot., 2012, vol. 63, no. 3, pp. 1081–1094.

    Article  CAS  PubMed  Google Scholar 

  5. Oda, Y. and Fukuda, H., Secondary cell wall patterning during xylem differentiation, Curr. Opin. Plant Biol., 2012, vol. 15, no. 1, pp. 38–44.

    Article  CAS  PubMed  Google Scholar 

  6. Antonova, G.F., Zheleznichenko, T.V., and Stasova, V.V., Lignification of Scots pine callus in response to culture conditions and culture medium composition, Sib. Lesnoi Zh., 2014, no. 6, pp. 46–59.

    Google Scholar 

  7. Preeti Dahiya, Role of death in providing lifeline to plants, Trends Plant Sci., 2003, vol. 8, pp. 462–465.

  8. Pesquet, E., Ranocha, P., Legay, S., Digonnet, C., Barbier, O., Pichon, M., and Goffner, D., Novel markers of xylogenesis in Zinnia are differentially regulated by auxin and cytokinin 1, Plant Physiol., 2005, vol. 139, pp. 1821–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oda, Y. and Hasezawa, S., Review cytoskeletal organization during xylem cell differentiation, Plant Tissue Cult., 2006, vol. 119, no. 3, pp. 167–177.

    Google Scholar 

  10. Pyo, H., Demura, T., and Fukuda, H., Tere, a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements, Plant J., 2007, vol. 51, no. 6, pp. 955–965.

    Article  CAS  PubMed  Google Scholar 

  11. Ibañes, M., Fàbregas, N., Chory, J., and Caño-Delgado, A.I., Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 32, pp. 13630–13635.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwon, S.I., Cho, H.J., and Park, O.K., Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation, Autophagy, 2010, vol. 6, no. 8, pp. 1187–1189.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K., The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis, Plant J., 2010, vol. 64, no. 1, pp. 151–164.

    CAS  PubMed  Google Scholar 

  14. Fàbregas, N., Ibañes, M., and Ibañes-Delgado, A.I., A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana, Plant Signal. Behav., 2010, vol. 5, no. 7, pp. 903–906.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Milioni, D., Sado, P.E., Stacey, N.J., Roberts, K., and McCann, M.C., Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis, Plant Cell, 2002, vol. 14, no. 11, pp. 2813–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demura, T., Tashiro, G., Horiguchi, G., Kishimoto, N., Kubo, M., Matsuoka, N., Minami, A., Nagata–Hiwatashi, M., Nakamura, K., Okamura, Y., Sassa, M., Suzuki, S., Yazaki, J., Kikuchi, S., and Fukuda, H., Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 24, pp. 15794–15799.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Möller, R., Koch, G., Nanayakkara, B., and Schmitt, U., Lignification in cell cultures of Pinus radiata: Activities of enzymes and lignin topochemistry, Tree Physiol., 2005, vol. 26, no. 2, pp. 201–210.

    Article  Google Scholar 

  18. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., and Demura, T., Transcription switches for protoxylem and me taxylem vessel formation, Genes Dev., 2005, vol. 19, pp. 1855–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Devillard, C. and Walter, C., Formation of plant tracheary elements in vitro—a review, N. Z. J. For. Sci., 2014, vol. 44, pp. 2–14.

    Article  Google Scholar 

  20. Fukuda, H., Xylogenesis: initiation, progression, and cell death, Ann. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, no. 1, pp. 299–325.

    Article  CAS  Google Scholar 

  21. McCann, M.C., Tracheary element formation: Building up to a dead end, Trends Plant Sci., 1997, vol. 2, no. 9, pp. 333–338.

    Article  Google Scholar 

  22. Denton, D., Nicolson, S., and Kumar, S., Cell death by autophagy: facts and apparent artefacts, Cell Death Differ., 2012, vol. 19, no. 1, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  23. Kuriyama, H. and Fukuda, H., Developmental programmed cell death in plants, Curr. Opin. Plant Biol., 2002, vol. 5, no. 6, pp. 568–573.

    Article  CAS  PubMed  Google Scholar 

  24. McCabe, P.F. and Leaver, C.J., Programmed cell death in cell cultures, Plant Mol. Biol., 2000, vol. 44, no. 3, pp. 359–368.

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda, H., Signals that control plant vascular cell differentiation, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 5, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  26. Kohlenbach, H.W. and Schopke, C., Cytodifferentiation to tracheary elements from isolated mesophyll protoplasts of Zinnia elegans, Naturwissenschaften, 1981, vol. 68, pp. 576–577.

    Article  Google Scholar 

  27. Roberts, A.V., Walker, S., Horan, I., Smith, E.F., and Mottley, J., The effect of growth retardants, humidity and lighting at stage III on stage IV of micropropagation in chrysanthemum and rose, Acta Hortic., 1992, vol. 319, pp. 153–158.

    Article  Google Scholar 

  28. Lacayo, C.I., Malkin, A.J., Holman, H.Y.N., Chen, L., Ding, S.Y., Hwang, M.S., and Thelen, M.P., Imaging cell wall architecture in single Zinnia elegans tracheary elements, Plant Physiol., 2010, vol. 154, no. 1, pp. 450–452.

    Article  CAS  Google Scholar 

  29. Höfte, H., Plant cell biology: How to pattern a wall, Curr. Biol., 2010, vol. 20, no. 1, pp. 450–452.

    Article  CAS  Google Scholar 

  30. Bazarnova, N.G., Il’icheva, T.N., Tikhomirova, L.I., and Sinitsyna, A.A. Screening of the chemical composition and biological activity of Iris sibirica L. cultivar Cambridge, Khim. Rastit. Syr’ya, 2016, no. 3, pp. 49–57.

    Google Scholar 

  31. Tikhomirova, L.I., Il’icheva, T.N., Bazarnova, N.G., and Sysoeva, A.V., A method for obtaining medicinal raw material from white cinquefoil (Potentilla alba L.) under hydroponic conditions, Khim. Rastit. Syr’ya, 2016, no. 3, pp. 752–759.

    Google Scholar 

  32. Bazarnova, N.G., Tikhomirova, L.I., Frolova, N.S., and Mikushina, I.V., Isolation and analysis of extractives from white cinquefoil (Potentilla alba L.) grown under different conditions, Russ. J. Bioorg. Chem., 2017, vol. 43, no. 7, pp. 752–759.

    Article  CAS  Google Scholar 

  33. Obolenskaya, A.V., Laboratornye raboty po khimii drevesiny i tsellyulozy: uchebnoe posobie (Laboratory Works on the Chemistry of Wood and Cellulose: A Tutorial), Moscow, 1991.

    Google Scholar 

  34. Muzychkina, R.A., Korul’kin, D.Yu., and Abilov, Zh.A., Tekhnologiya proizvodstva i analiz fitopreparatov (The Technology of Production and Analysis of Herbal Remedies), Almaty, 2011.

    Google Scholar 

  35. Kalinin, F.L., Sarnatskaya, V.V., and Polishchuk, V.E., Metody kul’tury v fiziologii i biokhimii rastenii (Culture Methods in Plant Physiology and Biochemistry), Kiev, 1980.

    Google Scholar 

  36. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassaya with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 4, p. 473.

    Article  CAS  Google Scholar 

  37. Barykina, R.P., Veselova, T.D., and Devyatov, A.G., Spravochnik po botanicheskoi mikrotekhnike. Osnovy i metody (Reference in Botanical Microtechnology: Fundamentals and Methods), Moscow, 2004.

    Google Scholar 

  38. Jensen, W., Botanicheskaya gistokhimiya (Botanical Histochemistry), Moscow, 1965.

    Google Scholar 

  39. The cell wall of the plant cell [Electronic resource]. http://www.activestudy.info/kletochnaya-obolochkarastitelnoj-kletki/.

  40. Shanidze, M.A., The anatomical analysis of vegetative organs of Georgian representatives of the genus Iris as a material for the knowledge of phylogeny of the genus, Extended Abstact of Cand. Sci. (Biol.) Dissertation, Tbilisi, 1955.

    Google Scholar 

  41. Esau, K., Anatomiya rastenii (Plant Anatomy), Moscow, 1969.

    Google Scholar 

  42. Churikova, O.A., Some patterns of in vitro morphogenesis, in Biotekhnologiya kak instrument sokhraneniya bioraznoobraziya rastitel’nogo mira. Sbornik statei po materialam II Vserossiiskoi nauchno-prakticheskoi konferentsii (Biotechnology as a Tool for Conservation of Flora Biodiversity: Collection of Articles Based on Materials of II All-Russia Scientific-Practical Conference), Volgograd, 2008, pp. 276–282.

    Google Scholar 

  43. Razdorskii, V.F., Arkhitektonika rastenii (Plant Architectonics), Moscow, 1955.

    Google Scholar 

  44. Aleksandrov, V.G., Anatomiya rastenii (Plant Anatomy), Moscow, 1966.

    Google Scholar 

  45. Roberts, L.W., The initiation of xylem differentiation, Bot. Rev., 1969, vol. 35, no. 3, pp. 201–250.

    Article  CAS  Google Scholar 

  46. Wagner, A., Donaldson, L., and Ralph, J., Lignification and lignin manipulations in conifers, Adv. Bot. Res., 2012, vol. 61, pp. 37–76.

    Article  CAS  Google Scholar 

  47. Roberts, K. and McCann, M.C., Xylogenesis: The birth of a corpse, Curr. Opin. Plant Biol., 2000, vol. 3, no. 6, pp. 517–522.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Tikhomirova.

Additional information

Original Russian Text © L.I. Tikhomirova, N.G. Bazarnova, A.A. Sinitsyna, 2017, published in Khimiya Rastitel’nogo Syr’ya, 2017, No. 1, pp. 37–49.

Supplementary materials are available for this article at 10.1134/S1068162018070129 and are accessible for authorized user.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, L.I., Bazarnova, N.G. & Sinitsyna, A.A. Histochemical Study of Xylem Cells in In Vitro Culture of Iris sibirica L.. Russ J Bioorg Chem 44, 860–869 (2018). https://doi.org/10.1134/S1068162018070129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018070129

Keywords

Navigation